A $\frac{4}{3}$-Approximation Algorithm for Haff-Integral Cycle cat Instances of the TSP David Williamson, Cornell University Joint work with
 BI RS 2023 20 S qt

Outline of This Talk

1. TSP preliminaries
2. What is the class of instances we study and why are they interesting?
3. Sketch of the approximation algorithm

Traveling Salesman Problem (TSP)
Input: Complete graph $G=(V, E)$ with edge costs $\left(c_{e}: e \in E\right)$ satisfying triangle inequality.

Output: Minimum-cost Hamiltonian cycle.

99 Phetetops in $S F$ (cedi: Bill (o....)

- One of the most basic examples of a venice routing problem
- NP-hard [Kan $\left.{ }^{\prime} 72\right]$

What is known about approximation algosithms for the TSP?
For 45 years, best-known approximation was 1,5. [Christofides '76, serdyutou '78]
Recent breakthrough reduced this to $\approx 1.5-10^{-36}$ [Karlin, Klin, vevis Gharan '21] NP-hard to approximate within a factor of $\frac{123}{122}$ [Kappinski, Lampis, Schnied '13]

Subtour LP
Dantzig, Fulkerson, Johnon 's4 Held, Karp 17

$$
\begin{aligned}
& \min \sum_{e} c_{e} x_{e} \\
& \text { s.t. } x(\delta(v))=2 \quad \forall v \in V \\
& x(\delta(s)) \geqslant 2 \quad \forall \phi \leftrightarrows \delta \leftrightarrows V \\
& x_{e} \geqslant 0 \quad \forall e \in E
\end{aligned}
$$

S is toght
if $x(f(s))=2$

Subtour LP Dantzig, Fulkerson, Johnson 'st Held, Kara 17

$$
\begin{aligned}
\min & \frac{\sum}{e} c_{e} x_{e} \\
\text { sit. } & x(\delta(v))=2 \\
& \forall v \in V \\
x(\delta(s)) \geqslant 2 & \forall \phi c s ¢ V \\
x_{e} \geqslant 0 & \forall e \in E
\end{aligned}
$$

Clearly, $\operatorname{LP}(G) \leq O P T(G) \forall$ graphs G.
\therefore To get a bound against OPT, it suffices to bound against $L P$. ie. $A L G(G) \leq \alpha-L P(G) \forall G \Rightarrow A L G(G) \leq \alpha-O P T(G) \forall G$.

How different can LP be from OPT?
Def. Integrality gap is $\sup _{G} \frac{\operatorname{OPT}(G)}{L P(G)}$.

$$
\begin{array}{ll}
\text { min } \sum_{e} c x_{e} & \\
\text { st. } x(\delta(v)=2 & \forall v \in V \\
x(\delta(s))>2 & \forall \phi \leqslant s+V \\
x_{e}>0 & \forall e E E
\end{array}
$$

How different can LP be from OPT?

Def. Integality gap is $\sup _{G} \frac{\operatorname{OPT}(G)}{\operatorname{LP}(G)}$.
Integratily gap of subtour P is

- $\frac{3}{2} \quad$ [WOOSey 180]
- $\leq \frac{3}{2}-\varepsilon$ [Kaidi, Hlein, Oreis Gharan'22]
- $\geqslant \frac{4}{3} \quad$ [folkbre]

$$
\min \sum_{e} c_{e} x_{e}
$$

s.t.

$$
\begin{array}{cl}
x(\delta(v))=2 & \forall v \in V \\
x(\delta(s))>2 & \forall \phi \leqslant S \leqslant V \\
x_{e} \geqslant 0 & \forall e E E
\end{array}
$$

How different can LP be from OPT?
Def. Integrality gap is $\sup _{G} \frac{\operatorname{OPT}(G)}{L P(G)}$.

$$
\begin{aligned}
& \min \sum_{e} c x_{e} \\
& \text { set. } x(\delta(v))=2 \quad \forall v \in V \\
& x(\delta s)>2 \quad \forall \phi \leq s \leq V \\
& \mathrm{r}_{\mathrm{e}}>0 \quad \mathrm{VeE} \mathrm{E}
\end{aligned}
$$

Integrality gap of sumter $L P$ is

- $\leq \frac{3}{2} \quad$ [W_{0} ley 180]
- $\leqslant \frac{3}{2}-\varepsilon[K a d i n$, Hen, Ores Ghacan 22$]$
- $\geqslant \frac{4}{3} \quad$ [foikbre]
$\frac{4}{3}$-conjecture: The integrally gap of the succour P is $\frac{4}{3}$.
We prove the $\frac{4}{3}$-conjecture for a class of TSP instances.

Our Result
The $\frac{4}{3}$-conjecture hods for half-integral cycle cut instances of the TSP.

Haff-integral: Solution to $L P$ has $x_{e} \in\left\{0, \frac{1}{2}, 1\right\} \quad \forall e \in E$.
Cycle cut instance: $\widetilde{T i g i g h t}^{-s i n t s} \times(8(s)=2$ have a specific structure.
These capture all known worst-case instances for the $4 / 3$-congetwre.

Outline of This Talk

1. TSP preliminaries
2. What is the class of instances we study and why are they interesting?
3. Sketch of the approximation algorithm

Why are half-integral instances interesting?

- Conijecture. [Schalekamp, W, van zuylen 14] Haff-integral instances are the wors-case instances for the integacility gap.
- Current-best approximation for TSP $(1.5-\varepsilon)$ Kaatin, Kkein, Oleis Gharan '21] buitt on ideas from half-integral case $[K K O \quad 120]$
- Curreitly, best apperximation for haff-ntegral TSP is 1.4983 [Gupta, Lee, Li, Mucha, Newman, Sarker '22]

What are cycle ut instances?

- A tight art is $S \leqslant V$ st. $x(\delta(s))=2$

- A cycle ut instance is one where \forall tight ants S with $|s| \geqslant 2$,
\exists tight ats $A, B \neq S$ st. $A \cup B=S$.

Haff-integral cycle cut instances capture the known cases where the $4 / 3$-conjecture is tight
"Ewelope" graph

Haff-integral cycle cut instances capture the known cases where the $4 / 3$-conjecture is tight

Haff-integral cycle cut instances capture the known cases where the 4/3-conjecture is tight

A more useful view of cycle cut instances

- A tight ant is $S \leq V$ sit. $x(s(s))=2$
- Two uts $S, T \subseteq V$ cross if $S n T, \overline{3} n T, S \cap \bar{T}, \bar{S} \cap \bar{T}+\phi$
- A critical cut is a tight unit that does not cross any other tight cunt.
- Fix arbitrary root vertex $r \in V$.
- Define hierarchy $H=\{S \leqslant V \backslash r: S$ is a critical cut $\}$.

A more useful view of cycle cut instances

- Define hierarchy $H=\{S \leq V \backslash r: S$ is a cuitical ant $\}$.
- H is a laminar family tyith at turd des ont

- Topmose elemenen of His VIr
- Botfommot elemento are angeton vertices in vir.
- $S \in \mathcal{H}$ is a cycle unt if
(1) $|s| \geqslant 2$
(2) After contrating VIS and the chiden of S, resuting gaph is a cycle. Hieracty of cition ants

A more useful view of cycle cut instances

- $H=\{S \leq V \backslash r: S$ is a critical cut $\}$
- $S \in \mathcal{H}$ is a cycle cut if

Hierarchy of critical cuts
(1) $|s| \geqslant 2$
(2) After contracting V $\backslash S$ and the children of S, resulting graph is a cycle.
Fact. If G is a cycle cat instance, all uts in the hierarchy are cycle uts (for any choice of r).
Fact. If for some choice of $r),($ consists only of ache cuts, G is a accle cat instance.

Illustration of Hierarchy

To sum up,
a half-integral cycle cut instance of the TSP is one where
(1) Solution x to subtour LiP has $x_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ Veges e
(2) All cuts in the hierarchy are cycle cuts.

All known hard instances for the $\frac{4}{3}$-conjecture are halfintegal ede ant instances.

Our result is ...

An algorithm that outputs a tour T with

$$
\mathbb{E}[\cos (T)]^{*} \leq \frac{4}{3} \sum_{e} \operatorname{ce} x_{e}
$$

for any haff-integral cycle cut instance of the TSP.

* \mathbb{E} over randomness in algorithm. Can be derandomized.

Outline of This Talk

1. TSP preliminaries
2. What is the class of instances we study and why are they interesting?
3. Sketch of the approximation algorithm

Our Approach

- Triangle inequality \Rightarrow it suffices to find Eulerian tour $T s t, ~ c o s t(T) \leq \frac{4}{3} \cdot P$. t anected, every voter ever deco
- Well construct a distribution of Eulerian tours such that each edge e is used at most $\frac{4}{3}$ xe of the time in expectation
- Sampling from this distribution gives the result
- Work on the hierarchy top-down
- Inductively specify the distribution of edges entering each cut
- Give rules for how to connect chillier given edges entering parent

Proof Sketch

- Simplifying assumptions: (1) Each $S_{E} H$ (has exactly 2 children

Proof Sketch

- Simpiffying assumptions: (1) Each $S \in t$ has exactly 2 children,
(2) Edges in S are "straight"

-: Edge with $X_{e}=\frac{1}{2}$

Proof Sketch

- For Eulerian tour, need to select an even \# of edges entering each set
- Take 0,1, or 2 copies of each edge
- Focus on edges with 1 copy and group by type

The four states

* Blue edges repress party of edos entering the cut.

State 1

* Blue edges repeat parity of edos entenng the cut.

Edges connecting children used $\frac{1}{2}$ the time in expectation.

These rules induce a distribution over states for each child. eeg. If parent is in state 1 , children are in $\left\{\begin{array}{l}\text { state } 1 \text { up. } \frac{1}{2}, \\ \text { state } 3 \text { mp. } \frac{1}{2} \text {. }\end{array}\right.$

Markov chain mapping distribution of pattens on the parent to distribution on the children. * Being in a state means equally likely to be in top piave us bottom picture.

The Fixed Point

$$
\pi=\left(\frac{4}{9}, \frac{2}{9}, \frac{2}{9}, \frac{1}{9}\right)
$$

- Can check that states $1,2,3,4$ use each edge $\frac{1}{2}, \frac{1}{2}, 1,1$ of the time, resp.
\therefore Under π, each edge is used $\frac{1}{2} \pi_{1}+\frac{1}{2} \pi_{2}+\pi_{3} t \pi_{4}=\frac{2}{3}=\frac{4}{3} x_{e}$ of the time.
* $\left(\frac{4}{9}, \frac{2}{9}, \frac{2}{9}, \frac{1}{9}\right)$ is fixed point even in the general case!

Algorithm Recap

- Algorithm inducts on the hierarchy top-down
- At top level, sample edges according to fixed point $p=\left(\frac{4}{9}, \frac{2}{9}, 2, \frac{1}{9}\right)$
- State 1 wp: $\frac{4}{9}$, state $2 \mathrm{wpp} \frac{2}{9}$, etc.
- For each cut in tl, given its state, comet its children auording to the mules.
- p is fired port \Rightarrow for even $S \in l l, P[[S$ is in state $i]=P$
- Under p, each edge is used $\frac{4}{3} x$ e of the time lin expectation)
- Resulting set of edges is Fulerian, with expected cost $=\frac{4}{3} \sum_{e} c$ ce e
- Can be derandomized using method of conditional expectations

Future Directions

- $4 / 3$ for cycle cut instances that are not haff-integral?
- What about the degree cut case?
* Degree ut \equiv critical cut that is not a cycle cut.
- (In progress) Max Entropy is not a $4 / 3$-approx. alg. for

Thank you!

On the mericet this year!

Happy to discuss more!.

State 2

State 3

State 4

