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@ Three FAQs about the book
@ Our ten open problems (Chapter 17)
@ Some thoughts about the field
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FAQ #1

FAQ #1: How long did it take to write the book?
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FAQ #1: How long did it take to write the book?

Answer: 13-14 years, depending on how you count.
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FAQ #1

FAQ #1: How long did it take to write the book?
Answer: 13-14 years, depending on how you count.
Fax from July 16, 1997 with book outline.
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The first outline (2)
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A later outline
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A later outline (2)
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A later outline (3)
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Final structure

Intro: Set cover
Greedy and local search | Further greedy and local search
Dynamic programming Further dynamic programming
Deterministic rounding Further deterministic rounding
Randomized rounding Further randomized rounding

SDP Further SDP

Primal-dual Further primal-dual

Cuts and metrics Further cuts and metrics
Hardness

Open problems
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Some nice things about the construction

Uncapacitated facility location

@ Deterministic rounding: 4 (Chudak and Shmoys)
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Some nice things about the construction

Uncapacitated facility location

@ Deterministic rounding: 4 (Chudak and Shmoys)
@ Randomized rounding: 3 (Chudak and Shmoys)
@ Primal-dual: 3 (Jain and Vazirani)
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Some nice things about the construction

Uncapacitated facility location
@ Deterministic rounding: 4 (Chudak and Shmoys)
@ Randomized rounding: 3 (Chudak and Shmoys)
@ Primal-dual: 3 (Jain and Vazirani)

@ Further greedy and local search: 3, 1 + v/2 (Charikar, Guha), 2
(Jain et al.)
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Some nice things about the construction

Uncapacitated facility location

@ Deterministic rounding: 4 (Chudak and Shmoys)
@ Randomized rounding: 3 (Chudak and Shmoys)
@ Primal-dual: 3 (Jain and Vazirani)

@ Further greedy and local search: 3, 1 + v/2 (Charikar, Guha), 2
(Jain et al.)

@ Further randomized rounding: 1 + % (Chudak and Shmoys)

@ Cornell University

David P. Williamson (Cornell University) Open Problems APPROX 2011 12/56



Problems or techniques?

A pedagogical issue: teach problems or techniques?
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Problems or techniques?

A pedagogical issue: teach problems or techniques?
Hard because historically the two are interwined; for example:
@ Deterministic rounding/primal-dual and set cover/vertex cover
(Hochbaum, Bar-Yehuda and Even)

@ Randomized rounding and integer multicommodity flow
(Raghavan and Thompson)

@ SDP and max cut (Goemans and W)
@ Region-growing and multicut (Garg, Vazirani, Yannakakis)
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Hard because historically the two are interwined; for example:
@ Deterministic rounding/primal-dual and set cover/vertex cover
(Hochbaum, Bar-Yehuda and Even)

@ Randomized rounding and integer multicommodity flow
(Raghavan and Thompson)

@ SDP and max cut (Goemans and W)
@ Region-growing and multicut (Garg, Vazirani, Yannakakis)

If techniques, then some algorithms are hard to categorize; e.g. what
is Christofides’ algorithm?
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Problems or techniques?

A pedagogical issue: teach problems or techniques?
Hard because historically the two are interwined; for example:
@ Deterministic rounding/primal-dual and set cover/vertex cover
(Hochbaum, Bar-Yehuda and Even)

@ Randomized rounding and integer multicommodity flow
(Raghavan and Thompson)

@ SDP and max cut (Goemans and W)
@ Region-growing and multicut (Garg, Vazirani, Yannakakis)
If techniques, then some algorithms are hard to categorize; e.g. what

is Christofides’ algorithm?
If problems, then what is the main takeaway of the course?

David P. Williamson (Cornell University) Open Problems APPROX 2011 13/56



FAQ #2

FAQ #2: Why didn’t you cover:
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FAQ #2: Why didn’t you cover:

@ Online algorithms
@ Streaming algorithms
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FAQ #2

FAQ #2: Why didn’t you cover:

@ Online algorithms
@ Streaming algorithms
@ Geometric approximation algorithms (e.g. coresets)
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FAQ #2

FAQ #2: Why didn’t you cover:

@ Online algorithms

@ Streaming algorithms

@ Geometric approximation algorithms (e.g. coresets)
@ The multiplicative update algorithm
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FAQ #2

FAQ #2: Why didn’t you cover:

@ Online algorithms

@ Streaming algorithms

@ Geometric approximation algorithms (e.g. coresets)
@ The multiplicative update algorithm

@ Directed multicut

° ...
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FAQ #2

FAQ #2: Why didn’t you cover:
@ Online algorithms
@ Streaming algorithms
@ Geometric approximation algorithms (e.g. coresets)
@ The multiplicative update algorithm
@ Directed multicut
° ...

Answers (choose one at random):
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FAQ #2

FAQ #2: Why didn’t you cover:

@ Online algorithms

@ Streaming algorithms

@ Geometric approximation algorithms (e.g. coresets)
@ The multiplicative update algorithm

@ Directed multicut

° ...

Answers (choose one at random):
@ It would have taken another 13-14 years...

@ Cornell University

David P. Williamson (Cornell University) Open Problems APPROX 2011 14 /56



FAQ #2

FAQ #2: Why didn’t you cover:

@ Online algorithms

@ Streaming algorithms

@ Geometric approximation algorithms (e.g. coresets)
@ The multiplicative update algorithm

@ Directed multicut

° ...

Answers (choose one at random):
@ It would have taken another 13-14 years...
@ ..and another 500+ pages...
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FAQ #2

FAQ #2: Why didn’t you cover:

@ Online algorithms

@ Streaming algorithms

@ Geometric approximation algorithms (e.g. coresets)
@ The multiplicative update algorithm

@ Directed multicut

° ...

Answers (choose one at random):
@ It would have taken another 13-14 years...
@ ..and another 500+ pages...

@ Luckily, Sariel Har-Peled just wrote a book on geometric
approximation algorithms (362 pages).
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FAQ #2

FAQ #2: Why didn’t you cover:

@ Online algorithms

@ Streaming algorithms

@ Geometric approximation algorithms (e.g. coresets)
@ The multiplicative update algorithm

@ Directed multicut

° ...

Answers (choose one at random):
@ It would have taken another 13-14 years...
@ ..and another 500+ pages...
@ Luckily, Sariel Har-Peled just wrote a book on geometric
approximation algorithms (362 pages).
@ We consciously decided not to write about approximating
problems in P. |
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A definitional question

Some of the items taken from the following blog post by David
Eppstein (7 Nov 2010):

Approximate book
There's a new book out by and Shmoys on imation algorithms, The Design of Approximation Algorithms, available electronically for free as a pdf download.

For a book that claims to be a c ive reference on 2pp ion algorithms, suitable for a general-purpose graduate course on the subject, it seems to me to have some
strange lacunae. It has nothing about core-sets, for instance, and more generally very very little about approximation in geometric algorithms: the only such problem appearing in
the table of contents is the Euclidean TSP. It lso has similarly scanty coverage of competitive analysis of online algorithms, and absolutely nothing on streaming algorithms.

But if you want a book more specifically about how to bound the approximation ratio of linear and i ions to integer pi problems, this
may be a worthwhile one to consider, despite the misleadingly general title. And the price is definitely right.

Cornell University
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A definitional question

Some of the items taken from the following blog post by David
Eppstein (7 Nov 2010):

Approximate book
There's a new book out by and Shmoys on app! ion algorithms, The Design of Approximation Algorithms, available electronically for free as a pdf download.

For a book that claims to be a c ive reference on approximation algorithms, suitable for a general-purpose graduate course on the subject, it seems to me to have some
strange lacunae. It has nothing about core-sets, for instance, and more generally very very little about approximation in geometric algorithms: the only such problem appearing in
the table of contents is the Euclidean TSP. It lso has similarly scanty coverage of competitive analysis of online algorithms, and absolutely nothing on streaming algorithms.

But if you want a book more specifically about how to bound the approximation ratio of linear and ite prog q ions to integer prog g problems, this
may be a worthwhile one to consider, despite the misleadingly general title. And the price is definitely right.

All these types of algorithms do compute things approximately, but is
that what the field means by an approximation algorithm? Should
these topics get covered in grad courses on approximation algorithms?
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FAQ #3

FAQ #3: Are you going to leave the PDF up on the website?
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FAQ #3

FAQ #3: Are you going to leave the PDF up on the website?

Answer: Yes, with the agreement of the publisher (Cambridge
University Press).
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Ten Open Problems

Next: ten open problems from our book.
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Problem 10: MAX CUT
Problem 10: A primal-dual algorithm for the maximum
cut problem

Maximum Cut Problem

Input: An undirected graph G = (V, E) with nonnegative edge weights
wj > Oforalli,je V.

Goal: Find a set of vertices S C V that maximizes } ;g ¢ s Wj-

@ Cornell University
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Problem 10: MAX CUT
Problem 10: A primal-dual algorithm for the maximum
cut problem

What's known?

@ an (« — e)-approximation algorithm using semidefinite
programming (Goemans, W 1995) for

i 1 arccos(x)
o= r_———~*

1 ~ .87856,

and any € > 0.

@ Cornell University
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Problem 10: MAX CUT
Problem 10: A primal-dual algorithm for the maximum
cut problem

What's known?

@ an (« — e)-approximation algorithm using semidefinite
programming (Goemans, W 1995) for

i 1 arccos(x)
a= r______ -’

1 ~ .87856,

and any € > 0.

@ Assuming the unique games conjecture, no (« + €)-approximation
algorithm is possible unless P = NP (Khot, Kindler, Mossel,
O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2010)
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Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

What's known?

@ an (« — e)-approximation algorithm using semidefinite
programming (Goemans, W 1995) for

i 1 arccos(x)
a= r______ -’

1 ~ .87856,

and any € > 0.

@ Assuming the unique games conjecture, no (« + €)-approximation
algorithm is possible unless P = NP (Khot, Kindler, Mossel,
O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2010)

@ No p-approximation algorithm possible for constant g > % ~ .941
unless P = NP (Hastad 1997). @
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Problem 10: MAX CUT
Problem 10: A primal-dual algorithm for the maximum
cut problem

The problem:

Solving the semidefinite program is computationally expensive. Can
one obtain an (a — €)-approximation algorithm for the problem via
computationally easier means? E.g. a primal-dual algorithm?

@ Cornell University
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Problem 10: MAX CUT
Problem 10: A primal-dual algorithm for the maximum
cut problem

The problem:

Solving the semidefinite program is computationally expensive. Can
one obtain an (a — €)-approximation algorithm for the problem via
computationally easier means? E.g. a primal-dual algorithm?

A potential start:
(Trevisan, STOC 2009) gives a .531-approximation algorithm via an
eigenvalue computation.

@ Cornell University
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Problem 10: MAX CUT
Lightweight approximation algorithms

Lightweight approximation: can we replace more expensive
computational primitives with cheaper ones and still get the same
guarantees?

SDP — SOCP — LP — Network flow/primal-dual — greedy
Ellipsoid — polysized LP — - - -

@ Cornell University
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Problem 10: MAX CUT
Lightweight approximation algorithms

Lightweight approximation: can we replace more expensive
computational primitives with cheaper ones and still get the same
guarantees?

SDP — SOCP — LP — Network flow/primal-dual — greedy
Ellipsoid — polysized LP — - - -

Lots of work already done in this direction (e.g. Poloczek and Schnitger
(SODA 2010), randomized %—approximation algorithm for MAX SAT
without solving LP or network flow), but let’s do more.

@ Cornell University
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Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

Coloring 3-colorable graphs
Input: An undirected, 3-colorable graph G = (V, E).
Goal: Find a k-coloring of the graph with k as small as possible.

@ Cornell University
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Cistlan e el
Problem 9: Coloring 3-colorable graphs

What's known?

@ A poly-time algorithm using semidefinite programming that uses at
most O(n°2'") colors (Arora, Chlamtac, Charikar 2006)

@ Cornell University
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What's known?

@ A poly-time algorithm using semidefinite programming that uses at
most O(n°2'") colors (Arora, Chlamtac, Charikar 2006)

@ Itis NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)
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Problem 9: Coloring 3-colorable graphs

What’s known?
@ A poly-time algorithm using semidefinite programming that uses at
most O(n°2'") colors (Arora, Chlamtac, Charikar 2006)

@ Itis NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)

@ Assuming a variant of the unique games conjecture, for any
constant k > 3, it is NP-hard to decide if a graph needs only 3
colors or at least k colors (Dinur, Mossel, Regev 2009)
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Cistlan e el
Problem 9: Coloring 3-colorable graphs

What's known?

@ A poly-time algorithm using semidefinite programming that uses at
most O(n°2'") colors (Arora, Chlamtac, Charikar 2006)

@ Itis NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)

@ Assuming a variant of the unique games conjecture, for any
constant k > 3, it is NP-hard to decide if a graph needs only 3
colors or at least k colors (Dinur, Mossel, Regev 2009)

The problem:
Give an algorithm that uses O(log n) colors for 3-colorable graphs (or
show this is not possible modulo some complexity theoretic condition).
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Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints (Q|prec|Cmax)

Scheduling related machines with precedence constraints
Input:

@ n jobs with processing requirements pq,...,pn > 0.
@ m machines with speeds sy > sp > --- > s, > 0.
@ A precedence relation < on jobs.

Goal: Find a schedule of minimum length in which all jobs are

completely scheduled and if j < j/, then job j completes before job
J' starts. Job j on machine i takes p;/s; units of time.

@ Cornell University
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Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

What's known?

@ If machines are identical (s1 = S» = --- = spy) then there is a
2-approximation algorithm (Graham 1966).

@ Cornell University
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precedence constraints
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@ If machines are identical (s1 = S» = --- = spy) then there is a
2-approximation algorithm (Graham 1966).

@ For general case, an O(log m)-approximation algorithm is known
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Problem 8: Scheduling related machines
Problem 8: Scheduling related machines with
precedence constraints

What's known?
@ If machines are identical (s1 = S» = --- = spy) then there is a
2-approximation algorithm (Graham 1966).

@ For general case, an O(log m)-approximation algorithm is known
(Chudak and Shmoys 1999; Chekuri and Bender 2001).

@ If machines are identical, and given a variant of the unique games
conjecture, then no a-approximation algorithm is possible for
a < 2 unless P = NP. (Svensson STOC 2010).
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Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

What's known?

@ If machines are identical (s1 = S» = --- = spy) then there is a
2-approximation algorithm (Graham 1966).

@ For general case, an O(log m)-approximation algorithm is known
(Chudak and Shmoys 1999; Chekuri and Bender 2001).

@ If machines are identical, and given a variant of the unique games

conjecture, then no a-approximation algorithm is possible for
a < 2 unless P = NP. (Svensson STOC 2010).

The problem:
Give an a-approximation algorithm for some constant «, or show that
O(log m) is the best possible modulo the unique games conjectyse.

Cornell University
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Problem 7: Scheduling unrelated machines
Problem 7: Scheduling unrelated machines (R||Cnax)

Scheduling unrelated machines
Input:
@ m machines.

@ n jobs with processing requirements p; for scheduling job j on
machine /.

Goal: Find a schedule of minimum length.
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Problem 7: Scheduling unrelated machines
Problem 7: Scheduling unrelated machines

What’s known?

@ A 2-approximation algorithm via LP rounding (Lenstra, Shmoys,
Tardos 1990)

@ A 1.94-approximation algorithm if running time is p; € {p;, oo} for
all i,j (Svensson STOC 2011).

@ No «a-approximation algorithm with o < 3/2 is possible unless
P = NP (Lenstra, Shmoys, Tardos 1990).

The problem:
Give an a-approximation algorithm for 3/2 < « < 2, or show that this is
not possible.

@ Cornell University
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Problem 6: Generalized Steiner tree
Problem 6: Generalized Steiner tree

Generalized Steiner tree (aka Steiner forest)
Input:
@ Undirected graph G = (V, E).
@ Nonnegative edge costs ¢, > 0 forall e € E.

@ Kk source-sink pairs sq-ty, So-to, ..., Sk-lk.

Goal: Find edges F of minimum cost so that for each i, s; and t; are
connected in (V, F).

53
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Problem 6: Generalized Steiner tree
Problem 6: Generalized Steiner tree

What's known?

@ A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi
1995; see also Goemans and W 1995).
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Problem 6: Generalized Steiner tree
Problem 6: Generalized Steiner tree

What's known?

@ A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi
1995; see also Goemans and W 1995).

o If s; = sfor all /, have the Steiner tree problem; then a
1.39-approximation algorithm known using LP rounding (Byrka,
Grandoni, RothvoB3, Sanita STOC 2010).

@ No a-approximation algorithm possible for Steiner tree for
a < 92 ~1.01 unless P = NP (Chlebik, Chlebikova 2008)

The problem

Find an a-approximation algorithm for the generalized Steiner tree
problem for constant a < 2.
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Interiude: A belief
A belief about approximation algorithms

A proof of approximation guarantee « for algorithm A is always a proof
about a polytime-computable relaxation R:

R< OPT <A<aR.
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Interiude: A belief
A belief about approximation algorithms

A proof of approximation guarantee « for algorithm A is always a proof
about a polytime-computable relaxation R:

R< OPT <A<aR.

The aim of this paper is to look for one or two guiding principles [in
analyzing heuristics], and in particular principles relating the analysis of
heuristics to such traditional preoccupations of operations researchers as
linear programming and branch and bound... We assume problem can be
formulated as a linear integer program, and the essential step is to relate
the heuristic solution to a dual feasible solution of the given integer
problem.

Wolsey, Heuristic analysis, linear programming and branch and bound
(1980)
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Problem 5: Capacitated facility location
Problem 5: Capacitated facility location

Capacitated facility location
Input:
@ A set F of facilities; each i € F has facility cost f; > 0.
@ A set D of clients.
@ A metric ¢; on locations /,j € FUD.
@ A capacity U on each facility.
Goal: Find S ¢ F and assignment o : D — S such that [0~ (/)| < U
for all i € S that minimizes 3 ;cs fi + > jep Coj) -

X
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Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

What's known?

A local search algorithm: Let S be a set of currently open facilities. As
long as it improves the overall cost,

@ Add: S« Su{i}fori¢ S;
@ Drop: S« S—{i}forie S;or
@ Swap: S« Su{i}—{j}fori¢ S,jeS.
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Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

What's known?

A local search algorithm: Let S be a set of currently open facilities. As
long as it improves the overall cost,

@ Add: S« Su{i}fori¢ S;
@ Drop: S« S—{i}forie S;or
@ Swap: S« Su{i}—{j}fori¢ S,jeS.

@ Can show this gives an (a + €)-approximation algorithm for

e « = 8 (Koropolu, Plaxton, Rajaraman 2000)
@ « = 6 (Chudak, W 2005)
o o = 3 (Aggarwal et al. 2010)
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Problem 5: Capacitated facility location
Problem 5: Capacitated facility location

The problem:

Is there a polytime-computable relaxation R of the problem within a
constant factor of the optimal?
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Problem 5: Capacitated facility location
Problem 5: Capacitated facility location

The problem:
Is there a polytime-computable relaxation R of the problem within a
constant factor of the optimal?

Or, what'’s the approximate min-max relaxation?

R<OPT<A<aR.
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Problem 4: Survivable network design
Problem 4: Survivable network design

Survivable network design
Input:
@ An undirected graph G = (V, E)
@ Costsc, >0forallec E
@ Integer connectivity requirements r; for all i,j € V

Goal: Find a minimum-cost set of edges F so that for all i,j € V, there
are at least r; edge-disjoint paths between i and jin (V, F).

O o O
O ] ]
- O

O O u
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Survivable network design
Input:
@ An undirected graph G = (V, E)
@ Costsc, >0forallec E
@ Integer connectivity requirements r; for all i,j € V

Goal: Find a minimum-cost set of edges F so that for all i,j € V, there
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Problem 4: Survivable network design
Problem 4: Survivable network design

What's known?

@ A primal-dual 2Hg-approximation algorithm (Goemans, Goldberg,
Plotkin, Shmoys, Tardos, W '94), where Hy =1+ 4 + 4+ + 1
and R = max; rj.

@ An LP rounding 2-approximation algorithm (Jain 2001)
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Problem 4: Survivable network design
Problem 4: Survivable network design

What’s known?

@ A primal-dual 2Hg-approximation algorithm (Goemans, Goldberg,
Plotkin, Shmoys, Tardos, W '94), where Hy =1+ 4 + 4+ + 1
and R = max; rj.

@ An LP rounding 2-approximation algorithm (Jain 2001)

minimize Z CeXe

ecE
subject to Xe > max rj, vScV,
: 2 Xe> iesjgs
ecs(S)
0<xe<T, Vec E.

Theorem (Jain 2001)
For any basic feasible solution x* of the LP relaxation, there exists

some edge e € E such that x% > 1/2.
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Problem 4: Survivable network design
Problem 4: Survivable network design

The problem:
Is there a lightweight 2-approximation algorithm? E.g. a primal-dual
algorithm?
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Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

Bin packing
Input: b; pieces of size 5,0 < s; < 1,fori=1,....m

Goal: Find a packing of pieces into bins of size 1 that minimizes the
total number of bins used

David P. Williamson (Cornell University)

@ Cornell University
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Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

What's known?

An LP-rounding algorithm that uses OPT +O(log? OPT) bins
(Karmarkar, Karp 1982)

@ Cornell University

David P. Williamson (Cornell University) Open Problems APPROX 2011 39/56



Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

What’s known?
An LP-rounding algorithm that uses OPT +O(log? OPT) bins
(Karmarkar, Karp 1982)

Enumerate all N possible ways of packing a bin. jth configuration uses
ajj pieces of size .

N
minimize ij
=
N
subjectto Y ajx; > b, i=1,...,m,
=1

X; integer, j=1,...,N.
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Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

The problem:

Find a polytime algorithm that uses at most OPT +c bins for some
constant c.
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Problem 3: Bin packing

The problem:

Find a polytime algorithm that uses at most OPT +c bins for some
constant c.

Note that there are instances known for which
OPT > LP +1,
but currently no known instances for which

OPT > LP + 2.

Possibly
OPT < [LP] + 1.
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

Traveling salesman problem
Input:

@ Set of cities V
@ Travel costs ¢ such that ¢; < cx + ¢y forall i, j,k € V

Goal: Find a minimum-cost tour of all the cities

@ Cornell University
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

Problem 2: the asymmetric case (c; # ¢ji)
What's known?

@ An O(log n)-approximation algorithm (Frieze, Galbiati, Maffioli
1982)

@ An LP rounding O(log n/ loglog n)-approximation algorithm
(Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010)

@ Can'’t approximate better than % ~ 1.008 unless P = NP
(Papadimitriou, Vempala 2006)
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

minimize Z CiiXi

ijev
subjectto Y x;=> x; ieV,
Jjev jev
> ox=1 v¥ScV
icSj¢s

X;>0  VijeV.

No instance known for which the integrality gap is worse than 2
(Charikar, Goemans, Karloff 2006)
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

minimize Z CiiXi

ijev
subjectto Y x;=> x; i€V,
Jjev jev
> ox=1 v¥ScV
i€Sj¢S

X;>0 VijeV.

No instance known for which the integrality gap is worse than 2
(Charikar, Goemans, Karloff 2006)

The problem:
Find an «-approximation algorithm for o constant for the asymr@rgc

case.
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

Problem 1: the symmetric case ¢; = ¢ forall i,j € V
What'’s known?

@ A 3-approximation algorithm (Christofides 1976)

@ Can’t approximate better than % ~ 1.004 unless P = NP
(Papadimitriou, Vempala 2006)
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

Problem 1: the symmetric case ¢; = ¢ forall i,j € V
What'’s known?

@ A 3-approximation algorithm (Christofides 1976)
@ Can’t approximate better than % ~ 1.004 unless P = NP
(Papadimitriou, Vempala 2006)
Graphical case: given graph G = (V, E), ¢; is shortest-length path
between jand jin G

@ Oveis Gharan, Saberi, Singh (December 2010): 3 — 10~'2

o Mémke, Svensson (April 2011): ‘é“f - ~ 1.461

@ Mucha (August 2011): 32 ~ 1.458
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

minimize > cx
ijeVii<
subjectto > x;j+ Y xj=2 i€V
jevii<j jeVii>j

> xj>2 vScV
i€S,j¢S Or i¢S,jeS
Xj >0 Vi,je V,i<]|.

Integrality gap at most % (Wolsey 1980). No instance known with gap
worse than 3.
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Ten Open Problems Problems 1 and 2: traveling salesman
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Problems 1 and 2: traveling salesman
Problems 1 and 2: the traveling salesman problem

The problem:
Find an a-approximation algorithm for constant o < %

@ Cornell University

David P. Williamson (Cornell University) Open Problems APPROX 2011 47 / 56



Problems 1 and 2: traveling salesman
A hard, simple case

Suppose LP solution is a fractional 2-matching (all x; € {0,1/2,1}).
Can we do better than 3/2 whenever this is the case?
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Problems 1 and 2: traveling salesman
A hard, simple case

Suppose LP solution is a fractional 2-matching (all x; € {0,1/2,1}).
Can we do better than 3/2 whenever this is the case?

Conijecture (Schalekamp, W, van Zuylen 2011):
Such instances give the worst-case integrality gap.
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Other problems
Problems that didn’t make the cut

Problems that didn’t make the cut:
@ Directed Steiner tree
LP-based Steiner tree (then Byrka et al. came out)
Feedback arc set in directed graphs (improve O(log nloglog n))
P|prec|Cmax (then Svensson came out)
Edge coloring multigraphs (+1 result)
Flow shop, job shop scheduling
Minimum-cost k-connected subgraph
Subset feedback vertex set (better than 8)
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An observation
An observation

No open problem of the form “this problem has an a-approximation
algorithm for constant «, find a PTAS.”
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Success in computation?

The field has successfully generated interesting algorithmic ideas and
mathematical understandings of approximate computation.
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Conclusion

Success in computation?

The field has successfully generated interesting algorithmic ideas and
mathematical understandings of approximate computation.

But how much effect on actual computational practice?
Some cases in network design codes:

@ Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual
survivable network design algorithm

@ Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting
Steiner tree algorithm
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But in graph partitioning and traveling salesman problem, most used
codes and ideas are from outside the area.
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Success in computation?

The field has successfully generated interesting algorithmic ideas and
mathematical understandings of approximate computation.

But how much effect on actual computational practice?

Some cases in network design codes:
@ Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual
survivable network design algorithm
@ Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting
Steiner tree algorithm

Also cases for problems that are theoretically solvable in polytime, but
for which approximation algorithms are much faster: e.g. Mdller,
Radke, Vygen (2010)

But in graph partitioning and traveling salesman problem, most used
codes and ideas are from outside the area.

Can the theory help explain the realities of practice?
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Lightweight approximation algorithms (again)

Perhaps part of the problem of adopting approximation algorithms is
that the theoretically best algorithms are too computationally
demanding compared to heuristics. E.g.

@ Jain’s algorithm for survivable network design requires solving LP
via ellipsoid method

@ Goemans-W algorithm for max cut requires solving semidefinite
program

@ Cornell University
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Lightweight approximation algorithms (again)

Perhaps part of the problem of adopting approximation algorithms is
that the theoretically best algorithms are too computationally
demanding compared to heuristics. E.g.
@ Jain’s algorithm for survivable network design requires solving LP
via ellipsoid method
@ Goemans-W algorithm for max cut requires solving semidefinite
program
Hence lightweight, implementable, versions of these algorithms give us
a chance to compete with heuristics more often used in practice.
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How hard are problems really?
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How hard are problems really?
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A quest for theory?

Can we explain theoretically why solvers for NP-hard real-world
problems work so well on “real-life” instances? Possible directions:

@ A more nuanced notion of efficient computation than polynomial
time?
@ Some empirically justifiable notion of “real-life” instances?
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One reason | like the field

Once | start thinking “maybe all the really interesting stuff has been
done,” someone proves me wrong.
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@ The Asadpour et al. O(log n/ log log n)-approximation algorithm for
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One reason | like the field

Once | start thinking “maybe all the really interesting stuff has been
done,” someone proves me wrong.

Just in the last year or so

@ The Asadpour et al. O(log n/ log log n)-approximation algorithm for
asymmetric traveling salesman problem

@ The Byrka et al. 1.39-approximation algorithm for Steiner tree
@ All the progress in graphical TSP (mostly using “old” techniques!)

And perhaps your work will be next!
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The End

Thanks for your attention.

@ Cornell University
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