A Simple ¾-Approximation Algorithm for MAX SAT

David P. Williamson

Joint work with Matthias Poloczek (Cornell), Georg Schnitger (Frankfurt), and Anke van Zuylen (William & Mary)

Maximum Satisfiability

• Input:

n Boolean variables $x_1, ..., x_n$ *m* clauses $C_1, ..., C_m$ with weights $w_j \ge 0$ – each clause is a disjunction of literals, e.g. $C_1 = x_1 \lor x_2 \lor \overline{x_3}$

 Goal: truth assignment to the variables that maximizes the weight of the satisfied clauses

Approximation Algorithms

 An α-approximation algorithm runs in polynomial time and returns a solution of at least α times the optimal.

• For a randomized algorithm, we ask that the expected value is at least α times the optimal.

A ½-approximation algorithm

- Set each x_i to true with probability $\frac{1}{2}$.
- Then if l_i is the number of literals in clause j

E[Weight satisfied clauses]

$$= \sum_{j=1}^{m} w_j \Pr[\text{Clause } j \text{ satisfied}]$$
$$= \sum_{j=1}^{m} w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j} \right)$$
$$\geq \frac{1}{2} \sum_{j=1}^{m} w_j \ge \frac{1}{2} OPT.$$

What about a deterministic algorithm?

- Use the method of conditional expectations (Erdős and Selfridge '73, Spencer '87)
- If $E[W|x_1 \leftarrow true] \ge E[W|x_1 \leftarrow false]$ then set x_1 true, otherwise false.
- Similarly, if X_{i-1} is event of how first i 1 variables are set, then if $E[W|X_{i-1}, x_i \leftarrow true] \ge E[W|X_{i-1}, x_i \leftarrow false]$, set x_i true.
- Show inductively that $E[W|X_i] \ge E[W] \ge \frac{1}{2}$ OPT.

An LP relaxation

maximize
$$\sum_{j=1}^{m} w_j z_j$$

subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j, \qquad \forall C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i,$$

$$0 \le y_i \le 1, \qquad i = 1, \dots, n,$$

$$0 \le z_j \le 1, \qquad j = 1, \dots, m.$$

Nonlinear randomized rounding

(Goemans, W 94) Pick any function f such that $1 - 4^{-x} \le f(x) \le 4^{x-1}$. Set x_i true with probability $f(y_i^*)$, where y^* is an optimal LP solution.

Pr[clause C_j not satisfied] = $\prod_{i \in P_j} (1 - f(y_i^*)) \prod_{i \in N_j} f(y_i^*)$ $\leq \prod_{i \in P_j} 4^{-y_i^*} \prod_{i \in N_j} 4^{y_i^* - 1}$ $= 4^{-\left(\sum_{i \in P_j} y_i^* + \sum_{i \in N_j} (1 - y_i^*)\right)}$ $< 4^{-z_j^*}$

$$E[W] \geq \sum_{j=1}^{m} w_j \Pr[\text{clause } C_j \text{ satisfied}]$$

$$\geq \sum_{j=1}^{m} w_j \left(1 - 4^{-z_j^*}\right)$$

$$\geq \frac{3}{4} \sum_{j=1}^{m} w_j z_j^* \geq \frac{3}{4} OPT.$$

Integrality gap

maximize
$$\sum_{j=1}^{m} w_j z_j$$

subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j, \qquad \forall C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i,$$

$$0 \le y_i \le 1, \qquad i = 1, \dots, n,$$

$$0 \le z_j \le 1, \qquad j = 1, \dots, m.$$

$$x_1 \lor x_2, \quad \bar{x}_1 \lor x_2, \quad x_1 \lor \bar{x}_2, \quad \bar{x}_1 \lor \bar{x}_2$$

The result is tight since LP solution $z_1 = z_2 = z_3 = z_4 = 1$ and $y_1 = y_2 = \frac{1}{2}$ feasible for instance above, but OPT = 3.

Chan, Lee, Raghavendra, Steurer (STOC 13) show no superpolynomially sized LP can give a better integrality gap.

Current status

- NP-hard to approximate better than 0.875 (Håstad '01)
- Combinatorial approximation algorithms
 - Johnson's algorithm (1974): Simple ½-approximation algorithm (Greedy version of the randomized algorithm)
 - Improved analysis of Johnson's algorithm: ²/₃-approx.
 guarantee [Chen, Friesen, Zheng '99, Engebretsen '04]
 - Randomizing variable order improves guarantee slightly [Costello, Shapira, Tetali SODA 11]
- Algorithms using Linear or Semidefinite Programming

– Yannakakis '94, Goemans, W '94:

Question [W '98]: Is it possible to obtain a 3/4approximation algorithm without solving a linear program?

(Selected) results

- Poloczek, Schnitger (SODA 11):
 - "randomized Johnson" combinatorial ¾approximation algorithm
- Van Zuylen (WAOA 11):
 - Simplification of "randomized Johnson" probabilities and analysis
- Buchbinder, Feldman, Naor, and Schwartz (FOCS 12):
 - Another ¾-approximation algorithm for MAX SAT as a special case of submodular function maximization
 - Can be shown that their MAX SAT alg is equivalent to van Zuylen's.

(Selected) results

- Poloczek, Schnitger '11
- Van Zuylen '11
- Buchbinder, Feldman, Naor and Schwartz '12

Common properties:

- iteratively set the variables in an "online" fashion,
- the probability of setting x_i to true depends on clauses containing x_i or \overline{x}_i that are still undecided.

Today

- Give "textbook" version of Buchbinder et al.'s algorithm with an even simpler analysis (Poloczek, van Zuylen, W, LATIN 14)
- Give a simple deterministic version of the algorithm (Poloczek, Schnitger, van Zuylen, W, manuscript)
- Give an experimental analysis that shows that the algorithm works very well in practice (Poloczek, W, SEA 2016)

Buchbinder et al.'s approach

- Keep two bounds on the solution
 - Lower bound LB = weight of clauses already satisfied
 - **Upper bound UB** = weight of clauses not yet unsatisfied
- Greedy can focus on two things:
 - maximize LB,
 - maximize UB,

but either choice has bad examples...

E.g. $x_1 \vee x_2$ (wt 1+ ϵ), \overline{x}_1 (wt 1)

 $x_1 \vee x_2$ (wt 1+ ϵ), \overline{x}_1 (wt ϵ), \overline{x}_2 (wt 1)

• Key idea: make choices to increase **B** = ½ (**LB**+**UB**)

Set x_1 to true

Set x_1 to true

Set x_1 to true or Set x_1 to false

Set x_1 to trueGuaraor (B_1-B_1) Set x_1 to false t_1

Guaranteed that $(B_1-B_0)+(B_1-B_0) \ge 0$ $t_1 f_1$

Example

Initalize:

- LB = 0
- UB = 6
- Step 1:

5 - 0

$$\bar{x}_2 \lor x_3$$
 3
1 () 1 () 1 () 1 () 1

 \overline{x}_1

 $x_1 \vee x_2$

Weight

2

1

•
$$t_1 = \frac{1}{2} (\Delta LB + \Delta UB) = \frac{1}{2} (1 + (-2)) = -\frac{1}{2}$$

• $f_1 = \frac{1}{2} \left(\Delta LB + \Delta UB \right) = \frac{1}{2} \left(2 + 0 \right) = 1$

Clause

• Set x₁ to false

Example

Clause	Weight
$\bar{x_1}$	2
$x_1 \vee x_2$	1
$\bar{x}_2 \lor x_3$	3

Step 2:

- $t_2 = \frac{1}{2} (\Delta LB + \Delta UB) = \frac{1}{2} (1 + 0) = \frac{1}{2}$ • $f_2 = \frac{1}{2} (\Delta LB + \Delta UB) = \frac{1}{2} (3 + (-1)) = 1$
- Set x_2 to true with probability 1/3 and to false with probability 2/3

Example

Clause	Weight
$ar{x_1}$	2
$x_1 \vee x_2$	1
$\bar{x}_2 \lor x_3$	3

Algorithm's solution:

$x_1 = false$ $x_2 = true w.p. 1/3 and false w.p. 2/3$ $x_3 = true$

Expected weight of satisfied clauses: $5\frac{1}{3}$

Let $x_1^*, x_2^*, \dots, x_n^*$ be an optimal truth assignment

Let OPT_i = weight of clauses satisfied if setting x_1, \ldots, x_i as the algorithm does, and $x_{i+1} = x_{i+1}^*, \ldots, x_n = x_n^*$

<u>Key Lemma</u>: $E[B_i - B_{i-1}] \ge E[OPT_{i-1} - OPT_i]$

<u>Key Lemma</u>: $E[B_i - B_{i-1}] \ge E[OPT_{i-1} - OPT_i]$

Key Lemma:

<u>Conclusion</u>: expected weight of ALG's solution is $E[B_n] \ge B_0 + \frac{1}{2}(OPT - B_0) = \frac{1}{2}(OPT + B_0) \ge \frac{3}{4}OPT$

Suppose x_i^* = true

If algorithm sets x_i to true,

- $B_i B_{i-1} = t_i$
- $OPT_{i-1} OPT_i = 0$

If algorithm sets x_i to false,

 $\bullet \quad B_i - B_{i-1} = f_i$

•
$$OPT_{i-1} - OPT_i \le LB_i - LB_{i-1} + (UB_i - UB_{i-1})$$

= $2(B_i - B_{i-1}) = 2t_i$

Want to show:

$$\frac{\text{Key Lemma}}{E[B_i - B_{i-1}]} \ge E[OPT_{i-1} - OPT_i]$$

Want to show:

<u>Key Lemma</u>: $E[B_i - B_{i-1}] \ge E[OPT_{i-1} - OPT_i]$ Know:

If algorithm sets x_i to true,

$$B_i - B_{i-1} = t_i$$

•
$$OPT_{i-1} - OPT_i = 0$$

If algorithm sets x_i to false,

•
$$B_i - B_{i-1} = f_i$$

•
$$OPT_{i-1} - OPT_i \le 2t_i$$

Case 1: $f_i < 0$ (algorithm sets x_i to true): $E[B_i - B_{i-1}] = t_i > 0 = E[OPT_{i-1} - OPT_i]$

Case 2: $t_i < 0$ (algorithm sets x_i to false): $E[B_i - B_{i-1}] = f_i > 0 > 2t_i \ge E[OPT_{i-1} - OPT_i]$

Want to show:

Question

Is there a simple combinatorial <u>deterministic</u> ³/₄-approximation algorithm?

Deterministic variant?

Greedily maximizing B_i is not good enough:

Clause	Weight
x_1	1
$\bar{x_1} \lor x_2$	2+ε
<i>x</i> ₂	1
$\bar{x}_2 \lor x_3$	2+ε
x_{n-1}	1
$\bar{x}_{n-1} \lor x_n$	2+ε

Optimal assignment sets all variables to true OPT = $(n-1)(3+\varepsilon)$

Greedily increasing B_i sets variables x_1, \dots, x_{n-1} to false GREEDY= (n-1)(2+ ε)

A negative result

Poloczek (ESA 11): No deterministic "priority algorithm" can be a ¾ -approximation algorithm, using scheme introduced by Borodin, Nielsen, and Rackoff '03.

- Algorithm makes one pass over the variables and sets them.
- Only looks at weights of clauses in which current variable appears positively and negatively (not at the other variables in such clauses).
- Restricted in information used to choose next variable to set.

But...

- It is possible...
- ... with a two-pass algorithm (Thanks to Ola Svensson).
- First pass: Set variables x_i fractionally (i.e. probability that x_i true), so that $E[W] \ge \frac{3}{4} OPT$.
- Second pass: Use method of conditional expectations to get deterministic solution of value at least as much.

Buchbinder et al.'s approach

- Keep two bounds expected ractional solution
 - Lower bound LB = Weight of clauses already satisfied
 - Upper bound UB = weight of clauses not yet unsatisfied

expected

- Greedy can focus on two things:
 - maximize LB,
 - maximize UB,

but either choice has bad examp

• Key idea: make choices to increase **B** = ½ (LB+UB)

As before

Let t_i be (expected) increase in bound B_{i-1} if we set x_i true; f_i be (expected) increase in bound if we set x_i false.

Analysis

- Proof that after the first pass $E[W] \ge \frac{3}{4} OPT$ is almost the same as before.
- Proof that final solution output has value at least $E[W] \ge \frac{3}{4} OPT$ is via method of conditional expectation.
- Algorithm can be implemented in linear time.

Experimental Analysis

- How well do these algorithms work on structured instances?
- How do they compare to other types of algorithms (e.g. local search)?
- Can we use the randomization to our advantage?

The Instances

- From SAT and MAX SAT competitions in 2014 and 2015, all unweighted:
 - Industrial/applications: formal verification, crypto attacks, etc (300 + 55 instances)
 - Crafted: Max cut, graph isomorphism, etc (300 + 402 instances)
 - Random: With various ratios of clauses/variables (225 + 702 instances)
- Sizes:
 - Average for industrial: .5M variables in 2M clauses
 - Largest: 14M in 53M clauses
 - Larger in SAT instances than MAX SAT

The Measure

• Rather than approximation ratio, we use the *totality ratio*, ratio of satisfied clauses to the number of clauses in the input.

Greedy Algorithms

SAT/Industrial instances: Johnson's algorithm (JA) versus Randomized Greedy (RG) versus the 2-pass algorithm (2Pass).

Local Search

We compared the greedy algorithms versus a number of local search algorithms studied by Pankratov and Borodin (SAT 2010).

- WalkSAT: Selman, Kautz, Cohen (1993), Kautz (2014)
- Non-Oblivious Local Search (NOLS): Khanna, Motwani, Sudan, Vazirani (1998)
- Simulated Annealing (SA): Spears (1993)

A Hybrid Algorithm

Adding the last 10 iterations of simulated annealing on top of 2-Pass worked really well, not that much slower. The last 10 iterations by themselves was slightly faster, only slightly worse.

Randomization

- Suppose we randomize over the variable orderings? Costello, Shapira, and Tetali (SODA 11) show this improves the worst-case performance of Johnson's algorithm.
- For industrial instances, this makes the performance of the greedy algorithms worse: Johnson's alg from 98% to 95.8%, RG from 95.7% to 92.8%.

Randomization

- What about multiple trials of RG (10x)?
- Increases average fraction of satisfied clause by only 0.07%.

Conclusion

- We show this two-pass idea works for other problems as well (e.g. deterministic ½approximation algorithm for MAX DICUT, MAX NAE SAT).
- Can we characterize the problems for which it does work?

Conclusion

- More broadly, are there other places in which we can reduce the computation needed for approximation algorithms and make them practical?
 - E.g. Trevisan 13/Soto 15 give a .614-approximation algorithm for Max Cut using a spectral algorithm.
 - Can we beat ¾ using a spectral algorithm?
 - For just MAX 2SAT?
 - We can get .817 for *balanced* instances (Paul, Poloczek, W LATIN 16)
 - Curiously, the algorithm seems to beat the GW SDP algorithm on average in practice (Paul et al.)

Thanks for your time and attention.