
What Computers Can
Compute (Approximately)

David P. Williamson
TU Chemnitz
9 June 2011

Outline

• The 1930s-40s: What can computers compute?

• The 1960s-70s: What can computers compute efficiently?

• The 1990s-: What can computers compute efficiently approximately?

• Two examples of approximation algorithms

• When is it hard to compute efficiently approximately?

• Some concluding thoughts

Some terminology (imprecise)

• “Problem”

• Traditional mathematics usage: e.g. Fermat’s Last Problem

• Computational usage: Find an algorithm (computer program) such that
given any valid input, the desired output is produced.

• A decision problem: The output is one of “Yes” or “No”.

Input OutputAlgorithm

The 1930s-40s: Can
computers solve any problem?

• No.

• Alan Turing (1936): Cannot solve
the Halting Problem (a decision
problem):

• Given a computer program P,
and an input x for that
program, output “Yes” if the
program ever terminates on the
given input, “No” otherwise.

Halt
P

x
Yes/No

The proof

By contradiction. Suppose such a program,
Halt(P,x), exists, that determines if program P
halts on input x. Then consider the following
program MyHalt(P)

Let P1, P2, ... be a list of all programs that take
a single input, and consider whether program Pi
halts when given Pj as input (H = halts, N =
doesn’t halt).

Which program is MyHalt?

MyHalt(P)
If Halt(P,P)

then loop forever
Else

Stop

P1 P2 P3 P4 P5

P1

P2

P3

P4

P5

H N H H N

N H N N H

N N N N N

H H N N H

H H H H H

Inputs

Programs

N N H H NMyHalt

Discrete Optimization
Problems

• Appears in many places: scheduling
jobs on computers, locating
facilities, building networks, stocking
inventory,...

• Famous example: the traveling
salesman problem (TSP).

• Given n cities and the distances
between each pair of cities, find
the shortest tour that visits each
city once and returns to the
starting point.

• Decision version of TSP: Additional
input of a number C, “Is the length of
the shortest tour at most C?”

The Obvious Finite Algorithm

• Consider all n! possible orderings of the cities and compute the length of the
tour for that ordering. Keep track of the shortest one found.

• Problem: n! grows pretty quickly with n. 120! is about 6 x 10198. 1 tour/ns still
is about 10182 years.

“Good” algorithms

Edmonds (1965):

Edmonds (1967):

P vs. NP

• Today: polynomial-time algorithms are considered the theoretical measure of
a good, efficient algorithm.

• P is the class of all decision problems solvable by a polynomial-time
algorithm.

• NP is (roughly) the set of all decision problems for which we can “check” in
polynomial time whether the answer is “Yes” (or “No”) if someone gives us a
“proof”.

• (Cook, Levin 1971, Karp 1972) Given a polynomial-time algorithm for the
decision version of the TSP, we can get a polynomial-time algorithm for any
problem in NP.

P = NP?

A 1956 letter from Kurt Gödel to John von Neumann

P vs. NP one of the seven Clay Millenium Problems

Communications of the ACM, Sept. 2009

• One possible response for discrete optimization problems: polynomial-time algorithms to
find near optimal solutions.

• An α-approximation algorithm is a polynomial-time approximation algorithm that produces
solutions within a factor of α of the optimal.

• E.g. A 3/2-approximation algorithm for the TSP would find a tour of length at most 3/2
times the length of the shortest tour.

• For maximization problems, assume α < 1; a 1/2-approximation algorithm finds a
solution whose value is at least 1/2 that of an optimal solution.

• Can consider randomized algorithms, in which case we want the expected value of the
solution to be within α of optimal.

• Significant amount of work on a wide range of problems; will choose just one as an example.

So what now?

The maximum cut
problem

• Given an undirected graph G=
(V,E), find a set S of vertices
that maximizes the number of
edges with exactly one
endpoint in S (edges in the cut).

• As with the traveling salesman
problem, a polynomial-time
algorithm for this problem
would imply P=NP.

S

A randomized approximation
algorithm (Erdős 1967)

• Choose set of vertices S
uniformly at random.

• Then probability that any given
edge is in the cut is 1/2.

• Thus expected number of
edges in the cut is 1/2 |E|,
which is at least half the
optimal value.

An alternate approach (Goemans, W 1995)

• Suppose we introduce an n-dimensional unit vector vi (where n=|V|) for each
vertex i∈V and we ask for

with either vi=(-1,0,0,...) or vi=(1,0,0,...) for each i∈V.

• Then if we set S={ i∈V: vi=(-1,0,0,...) }, the number of edges in the cut is

max
1

2

�

(i,j)∈E

(1− vi · vj)

|{(i, j) ∈ E : vi �= vj}| =
1

2

�

(i,j)∈E:vi �=vj

(1− vi · vj)

=
1

2

�

(i,j)∈E

(1− vi · vj)

A relaxation

• We can solve the following in
polynomial time

if the vectors are arbitrary n-
dimensional unit-length vectors
(via semidefinite programming).

• Note that if OPT is the number
of edges in the cut in an
optimal solution, and Z is the
quantity above, Z ≥ OPT.

max
1

2

�

(i,j)∈E

(1− vi · vj)

Getting a solution

• We draw a random n-
dimensional vector r from the
multivariate normal distribution
(i.e. each component ri from
N(0,1)). Let this be the normal
to a hyperplane through the
origin of the unit sphere.

• Let S={ i∈V: vi ⋅ r ≥ 0 }.

• What is expected number of
edges in this cut?

Probability that edge (i,j) is in the cut

• Consider the plane containing vectors vi and vj, and the projection of random
vector r to this plane.

• Of the 2π possible orientations of the projected random vector, 2θ of them
correspond to vi and vj on opposite sides of the hyperplane (and hence edge
(i,j) in the cut). So the probability is

since

vi

vj

θ

2θ

2π
=

θ

π
=

1

π
arccos(vi · vj)

vi · vj = �vi��vj� cos θ = cos θ.

α = min
−1≤x≤1

1
π arccos(x)
1
2 (1− x)

≥ .87856

The analysis

Then the expected number of edges in the cut is

This gives us a .87856-approximation algorithm for the maximum cut
problem.

�

(i,j)∈E

1

π
arccos(vi · vj) ≥ .87856 · 1

2

�

(i,j)∈E

(1− vi · vj)

= .87856 · Z
≥ .87856 ·OPT.

What can computers compute approximately
efficiently?

• A little hard to say, when we don’t even know what is computable in
polynomial time.

• However, there is a significant line of work showing that for a particular
problem, if there is an α-approximation algorithm for a particular α, then
P=NP.

• Huge breakthrough in the early 1990s showing this for a wide range of
problems; many improvements since then.

Example

• Håstad (1996) considers the problem of maximizing the number of satisified
equations of three variables over GF[2]; e.g.

• Håstad shows that if there is any (1/2 + ε)-approximation algorithm for
constant ε > 0, then P = NP.

• But there is a very simple 1/2-approximation algorithm!

x1 + x3 + x9 ≡ 0(mod 2)

x2 + x3 + x15 ≡ 1(mod 2)

x1 + x7 + x12 ≡ 0(mod 2)

...

What about the maximum cut problem?

• Bellare, Goldreich, Sudan 1998 and Trevisan, Sorkin, Sudan, W 2000 show
how to translate the previous result into one for the maximum cut problem.

• Show that there is no (16/17+ε)-approximation algorithm for ε > 0 unless P =
NP. (16/17 ≈ 0.941).

0

x1

x2

x3

The 2000s: The Unique Games Problem and the
Unique Games Conjecture

• The unique games problem: For a parameter k, find values of xi ∈ {0, ..., k-1}
to maximize the number of satisfied difference equations mod k. E.g.

x5 − x3 ≡ 3(mod 21)

x3 − x2 ≡ 2(mod 21)

x19 − x5 ≡ 15(mod 21)

...

The Unique Games
Conjecture

• The conjecture was formulated
by Subhash Khot in 2002.

• Conjecture: If P≠NP, then for all
δ > 0, there exists a k such that
in polynomial time it is not
possible to distinguish between
sets of difference equations
mod k in which at least a 1-δ
fraction of the equations are
satisfiable, and those for which
at most a δ fraction are
satisfiable.

Some consequences

• If the conjecture is true, then there is no (2-ε)-approximation algorithm for the
vertex cover problem for any constant ε > 0 unless P = NP (Khot, Regev
2008).

• If the conjecture is true, then there is no (α+ε)-approximation algorithm for the
maximum cut problem for any constant ε > 0 unless P = NP (Khot, Kindler,
Mossel, O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2008), where

• If the conjecture is true, then for every maximum constraint satisfaction
problem there is a (ρ-ε)-approximation algorithm, and there can be no (ρ+ε)-
approximation algorithm unless P=NP (Raghavendra 2008; Raghavendra,
Steurer 2009).

α = min
−1≤x≤1

1
π arccos(x)
1
2 (1− x)

≥ .87856

Some open questions

• Resolve the Unique Games Conjecture.

• How well can the Traveling Salesman Problem be approximated for cities in a
general metric space?

• Long known: A 1.5-approximation algorithm (Christofides 1976)

• Last decade: In Euclidean plane, given any ε > 0, there is a (1 + ε)-
approximation algorithm (Arora 1998, Mitchell 1999).

• Very recent: A 1.461-approximation algorithm for a special case of metric
spaces (Mömke, Svensson April 2011).

• No (α-ε)-approximation algorithm for α=221/220 and ε > 0 unless P = NP.

A critique?

• Perhaps too much of a gap between polynomial time as a theoretical measure
of efficiency and computational realities?

• Edmonds (1965)

Conclusions

• Computational work in solving particular instances of hard discrete
optimization problems has been remarkable. Perhaps we need a better
theory to capture this reality?

• More nuanced notion of efficient computation than polynomial time?

• Some notion of ‘real-life’ instances of problems (such as TSP)?

Conclusions

• We’ve come a long way in understanding the power of efficient approximate
computation for discrete optimization.

• But it is all relative to our understanding of efficient computation.

“Or who shut in the sea with doors,
when it burst out from the womb,

when I made clouds its garment
and thick darkness its swaddling band,

and prescribed limits for it
and set bars and doors,

and said, ‘Thus far shall you come, and no farther,
and here shall your proud waves be stayed’?”

-- Job 38:8-11

