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• The 1930s-40s: What can computers compute?

• The 1960s-70s: What can computers compute efficiently?

• The 1990s-: What can computers compute efficiently approximately?

• Two examples of approximation algorithms

• When is it hard to compute efficiently approximately?

• Some concluding thoughts



Some terminology (imprecise)

• “Problem”

• Traditional mathematics usage: e.g. Fermat’s Last Problem

• Computational usage: Find an algorithm (computer program) such that 
given any valid input, the desired output is produced.

• A decision problem: The output is one of “Yes” or “No”.

Input OutputAlgorithm



The 1930s-40s: Can 
computers solve any problem?

• No.

• Alan Turing (1936): Cannot solve 
the Halting Problem (a decision 
problem):

• Given a computer program P, 
and an input x for that 
program, output “Yes” if the 
program ever terminates on the 
given input, “No” otherwise.

Halt
P

x
Yes/No



The proof

By contradiction.  Suppose such a program, 
Halt(P,x), exists, that determines if program P 
halts on input x.  Then consider the following 
program MyHalt(P)

Let P1, P2, ... be a list of all programs that take 
a single input, and consider whether program Pi 
halts when given Pj as input (H = halts, N = 
doesn’t halt).

Which program is MyHalt?

MyHalt(P)
If Halt(P,P)

then loop forever
Else

Stop
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Discrete Optimization 
Problems

• Appears in many places: scheduling 
jobs on computers, locating 
facilities, building networks, stocking 
inventory,...

• Famous example: the traveling 
salesman problem (TSP).

• Given n cities and the distances 
between each pair of cities, find 
the shortest tour that visits each 
city once and returns to the 
starting point.

• Decision version of TSP: Additional 
input of a number C, “Is the length of 
the shortest tour at most C?”



The Obvious Finite Algorithm

• Consider all n! possible orderings of the cities and compute the length of the 
tour for that ordering.  Keep track of the shortest one found.

• Problem: n! grows pretty quickly with n.  120! is about 6 x 10198.  1 tour/ns still 
is about 10182 years.



“Good” algorithms

Edmonds (1965):

Edmonds (1967):



P vs. NP

• Today: polynomial-time algorithms are considered the theoretical measure of 
a good, efficient algorithm.

• P is the class of all decision problems solvable by a polynomial-time 
algorithm.

• NP is (roughly) the set of all decision problems for which we can “check” in 
polynomial time whether the answer is “Yes” (or “No”) if someone gives us a 
“proof”.

• (Cook, Levin 1971, Karp 1972) Given a polynomial-time algorithm for the 
decision version of the TSP, we can get a polynomial-time algorithm for any 
problem in NP.  

P = NP?



A 1956 letter from Kurt Gödel to John von Neumann



P vs. NP one of the seven Clay Millenium Problems



Communications of the ACM, Sept. 2009



• One possible response for discrete optimization problems: polynomial-time algorithms to 
find near optimal solutions.

• An α-approximation algorithm is a polynomial-time approximation algorithm that produces 
solutions within a factor of α of the optimal.

• E.g. A 3/2-approximation algorithm for the TSP would find a tour of length at most 3/2 
times the length of the shortest tour.

• For maximization problems, assume α < 1; a 1/2-approximation algorithm finds a 
solution whose value is at least 1/2 that of an optimal solution.

• Can consider randomized algorithms, in which case we want the expected value of the 
solution to be within α of optimal.

• Significant amount of work on a wide range of problems; will choose just one as an example.

So what now?



The maximum cut 
problem

• Given an undirected graph G=
(V,E), find a set S of vertices 
that maximizes the number of 
edges with exactly one 
endpoint in S (edges in the cut).

• As with the traveling salesman 
problem, a polynomial-time 
algorithm for this problem 
would imply P=NP.

S



A randomized approximation 
algorithm (Erdős 1967)

• Choose set of vertices S 
uniformly at random.

• Then probability that any given 
edge is in the cut is 1/2.

• Thus expected number of 
edges in the cut is 1/2 |E|, 
which is at least half the 
optimal value.



An alternate approach (Goemans, W 1995)

• Suppose we introduce an n-dimensional unit vector vi (where n=|V|) for each 
vertex i∈V and we ask for 

with either vi=(-1,0,0,...) or vi=(1,0,0,...) for each i∈V.

• Then if we set S={ i∈V: vi=(-1,0,0,...) }, the number of edges in the cut is

max
1

2

�

(i,j)∈E

(1− vi · vj)

|{(i, j) ∈ E : vi �= vj}| =
1

2

�

(i,j)∈E:vi �=vj

(1− vi · vj)

=
1

2

�

(i,j)∈E

(1− vi · vj)



A relaxation

• We can solve the following in 
polynomial time 

if the vectors are arbitrary n-
dimensional unit-length vectors 
(via semidefinite programming).

• Note that if OPT is the number 
of edges in the cut in an 
optimal solution, and Z is the 
quantity above, Z ≥ OPT.

max
1

2

�

(i,j)∈E

(1− vi · vj)



Getting a solution

• We draw a random n-
dimensional vector r from the 
multivariate normal distribution 
(i.e. each component ri from    
N(0,1)).  Let this be the normal 
to a hyperplane through the 
origin of the unit sphere.

• Let S={ i∈V: vi ⋅ r ≥ 0 }.

• What is expected number of 
edges in this cut?



Probability that edge (i,j) is in the cut

• Consider the plane containing vectors vi and vj, and the projection of random 
vector r to this plane.

• Of the 2π possible orientations of the projected random vector, 2θ of them 
correspond to vi and vj on opposite sides of the hyperplane (and hence edge 
(i,j) in the cut).  So the probability is

since 

vi

vj

θ

2θ

2π
=

θ

π
=

1

π
arccos(vi · vj)

vi · vj = �vi��vj� cos θ = cos θ.



α = min
−1≤x≤1

1
π arccos(x)
1
2 (1− x)

≥ .87856



The analysis

Then the expected number of edges in the cut is 

This gives us a .87856-approximation algorithm for the maximum cut 
problem.

�

(i,j)∈E

1

π
arccos(vi · vj) ≥ .87856 · 1

2

�

(i,j)∈E

(1− vi · vj)

= .87856 · Z
≥ .87856 ·OPT.



What can computers compute approximately 
efficiently?

• A little hard to say, when we don’t even know what is computable in 
polynomial time.

• However, there is a significant line of work showing that for a particular 
problem, if there is an α-approximation algorithm for a particular α, then 
P=NP.

• Huge breakthrough in the early 1990s showing this for a wide range of 
problems; many improvements since then.



Example

• Håstad (1996) considers the problem of maximizing the number of satisified 
equations of three variables over GF[2]; e.g.

• Håstad shows that if there is any (1/2 + ε)-approximation algorithm for 
constant ε > 0, then P = NP.

• But there is a very simple 1/2-approximation algorithm!

x1 + x3 + x9 ≡ 0(mod 2)

x2 + x3 + x15 ≡ 1(mod 2)

x1 + x7 + x12 ≡ 0(mod 2)

...



What about the maximum cut problem?

• Bellare, Goldreich, Sudan 1998 and Trevisan, Sorkin, Sudan, W 2000 show 
how to translate the previous result into one for the maximum cut problem.

• Show that there is no (16/17+ε)-approximation algorithm for ε > 0 unless P = 
NP.  (16/17 ≈ 0.941).

0

x1

x2

x3



The 2000s: The Unique Games Problem and the 
Unique Games Conjecture

• The unique games problem: For a parameter k, find values of xi ∈ {0, ..., k-1} 
to maximize the number of satisfied difference equations mod k.  E.g.

x5 − x3 ≡ 3(mod 21)

x3 − x2 ≡ 2(mod 21)

x19 − x5 ≡ 15(mod 21)

...



The Unique Games 
Conjecture

• The conjecture was formulated 
by Subhash Khot in 2002.

• Conjecture: If P≠NP, then for all 
δ > 0, there exists a k such that 
in polynomial time it is not 
possible to distinguish between 
sets of difference equations 
mod k  in which at least a 1-δ 
fraction of the equations are 
satisfiable, and those for which 
at most a δ fraction are 
satisfiable.



Some consequences

• If the conjecture is true, then there is no (2-ε)-approximation algorithm for the 
vertex cover problem for any constant ε > 0 unless P = NP (Khot, Regev 
2008).

• If the conjecture is true, then there is no (α+ε)-approximation algorithm for the 
maximum cut problem for any constant ε > 0 unless P = NP (Khot, Kindler, 
Mossel, O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2008), where

• If the conjecture is true, then for every maximum constraint satisfaction 
problem there is a (ρ-ε)-approximation algorithm, and there can be no (ρ+ε)-
approximation algorithm unless P=NP (Raghavendra 2008; Raghavendra, 
Steurer 2009).

α = min
−1≤x≤1

1
π arccos(x)
1
2 (1− x)

≥ .87856



Some open questions

• Resolve the Unique Games Conjecture.

• How well can the Traveling Salesman Problem be approximated for cities in a 
general metric space?

• Long known: A 1.5-approximation algorithm (Christofides 1976)

• Last decade: In Euclidean plane, given any ε > 0, there is a (1 + ε)-approximation 
algorithm (Arora 1998, Mitchell 1999).

• Very recent: A (1.5-ε)-approximation algorithm for a special case of metric spaces 
(Oveis Gharan, Saberi, Singh, December 2010) for ε constant but very small.

• No (α-ε)-approximation algorithm for α=221/220 and ε > 0 unless P = NP.



A critique?

• Perhaps too much of a gap between polynomial time as a theoretical measure 
of efficiency and computational realities?

• Edmonds (1965)





Conclusions

• Computational work in solving particular instances of hard discrete 
optimization problems has been remarkable.  Perhaps we need a better 
theory to capture this reality?

• More nuanced notion of efficient computation than polynomial time?

• Some notion of ‘real-life’ instances of problems (such as TSP)?



Conclusions

• We’ve come a long way in understanding the power of efficient approximate 
computation for discrete optimization.

• But it is all relative to our understanding of efficient computation.

“Or who shut in the sea with doors,
when it burst out from the womb,

when I made clouds its garment
and thick darkness its swaddling band,

and prescribed limits for it
and set bars and doors,

and said, ‘Thus far shall you come, and no farther,
and here shall your proud waves be stayed’?”

-- Job 38:8-11


