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Preface

The contents of this book are lecture notes from a class taught in the School

of Operations Research and Industrial Engineering of Cornell University during the

Fall 1998 term (ORIE 634:Combinatorial Optimization { ApproximationAlgorithms).

The notes were created via the \scribe" system, in which each lecture one student was

responsible for turning their notes into a L

a

T

E

X document. I then edited the notes,

and made copies for the entire class. The scribe notes were frequently created from

a previous version of the notes written in a previous version of the course (IEOR

6610E, Spring 1998, Columbia University). The students in the class who served

as scribes were Christina Ahrens, Aaron Archer, Tu�gkan Batu, dan brown, Nathan

Edwards, Tim Huh, Rif \Andrew" Hutchings, Amit Kumar, Vardges Melkonian,

Kathryn Nyman, and Tim Roughgarden. Any errors which remain (or were there to

begin with!) are, of course, entirely my responsibility.

David P. Williamson

Yorktown Heights, NY

4



ORIE 634 Approximation Algorithms August 27, 1998

Lecture 1

Lecturer: David P. Williamson Scribe: Woonghee Tim Huh

1.1 An Introduction to Approximation Algorithms

The �rst problem we will consider today is the well-known Traveling Salesman Prob-

lem.

Traveling Salesman Problem

� Input:

{ Undirected graph G = (V;E)

{ costs c

e

� 0 8 e 2 E

� Goal: Find a tour of minimum cost which visits each \city" (vertex in the

graph) exactly once.

There are many applications { at IBM the problem has been encountered in

working on batches of steel at a steel mill.

� Naive Algorithm: Try all tours! It runs too slowly because the running time is

O((n � 1)!) where n = jV j.

� Dynamic Programming runs in O(2

n

), which is still slow.

We need a better algorithm. Edmonds and Cobham were the �rst to suggest

that a \good" algorithm is one whose running time is a polynomial in the \size" of

the problem. Unfortunately, we don't know if such an algorithm exists for the TSP.

What we do know, thanks to Cook, Karp and Levin is that the existence of such an

algorithm implies that P = NP . A lot of very intelligent people don't believe this is

the case, so we need an alternative! We have a couple of options:

1. Give up on polynomial-time algorithms and hope that in practice our algorithms

will run fast enough on the instances we want to solve (e.g. IP branch-and-

bound, branch-and-cut and branch-and-price methods). Using these methods, a

non-trivial instance of the TSP with over 13,000 cities has been solved optimally.

2. Give up on optimality and try some of these approaches:

(a) heuristics
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(b) local search

(c) simulated annealing

(d) tabu search

(e) genetic algorithms

(f) approximation algorithms

1.2 Some De�nitions and Examples

De�nition 1.1 An algorithm is an �-approximation algorithm for an optimization prob-

lem � if

1. The algorithm runs in polynomial time

2. The algorithm always produces a solution which is within a factor of � of the value

of the optimal solution.

Note that throughout the course we use the following convention: For minimiza-

tion problems, � > 1, while for maximization problems, � < 1 (� is known as the

\performance guarantee"). Keep in mind that in the literature, researchers often

speak of 1=� for maximization problems.

So, why do we study approximation algorithms?

1. As algorithms to solve problems which need a solution.

2. As ideas for #1.

3. As a mathematically rigorous way of studying heuristics.

4. Because it's fun!

5. Because it tells us how hard problems are.

Let us briey touch on item 5 above, beginning with another de�nition:

De�nition 1.2 A polynomial-time approximation scheme (PTAS) for a minimization

problem is a family of algorithms fA

�

: � > 0g such that for each � > 0, A

�

is a (1 + �)-

approximation algorithm which runs in polynomial time in input size for �xed �. For a

maximization problem, we require that A

�

is a (1 � �)-approximation algorithm.

Some problems which have a PTAS are knapsack, Euclidean TSP (Arora 1996,

Mitchell 1996), and some scheduling problems. Other problems likeMAX SAT,MAX

CUT and Metric TSP are harder:
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Theorem 1.1 (Arora, Lund, Motwani, Sudan, Szegedy 1992) There does not exist a

PTAS for any MAX SNP-hard problem unless P = NP .

There is a similarly exotic result with respect to MAX CLIQUE:

Theorem 1.2 (H�astad 1996) There does not exist a O(n

1��

) approximation algorithm

for any � > 0 for MAX CLIQUE unless NP � RP .

What is MAX CLIQUE? Given a graph G = (V;E), �nd the clique S � V of

maximum size jSj. And what is a clique?

De�nition 1.3 A clique S is a set of vertices for which each vertex pair has its corre-

sponding edge included (that is, i 2 S, j 2 S implies (i; j) 2 E).

Note that there is a trivial approximation algorithm for MAX CLIQUE with

performance guarantee n = jV j. Simply take a single vertex; this is trivially a clique.

The size of any clique cannot be more than n, so the algorithm has a performance

guarantee of n=1 = n. H�astad's result tells us that we do not expect to do much

better than this trivial algorithm.

Therefore, the theory of approximation algorithms shows that some NP problems

are harder than others.

The goal of this class is to understand both the basic algorithms known in the

area, and some more recent techniques that lead to approximation algorithms for

large classes of problems.

1.3 Set Cover

1.3.1 What is the Set Cover Problem?

Consider the following problem:

Weighted Set Cover (SC)

� Input:

{ Ground elements T = ft

1

; t

2

; � � � ; t

n

g

{ Subsets S

1

; S

2

; � � � ; S

m

� T

{ Weights w

1

; w

2

; � � � ; w

m

� Goal: Find a set I � f1; 2; � � � ;mg that minimizes

P

i2I

w

i

, such that

S

i2I

S

i

=

T .
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For the unweighted SC problem, we take w

j

= 1 for all j.

Why should we care about the Set Cover Problem? First, the problem shows up

in various applications. A colleague of Dr. Williamson at IBM applied the set cover

problem to �nd computer viruses.

� Elements: Known viruses (about 5000 of them).

� Sets: Substrings of 20 or more consecutive bytes from viruses, not found in

\good" code (about 9000 of them).

A set cover of size about 180 was found. It su�ces to search for these 180 substrings

to verify the existence of known computer viruses.

A second reason to care about the Set Cover Problem is that it is a generalization

of other problems we care about. Consider the following problem:

Weighted Vertex Cover (VC)

� Input:

{ An undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find a set C that minimizes

P

i2C

w

i

, such that for every (i; j) 2 E, we

have either i 2 C or j 2 C.

To see that VC is a special case of SC, consider the following substitution:

� Elements: all edges in E.

� Sets: S

i

= fall edges incident with vertex ig.

1.3.2 First Attempt: a Greedy Algorithm

There are quite a few di�erent ways to approach the set cover problem. Here's our

�rst attempt.

Greedy 1

1 I  ;

2 while T 6= ;

3 (�) Pick t

i

2 T

4 I  I [ fj : t

i

2 S

j

g

5 T  T � [

j2I

S

j

.

We let f = max

i

jfj : t

i

2 S

j

gj. For the VC problem, we see that f = 2 (every

edge is in two sets, the ones corresponding to its two endpoints).

Now we prove that the above is a f -approximation algorithm:
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Lemma 1.3 Greedy 1 returns a set cover.

Proof: Elements are only deleted when they are covered, we delete at least one

each time through the while loop, and at termination, T = ;. �

Theorem 1.4 Greedy 1 is an f -approximation algorithm for the unweighted SC prob-

lem.

Proof: It is clear that it runs in polynomial time. Now, suppose the algorithm

goes through the while loop X times. We claim that each t

i

chosen in (�) must be

covered by a distinct set in the optimal solution. This implies that X � OPT . To

see the claim, suppose the opposite, and there is a t

a

chosen in one iteration and

a t

b

chosen in a later iteration which are both in the same set S

j

in the optimal

solution. However, by construction, when we pick t

a

, we choose all sets that contain

t

a

, including S

j

, and remove all the elements from T that are contained in these

sets. In particular, t

b

is removed from T and is not available to be picked in a later

iteration. Thus we have a contradiction.

Each time we pick t

i

in step (�), we add jfj : t

i

2 S

j

gj � f sets, so that I �

f �X � f �OPT . Thus we have an f -approximation algorithm. �

This algorithm, however, will not be very useful for the weighted problem, so we

use the following method.

1.3.3 A General Approach for Approximation Algorithms

We will use the following method over and over again in this course. In fact, we will

see four di�erent ways it can be used for the Set Cover Problem.

1. Formulate the problem as an IP.

2. Relax to a Linear Program (LP).

3. Use the LP (and its solution) to get a solution to the IP.

Let's apply it to the weighted SC problem. Here is the IP formulation

Min

m

X

j=1

w

j

� x

j

subject to:

X

j:t

i

2S

j

x

j

� 1 8t

i

2 T

x

j

2 f0; 1g 8i 2 f1; 2; � � � ;mg;
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and the corresponding LP relaxation

Min

m

X

j=1

w

j

� x

j

subject to:

X

j:t

i

2S

j

x

j

� 1 8t

i

2 T

x

j

� 0 8i 2 f1; 2; � � � ;mg:

Now, suppose that Z

LP

is the optimal value of the LP. Then

Z

LP

� OPT:

This follows since any solution feasible for the IP is feasible for the LP. Thus the value

of the optimal LP will be no greater than that for the IP.

Now if we can �nd an integral solution of cost no more than � �Z

LP

, then its cost

is at most � �OPT . We have four di�erent ways of completing Step 3, which will be

presented in the next class.
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ORIE 634 Approximation Algorithms September 3, 1998

Lecture 2

Lecturer: David P. Williamson Scribe: Aaron Archer

2.1 Four More Ways to Skin a Cat: Approxima-

tion Algorithms for Set Cover

In this lecture, we discuss the set cover problem and four approximation algorithms,

as well as an application.

Set Cover

� Input:

{ Ground set T = ft

1

; t

2

; : : : ; t

n

g

{ Subsets S

1

; S

2

; : : : ; S

m

� T

{ Weights (costs) w

j

� 0 for each subset S

j

� Goal: Find I � f1; : : : ;mg that minimizes

P

j2I

w

j

subject to

S

j2I

S

j

= T .

That is, select the minimum-weight collection of sets that covers all of T .

Recall the general 3-step approach introduced in Lecture 1 for constructing ap-

proximation algorithms:

1. Formulate the problem as an integer program (IP).

2. Relax the integer requirement to obtain a linear program (LP).

3. Use the LP solutions in some clever way to obtain in polynomial time a feasible

solution to the IP whose value is close to the optimal LP value.

Since Step 2 can be performed in polynomial time and (for a minimization prob-

lem) the optimal value z

LP

of the LP is a lower bound on the optimal value OPT

of the IP, constructing an integer solution of value � �z

LP

� � � OPT yields an

�-approximation algorithm. The tricky part, of course, is Step 3. Here we perform

Steps 1 and 2, and in the next 4 subsections we illustrate 4 di�erent ways of perform-

ing Step 3. The �rst three yield f -approximation algorithms where f = max

i

jfj :

t

i

2 S

j

gj, and the last yields an H

g

-approximation algorithm where g = max

j

jS

j

j

and H

n

= 1 +

1

2

+

1

3

+ : : :+

1

n

� lnn.
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1. Formulate the problem as an integer program. Here, we create a variable x

j

for

each subset S

j

. If j 2 I, then x

j

= 1, otherwise x

j

= 0.

Min

m

X

j=1

w

j

x

j

subject to:

X

j:t

i

2S

j

x

j

� 1 8t

i

2 T

x

j

2 f0; 1g:

2. Relax the integer requirement by changing the last constraint to x

j

� 0. Let

OPT equal the optimal objective value for the integer program. Let z

LP

be the

optimal objective value for the linear program. Note that z

LP

� OPT because

the solution space for the integer program is a subset of the solution space of

the linear program.

2.1.1 Method I: Rounding

Let us de�ne f by

f = max

i

jfj : t

i

2 S

j

gj:

That is, f is the maximum number of sets that contain any given element. Now

consider the following algorithm:

Rounding

Solve the linear program to get an optimal solution x

�

.

I  ;

for each S

j

if x

�

j

� 1=f

I  I [ fjg

Lemma 2.1 Rounding produces a set cover.

Proof: Suppose there is an element t

i

such that t

i

=2

S

j2I

S

j

. Then for each set

S

j

of which t

i

is a member, we have x

�

j

< 1=f . So

X

j:t

i

2S

j

x

�

j

<

1

f

� jfj : t

i

2 S

j

gj

� 1;

since jfj : t

i

2 S

j

gj � f . But this violates the linear programming constraint for t

i

.

�
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Theorem 2.2 (Hochbaum '82) Rounding is an f -approximation algorithm for set cover.

Proof: It is clear that the rounding algorithm is a polynomial-time algorithm.

Furthermore,

X

j2I

w

j

�

X

j

w

j

x

�

j

f

= f

X

j

w

j

x

�

j

� f �OPT:

The �rst inequality follows since j 2 I only if x

�

j

f � 1. �

Note that this yields a 2-approximation algorithm for vertex cover.

Weighted Vertex Cover (WVC)

� Input:

{ An undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find a C � V that minimizes

P

i2C

w

i

such that each edge is incident

to some vertex in C.

We can translate this problem to the set cover problem: the edges correspond to

the ground set and vertices correspond to subsets (i.e., the subset corresponding to

vertex i is the set of all edges adjacent to i). Since each edge is in exactly two sets,

in this case f = 2. Thus the f -approximation algorithms for set cover translate to

2-approximation algorithms for vertex cover.

2.1.2 Method II: Dual LP

Another way to use the rounding method is to apply it to the dual solution. The dual

of the linear programming relaxation for set cover is:

Max

X

i

y

i

subject to:

X

i:t

i

2S

j

y

i

� w

j

8S

j

y

i

� 0 8t

i

2 T:

If we have a feasible dual solution y, then

X

i

y

i

� z

LP

� OPT

13



by weak duality. An algorithm for �nding a low-cost set cover using the dual LP

follows:

Dual-LP

Solve the dual linear program to get an optimal solution y

�

I  ;

for each S

j

if

P

i:t

i

2S

j

y

�

i

= w

j

I  I [ fjg.

Lemma 2.3 Dual-LP produces a set cover.

Proof: Suppose 9t

i

=2

S

j2I

S

j

. Then for each S

j

containing t

i

X

i:t

i

2S

j

y

�

i

< w

j

;

so we can increase y

�

i

by some positive amount and remain feasible, which contradicts

the optimality of y

�

. �

Theorem 2.4 (Hochbaum '82) Dual-LP is an f -approximation algorithm.

Proof: Because we choose set S

j

only if its constraint is tight, we have

X

j2I

w

j

=

X

j2I

X

i:t

i

2S

j

y

�

i

=

X

i

y

�

i

jfj 2 I : t

i

2 S

j

gj

� f

X

i

y

�

i

� f �OPT:

�

Michael Wagner observed in class that complementary slackness guarantees that

whenever the Rounding algorithm includes a set S

j

(because x

�

j

>

1

f

) the correspond-

ing dual constraint is tight so Dual-LP also includes the set S

j

in its solution. Thus,

Dual-LP never obtains a better solution than Rounding.

2.1.3 Method III: Primal-Dual

One problem with the previous algorithms is that they require solving a linear pro-

gram. While this can be done relatively quickly in practice, we would like algorithms

that are even faster. We now turn to an algorithm that behaves much like Dual-LP

14



above, but constructs its own dual solution, rather than �nding the optimal dual LP

solution.

Primal-Dual

I  ;

~y

i

 0 8i

while 9t

k

: t

k

=2

S

j2I

S

j

l = arg min

j:t

k

2S

j

n

w

j

�

P

i:t

i

2S

j

~y

i

o

�

l

 w

l

�

P

i:t

i

2S

l

~y

i

~y

k

 ~y

k

+ �

l

I  I [ flg.

Note that the function arg min returns the argument (index, in this case) that

minimizes the expression.

Lemma 2.5 Primal-Dual returns a set cover.

Proof: Trivial, since this is the termination condition for the while loop. �

Lemma 2.6 Primal-Dual constructs a dual feasible solution.

Proof: We proceed by induction on the loops of the algorithm. The base case is

trivial since initially

X

i:t

i

2S

j

~y

i

= 0 � w

j

8j:

For the inductive step, assume that upon entering an iteration of the while loop

we have

X

i:t

i

2S

j

~y

i

� w

j

8S

j

:

The only dual variable value changed by the while loop is ~y

k

, so the inequalities for

S

j

where t

k

=2 S

j

are una�ected. If t

k

2 S

j

, then by our choice of l

X

i:t

i

2S

j

~y

i

+ �

l

=

X

i:t

i

2S

j

~y

i

+ (w

l

�

X

i:t

i

2S

l

~y

i

)

�

X

i:t

i

2S

j

~y

i

+ (w

j

�

X

i:t

i

2S

j

~y

i

)

� w

j

:

�

Lemma 2.7 If j 2 I then

P

i:t

i

2S

j

~y

i

= w

j

.

Proof: In the step where j was added to I, we increased ~y

k

by exactly enough to

make the constraint S

j

tight. �

15



Theorem 2.8 (Bar-Yehuda, Even '81) Primal-Dual is an f -approximation algorithm for

the set cover problem.

Proof:

X

j2I

w

j

=

X

j2I

X

i:t

i

2S

j

~y

i

�

X

1�i�n

~y

i

jfj : t

i

2 S

j

gj

� f �

X

i

~y

i

� f �OPT:

The �rst equality follows from Lemma 2.7. The next inequality follows since each

~y

i

can appear in the double sum at most jfj : t

i

2 S

j

gj times. The next inequality

follows by the de�nition of f , and the last inequality follows from weak duality. �

2.1.4 Method IV: Greedy Algorithm

So far every technique we have tried has led to the same result: an f -approximation

algorithm for set cover. It seems that we get the same performance guarantee no

matter what we do! But in general cleverness will often give us improved perfor-

mance guarantees. In the case of set cover, using a natural greedy heuristic yields an

improved algorithm.

The intuition here is straightforward. At each step choose the set that gives

the most \bang for the buck." That is, select the set that minimizes the cost per

additional element covered. Before examining the algorithm, we de�ne two more

quantities:

H

n

� 1 +

1

2

+

1

3

+ : : :+

1

n

� lnn

g � max

j

jS

j

j:

Greedy

I  ;

~

S

j

 S

j

8j

while

S

j2I

S

j

6= T

l arg min

j:

~

S

j

6=;

w

j

j

~

S

j

j

I  I [ flg

~y

i

 

w

l

j

~

S

l

jH

g

8t

i

2

~

S

l

(y)

~

S

j

 

~

S

j

� S

l

8j.

Note: The y step has been added only to aid the proof and is not actually part of

the algorithm.
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Lemma 2.9 Greedy constructs a feasible dual solution ~y.

Proof: First, note (from the y step in the algorithm) that at the time we choose

l,

w

l

= H

g

X

i2

~

S

l

~y

i

:

Now, pick an arbitrary set S

j

. For convenience we reindex the elements of T such

that S

j

= ft

1

; : : : ; t

k

g and Greedy covers this set in index order. Thus when t

i

is

covered, j

~

S

j

j � k � i+ 1. Let l be the index of the �rst set chosen that covers t

i

. It

follows that

~y

i

=

w

l

j

~

S

l

jH

g

�

w

j

j

~

S

j

jH

g

�

w

j

(k � i+ 1)H

g

The �rst inequality follows since at the step of the algorithm in which l is chosen, it

must be the case that

w

l

j

~

S

l

j

�

w

j

j

~

S

j

j

:

We can now show that the variables ~y form a feasible solution to the dual of the

linear programming relaxation for set cover, since

X

i:t

i

2S

j

~y

i

=

k

X

i=1

~y

i

�

w

j

H

g

�

1

k

+

1

k � 1

+ : : :+

1

1

�

=

w

j

H

g

H

k

� w

j

;

since k = jS

j

j � g. �

Theorem 2.10 (Chvatal '79) Greedy is a H

g

-approximation algorithm.

Proof: Reindex the sets so that Greedy chooses S

r

in the r

th

iteration. Let

^

S

r

be

the contents of

~

S

r

when S

r

is chosen. Then the

^

S

r

partition T , and we know

w

r

= H

g

X

i2

^

S

r

~y

i

:

17



Say the algorithm takes q iterations. Then

X

j2I

w

j

=

q

X

r=1

w

r

=

q

X

r=1

H

g

X

i2

^

S

r

~y

i

= H

g

X

i2T

~y

i

� H

g

�OPT:

The last equality follows because the

^

S

r

partition T . �

The following complexity results give a sense of how good our approximation

algorithms are in relation to what is possible.

Theorem 2.11 (Lund, Yannkakis '92, Feige '96, Raz, Safra '97, Arora, Sudan '97) Let

n = jT j = the size of the ground set. Then:

� If there exists a c lnn-approximation algorithmwhere c < 1 thenNP � DTIME(n

(logn)

k

)

for some k.

� There exists some c < 1 such that if there exists a c log n-approximation algorithm

for set cover, then P = NP .

Theorem 2.12 (H�astad '97) If there exists an �-approximation algorithm for vertex

cover with � <

7

6

then P = NP .

At present no �-approximation algorithm with � < 2 is known for vertex cover.

2.2 Set Cover: An Application

Recall the antivirus application mentioned in Section 1.3.1. By using the Greedy

algorithm, a solution of 190 strings was found. The value of the linear programming

relaxation was 185, so the optimal solution had at least 185 strings in it. Thus the

Greedy solution was fairly close to optimal.
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ORIE 634 Approximation Algorithms September 10, 1998

Lecture 3

Lecturer: David P. Williamson Scribe: Tu�gkan Batu

3.1 Dynamic Programming: Knapsack

Here we consider the \knapsack problem", and show that the technique of dynamic

programming is useful in designing approximation algorithms.

Knapsack

� Input: Set of items f1; : : : ; ng. Item i has a value v

i

and size s

i

. Total

\capacity" is B. v

i

; s

i

; B 2 Z

+

.

� Goal: Find a subset of items S that maximizes the value of

P

i2S

v

i

subject to

the constraint

P

i2S

s

i

� B.

We assume that s

i

� B 8i, since if s

i

> B it can never be included in any feasible

solution.

We now show that dynamic programming can be used to solve the knapsack

problem exactly.

De�nition 3.1 Let A(i; v) � size of \smallest" subset of f1; : : : ; ig with value exactly

v. (1 if no such subset exists).

Now consider the following dynamic programming algorithm. Note that if V =

max

i

v

i

, then nV is an upper bound on the value of any solution.

DynProg

V = max

i

v

i

For i 1 to n

A(i; 0) 0

For v  1 to nV

A(1; v) 

(

s

1

if v

1

= v

1 otherwise

For i 2 to n

For v  1 to nV

if v

i

� v

A(i; v) min(A(i� 1; v); s

i

+A(i

1

; v � v

i

))

else

A(i; v) A(i� 1; v).
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This algorithm computes allAs correctly and returns argmax

v

fA(n; v) : A(n; v) �

Bg, which is the largest value set of items that �ts in the knapsack. The running

time of the algorithm is O(n

2

V ):

It is known that knapsack problem is NP-hard. But the running time of the

algorithm seems to be polynomial. Have we proven that P = NP ? No, since input

is usually represented in binary; that is, it takes dlog v

i

e bits to write down v

i

. Since

the running time is polynomial in max

i

v

i

, it is exponential in the input size of the v

i

.

We could think of writing the input to the problem in unary (i.e., v

i

bits to encode

v

i

), in which case the running time would be polynomial in the size of the input.

De�nition 3.2 An algorithm for a problem � with running time polynomial of input

encoded in unary is called pseudopolynomial.

If V were some polynomial in n, then the running time would be polynomial in

the input size (encoded in binary). We will now get an approximation scheme for

knapsack by rounding the numbers so that V is a polynomial in n and applying the

dynamic programming algorithm. This rounding implies some loss of precision, but

we will show that it doesn't a�ect the �nal answer by too much.

De�nition 3.3 A polynomial-time approximation scheme (PTAS) is a family of al-

gorithms fA

�

g for a problem � such that for each � > 0, A

�

is a (1 + �)-approximation

algorithm (for min problems) or (1��)-approximation algorithm (for max problems). If the

running time is also a polynomial in

1

�

, then fA

�

g is a fully polynomial-time approximation

scheme (FPAS, FPTAS).

Here is our new algorithm.

DynProg2

K  

�V

n

v

0

i

 b

v

i

K

c 8i

Run DynProg on (s

i

; v

0

i

).

Theorem 3.1 DynProg2 is an FPAS for knapsack.

Proof: Let S be the set of items found by DynProg2. Let O be the optimal set.

We know V � OPT , since one possible knapsack is to simply take the most valuable

item. We also know, by the de�nition of v

0

i

,

Kv

0

i

� v

i

� K(v

0

i

+ 1);

which implies

Kv

0

i

� v

i

�K:
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Then

X

i2S

v

i

� K

X

i2S

v

0

i

� K

X

i2O

v

0

i

(3.1)

�

X

i2O

v

i

� jOjK

�

X

i2O

v

i

� nK

=

X

i2O

v

i

� �V

� OPT � �OPT

= (1 � �)OPT:

Inequality (3.1) follows since the set of items in S is the optimal solution for the

values v

0

.

Furthermore, the running time is O(n

2

V

0

) = O(n

2

b

V

K

c) = O(n

3

1

�

), so it is an

FPAS. �

(Lawler '79) has given an FPTAS which runs in time O(n log

1

�

+

1

�

4

).

3.2 Scheduling Identical Machines

3.2.1 List Scheduling

We now turn to a scheduling problem. We will see that dynamic programming can

be used to produce a PTAS for this problem as well.

Scheduling Identical Machines

� Input:

{ m identical machines

{ n jobs J

1

; : : : ; J

n

to be scheduled on the machines

{ p

1

; : : : ; p

n

the processing times of the jobs

� Goal: Find a schedule of jobs that minimizes the completion time of the last job,

i.e., partition f1; : : : ; ng into M

1

; : : : ;M

m

to minimize max

i2f1;::: ;mg

P

j2M

i

p

j

.

Before we get to the PTAS, we give what is quite possibly the �rst known approx-

imation algorithm.

21



List-scheduling

For i 1 to n

Schedule job i on the machine that has the least work assigned to it so far.

Theorem 3.2 (Graham '66) List-scheduling is a 2-approximation algorithm.

Proof: We will use two lower bounds on the length of the optimal schedule. The

average load,

1

m

P

1�j�n

p

j

, is a lower bound: by the pigeonhole principle, some ma-

chine must have at least this amount of processing time assigned to it. Furthermore,

the optimal schedule has to be as long as any processing time p

j

.

Suppose job J

k

is the last job to �nish in the List-Scheduling schedule. It must

be the case that no other machine is idle prior to the start of job J

k

, otherwise we

would have scheduled J

k

on that machine. By the pigeonhole principle, some machine

must be �nished with its processing in time no more than the average load, so that

J

k

must start no later than

1

m

P

1�j�n

p

j

� OPT . Then J

k

must �nish no later than

1

m

P

1�j�n

p

j

+ p

k

� OPT +OPT = 2OPT: �

3.2.2 A PTAS Using Dynamic Programming

We will now give a PTAS for the problem of scheduling identical machines. We would

like to use the same set of ideas that were used for the knapsack problem: that is,

given an explicit time T we would like to round the job lengths and use dynamic

programming to see if they will �t within time T . Then the unrounded job lengths

should �t within time T (1 + �).

We now must show that such an agenda will lead to a PTAS overall. To do this,

we de�ne a (1 + �)-relaxed decision procedure.

De�nition 3.4 Given � and time T , a (1 + �)-relaxed decision procedure returns:

no: if there is no schedule of length � T

yes: if there is a schedule of length � (1 + �)T and it returns such a schedule

Let L � max(max

j

p

j

;

1

m

n

X

j=1

p

j

). We know that OPT 2 (L � 1; 2L]. Our algorithm

will perform binary search on (L � 1; 2L] with the decision procedure above, with

�

0

 

�

3

down to an interval of size �

0

L. The �rst step of the binary search is:

T =

3

2

L, �

0

 

�

3

Call relaxed decision procedure using T; �

0

If no: OPT 2 (

3

2

L; 2L]

yes: OPT 2 (L;

3

2

L], we get schedule of length (1 + �

0

)

3

2

L.
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We continue in this way until we have an interval of length �

0

L; suppose it is (T; T+�

0

L]

By induction we know that OPT 2 (T; T +�

0

L], and we also have obtained a schedule

of length no more than (T + �

0

L)(1 + �

0

). It follows that

(T + �

0

L)(1 + �

0

) �

�

T +

�

3

L

��

1 +

�

3

�

� T

�

1 +

�

3

�

+ L

 

�

3

+

�

2

9

!

� OPT

�

1 +

�

3

�

+OPT

 

�

3

+

�

2

3

!

= OPT

 

1 + 2

�

3

+

�

2

9

!

� OPT (1 + �);

which holds for � < 1. Computationally, O(log

1

�

0

) calls to the procedure are required.

To implement the decision procedure, we would like to round down the job sizes

to powers of (1+ �). That way, if we can use dynamic programming to help us decide

whether the rounded job sizes will �t in a schedule of length T , when we take the

same schedule and revert to the original sizes the schedule will have length no more

than (1 + �)T .

However, to make this work, we will need to deal with smaller jobs di�erently than

larger jobs; we also need this to avoid dealing with jobs whose size has been rounded

down to zero! To do this, we get our necessary decision procedure by reducing it to

yet another decision procedure.

DecisionProcedure1

Split jobs into small jobs (p

j

� �T ) and large jobs (p

j

> �T )

Call a (1 + �)-relaxed decision procedure on large jobs (with parameters T , �)

(�) If it returns no then return no

else use list scheduling of small jobs to complete schedule

(��) If schedule has length > (1 + �)T then return no

(���) else return yes

Lemma 3.3 DecisionProcedure1 is a (1 + �)-decision procedure.

Proof: It is trivial when no is returned in line (�) or yes is returned in line (���).

We only need to consider the case in which no is returned in line (��). This implies

that some machine is busy at time (1+ �)T , which implies that all machines are busy

at time T , since small jobs have length no more than �T . This means that the average

load is greater than T , which implies that there can be no schedule of length less than

or equal to T . �
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Now, we only need to �nd a (1 + �)-relaxed decision procedure for large jobs. We

�rst show that we can get down to a constant number of job sizes by rounding down

to powers of (1+ �). We then hope to apply dynamic programming to tell us whether

a schedule of length T exists for the rounded-down jobs.

RealBigJobDecProc

For each large job j

If p

j

2 [T�(1 + �)

i

; T �(1 + �)

i+1

)

p

0

j

 T�(1 + �)

i

Run BigJobDynProg on p

0

j

, T

If it returns no then return no

else return yes and same schedule, with p

j

substituted for p

0

j

Note that the job lengths p

0

j

are: T�; T �(1 + �); T �(1 + �)

2

; : : : ; T �(1 + �)

l

= T , so

that l = O(log

1+�

�).

Lemma 3.4 RealBigJobDecProc is a (1 + �)-relaxed decision procedure for the large

jobs.

Proof: If it returns no the algorithm is correct since p

0

j

� p

j

. If it returns yes

then each job's running time goes from p

0

j

! p

j

, an increase of at most a factor of

(1 + �). Since schedule for p

0

j

has length no more than T , the same schedule for p

j

has length no more than (1 + �)T . �

We are now down to the case in which only k = l + 1 di�erent-sized large jobs

exist. Then, we can give a decision procedure based on dynamic programming that

returns yes/no if schedule of length � T exists (and return such a schedule if it does.)

To do this, let a

i

denote the number of jobs of size i, let (a

1

; : : : ; a

k

) denote a set

of jobs, and letM(a

1

; : : : ; a

k

) denote the number of machines needed to schedule this

set of jobs by time T . Suppose there are n

i

large jobs of size i. Clearly,

P

i

n

i

� n.

BigJobDecProc

Let Q = f(a

1

; : : : ; a

k

) : (a

1

; : : : ; a

k

) can be scheduled on one machine

by time T; a

i

� n

i

;8ig

M(a

1

; : : : ; a

k

) 1;8(a

1

; : : : ; a

k

) 2 Q

M(0; 0; : : : ; 0) 0

For a

1

 1 to n

1

For a

2

 1 to n

2

: : :

For a

k

 1 to n

k

If (a

1

; : : : ; a

k

) =2 Q

M(a

1

; : : : ; a

k

) 1 + min

(b

1

;::: ;b

k

)2Q:b

i

�a

i

M(a

1

� b

1

; a

2

� b

2

; : : : ; a

k

� b

k

)

If M(n

1

; : : : ; n

k

) � m return yes

else return no

24



The running time of this algorithm is O(n

2k

): we execute the innermost statement

of the nested loop at most O(n

k

) times, and the innermost statement takes O(n

k

)

time, since there can be at most O(n

k

) elements in Q. Since k = l+1, which implies

that the running time is O(n

2(l+1)

) = O(n

log

(1+�)

1=�

).

The algorithm and analysis given above is due to Hochbaum and Shmoys (1982).
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ORIE 634 Approximation Algorithms September 17, 1998

Lecture 4

Lecturer: David P. Williamson Scribe: Amit Kumar

4.1 Bin Packing

We consider the bin packing problem and apply the techniques introduced in previous

lectures to get approximation algorithms for this problem.

Bin Packing

� Input: Set of items f1; : : : ; ng. Item i has size s

i

. 1 � s

1

� s

2

� : : : � s

n

� 0,

s

i

2 Q

+

.

� Goal: Find a minimum number of bins into which all the items can be packed,

where each bin has size 1. (i.e., partition f1; 2; : : : ; ng into k sets B

1

; : : : ; B

k

such that

P

i2B

j

s

i

� 1 and k is minimum.)

4.1.1 A Lower Bound

We show a connection between the bin packing problem and another NP-complete

problem:

Partition

� Input: Set of items f1; : : : ; ng. Item i has size s

i

. s

1

� s

2

� : : : � s

n

, s

i

2 Q

+

.

� Goal: Can f1; 2; : : : ; ng be partitioned into 2 sets A and B such that

P

i2A

s

i

=

P

i2B

s

i

?

Claim 4.1 The NP-completeness of Partition implies that there doesn't exist a �-approximation

algorithm for bin packing for � <

3

2

unless P = NP.

Proof: Consider an instance I of partition problem. Scale the size of items such

that

P

i

s

i

= 2 and consider this as an instance I

0

of bin packing. If all items of I

0

can

�t in two bins, then we have a \yes" answer to I. Otherwise, the items of I

0

need 3

bins and the answer to I is \no".

OPT for I

0

is 2 or 3. So, if � <

3

2

, then we can determine the value of OPT which

implies that we can solve I. Thus, there cannot exist a �-approximation algorithm

for bin packing for � <

3

2

unless P = NP. �
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However, the situation is not so bad. There exist approximation algorithms which

guarantee better approximation ratios, but they also entail some small additive factor.

We state below some results of this kind.

Theorem 4.2 (Johnson '74) There exists a polynomial-time algorithm FFD such that

FFD(I) �

11

9

OPT (I) + 4

for all instances I for the bin packing problem.

Today, we shall prove the following theorems.

Theorem 4.3 (Fernandez de la Vega, Lueker '81) There exists a polynomial-time algo-

rithm FL such that

FL(I) � (1 + �)OPT (I) + 1

for all bin packing instances I and any � > 0.

Theorem 4.4 (Karmarkar, Karp '82) There exists a polynomial-time algorithm KK

such that

KK(I) � OPT (I) +O(log

2

(OPT (I))

for all bin packing instances I, where n is the size of instance I.

It is still an open problem whether there exists a polynomial time algorithm A

such that

A(I) � OPT (I) + 1:

4.1.2 First Fit Algorithm

This is among the most intuitive algorithms one can think of for the bin packing

problem. Consider some ordering on empty bins.

FF

For i 1 to n

Let j be the �rst bin such that i �ts in bin j

Put i in bin j

Theorem 4.5 FF (I)� 2OPT (I) + 1 for all instances I.
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Proof: Let SIZE(I) denote

P

i

s

i

. Then it is easy to see the following lower

bound for OPT (I):

SIZE(I) � OPT (I):

We now claim that at most one bin can be half-full in the output of FF (I). This is

so because if there were two bins half full, then the last item added to the latter bin

should have been added to the �rst bin. Thus,

1

2

(FF (I)� 1) � SIZE(I)

which implies

FF (I) � 2SIZE(I) + 1

i.e.,

FF (I) � 2OPT (I) + 1:

�

4.1.3 A \PTAS" for Bin Packing

We give a \PTAS" for the bin packing problem (\PTAS" in quotes, since we need

an additive factor). The ideas involved are similar to those for the PTAS for the

scheduling problem we solved in the previous lecture.

Suppose size of items s

i

�

�

2

for all i in an instance I. Using arguments similar to

the proof of Theorem 4.5, we can show that all bins except perhaps one must contain

items of total size at least 1 �

�

2

. Thus,

�

1 �

�

2

�

(FF (I)� 1) � SIZE(I)

which implies that (assuming � < 1)

FF (I) �

1

1�

�

2

SIZE(I) + 1

� (1 + �)SIZE(I) + 1

� (1 + �)OPT (I) + 1:

We can use this idea to develop the following algorithm for bin packing:

1. Split the items into large (size >

�

2

) and small (size �

�

2

) pieces.

2. Use some algorithm to pack large pieces into b bins.

3. Use FF to pack the small pieces (possibly opening new bins).
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In step 3 above, if FF doesn't open any new bin, then the algorithm uses at most

b bins. If FF opens new bins, then by the argument above , we can prove that all

bins except perhaps one must contain items of total size at least 1 �

�

2

. Thus by the

inequalities above, at most (1 + �)OPT (I) + 1 bins are used.

So, if we can get a PTAS for bin packing problem when all items are large, then

we have a PTAS for the general problem as well.

We will use the dynamic programming routine BigJobDynProg, which we de-

veloped in the previous lecture for scheduling problems, to get a PTAS for bin packing

when pieces are large. Recall the following facts about the procedure :

input : (a

1

; a

2

; : : : ; a

k

) � set of pieces ; a

i

items of size i for all i.

output : M(T; a

1

; : : : ; a

k

) � number of bins (machines) needed to pack (schedule)

(a

1

; : : : ; a

k

) in bins (machines) of size T (by time T ).

running time : O(n

2k

), where k is the number of distinct sizes.

To apply BigJobDynProg, we must have a constant number of piece sizes. To

get a small number of piece sizes, we must round them. Rounding them down is not

a good idea because once we pack them in a bin of size 1, we cannot \expand" them

to their original size because the size of bin is �xed (compare this with the scheduling

problem where the makespan is a variable).

So, we round the sizes up, and we do this via a \grouping" of pieces. Given an

instance I, arrange the pieces in decreasing order of size. Place l consecutive pieces

in one group (starting from the largest size piece). Thus, the pieces are divided into

d

n

l

e groups, namely, G

1

; : : : ; G

d

n

l

e

, where G

1

contains the largest pieces and so on.

Produce another instance I

0

from I as follows : Discard G

1

. For all other groups

G

i

, round the size of pieces to size of the largest piece in G

i

. Thus, we have at most

d

n

l

e � 1 distinct sizes.

Lemma 4.6 OPT (I

0

) � OPT (I) � OPT (I

0

) + l.

Proof: OPT (I

0

) � OPT (I) because each piece in I

0

can be mapped to a unique

piece in I of size at least as large, e.g., pieces in G

2

in I

0

can be mapped to pieces in

G

1

in I. So, any packing for I gives a packing for I

0

also.

OPT (I) � OPT (I

0

) + l because each piece in I � G

1

can be mapped to a piece

in I

0

of size at least as large, e.g., pieces in G

2

in I

1

have smaller size than the

corresponding pieces in G

2

in I

0

. So, given any packing for I

0

we need at most l more

bins to pack I, for the l pieces in G

1

. �

So, the algorithm is
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FL

Separate the pieces into large (>

�

2

) and small (�

�

2

) pieces

l d�SIZE(I)e

Group the large pieces to get another instance I

0

as above

Pack G

1

into l bins

Apply BigJobDynProg to I

0

to pack it optimally into b bins

Apply FF to small pieces

Note that the number of large piece sizes in FL is at most

n

l

�

n

�SIZE(I)

�

n

�

n�

2

�

2

�

2

because SIZE(I) =

P

i

s

i

�

P

i

�

2

=

n�

2

.

Theorem 4.7 FL(I) � (1 + �)OPT (I) + 1

Proof: We have already proved the theorem for the case when FF adds new bins.

So, assume that FF doesn't add new bins. In this case,

FL(I) � b+ l

� OPT (I) + d�SIZE(I)e;(4.1)

� (1 + �)OPT (I) + 1;(4.2)

where (4.1) follows since b = OPT (I

0

) � OPT (I) and (4.2) follows since OPT (I) �

SIZE(I). �

4.1.4 A Better-Than-PTAS for Bin Packing

We turn to linear programming relaxation techniques to get an algorithm for bin

packing with only an additive error term. First we formulate bin packing as an

integer program. Suppose an instance I consists of m distinct piece sizes and there

are b

i

pieces of size t

i

in I.

De�nition 4.1 A set (a

1

; : : : ; a

m

) is called a con�guration if it �ts in 1 bin, i.e.,

P

i

a

i

t

i

� 1.

Let N be the number of all possible con�gurations. Let A

1

; A

2

; : : : be an enu-

meration of all possible con�gurations. Let a

ij

denote the i

th

component of A

j

, i.e.,

A

j

= (a

1j

; a

2j

; : : : ; a

mj

).

For each con�guration A

j

, we introduce a variable x

j

which denotes the number

of bins having con�guration A

j

. So an integer programming formulation of the bin
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packing problem is:

Min

N

X

j=1

x

j

subject to

N

X

j=1

a

ij

x

j

� b

i

for all i = 1; : : : ;m

x

j

2 N

We relax this to a linear program by replacing the constraints x

j

2 N by x

j

� 0. Note

that the LP has a large number of variables. However, it can be solved e�ciently, as

the following theorem shows:

Theorem 4.8 (Karmarkar, Karp '82) The LP above can be solved to within an additive

error of at most 1 in time polynomial in m and log

�

n

t

m

�

, where t

m

is the size of smallest

piece in the instance.

We shall ensure that t

m

�

1

SIZE(I)

, by �lling in the smaller pieces afterwards with

FF . If FF opens a new bin, this gives a solution which uses at most

 

1 +

2

SIZE(I)

!

SIZE(I) + 1 � OPT (I) + 3 bins:

Also, since t

m

�

1

SIZE(I)

, Theorem 4.8 implies that the LP can be solved in polynomial

time.

Although the number of variables in the LP are very large, any extreme point

will contain at most m non-zero variables. We can also assume that we can get an

extreme point solution to the LP. So, if we round up the non-zero variables in an

optimal solution to the LP, the number of bins used will be at most OPT (I) +m.

To do better than this, we introduce the following scheme:

1. Given LP solution x

�

for instance I, pack bx

�

j

c bins according to con�guration

A

j

. Denote the set of pieces packed by this as I

int

, and the remaining pieces as

I � I

int

.

2. Recurse on I � I

int

.

To prove that this is a good approximation algorithm, we must show how to make

progress in every iteration. We begin by letting LP (I) denote the value of LP on

instance I.

Claim 4.9 LP (I � I

int

) + LP (I

int

) � LP (I)
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Proof: We know that bx

�

c is feasible for the LP on I

int

and (x

�

�bx

�

c) is feasible

for the LP on I � I

int

. Thus,

LP (I � I

int

) + LP (I

int

) �

X

j

(x

�

j

� bx

�

j

c) +

X

j

bx

�

j

c =

X

j

x

�

j

= LP (I):

�

Lemma 4.10 SIZE(I � I

int

) � m

Proof: Because x

�

is an extreme point, at most m entries of x

�

are non-zero. So

at most m entries of x

�

� bx

�

c are non-zero, and furthermore, each of them is less

than one. Since x

�

� bx

�

c is feasible for the LP of the bin packing instance I � I

int

,

by our previous rounding-up argument we can pack this instance into m bins. Thus

the total size of the instance must be no more than m. �

The claim above shows that we make progress if SIZE(I) > m. To make progress

in general, we will use a new type of \geometric grouping" each time before we

solve the linear program. We will show that the grouping has the e�ect of making

m = SIZE(I)=2, so that by the claim above, the size of the instance will fall by a

factor of 2 each time we recurse on the \fractional" part of the instance.

To perform geometric grouping, arrange the pieces in decreasing order of size

as before. Starting from the �rst piece, add pieces to a group until the group size

becomes� 2. Then, start the next group and so on until all items have been allocated

to some group. Let the groups thus obtained be G

1

; : : : ; G

r

, where G

i

has n

i

pieces.

Claim 4.11 n

i

� n

i�1

Proof: The claim follows from the fact that the items sizes in G

i�1

are no larger

than that of any item in G

i

. �

We obtain a new grouping instance I

0

from I as follows

Obtaining I

0

from I

Discard G

1

and G

r

For i 2 to r � 1

discard n

i

� n

i�1

smallest pieces of G

i

round the remaining n

i�1

pieces of G

i

to the size of the largest piece of G

i

Lemma 4.12 OPT (I

0

) � OPT (I) � OPT (I

0

) + O(log(SIZE(I))) and LP (I

0

) �

LP (I).

Proof: OPT (I

0

) � OPT (I) and LP (I

0

) � LP (I) follow from the same kind of

reasoning as in Lemma 4.6.
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To prove OPT (I) � OPT (I

0

) + O(log(SIZE(I))), we show that the total size

of discarded pieces while constructing I

0

from I is O(log(SIZE(I))). Packing these

discarded pieces by any constant factor approximation algorithm, e.g. FF , gives us

the desired result.

Clearly, SIZE(G

1

); SIZE(G

r

) � 3, since we stop �lling a group when its size

exceeds 2.

It is also easy to see that the total size of the n

i

� 1 largest pieces in G

i

is at most

2, because before the addition of the last piece, the total size of G

i

did not exceed 2.

Using an averaging argument, we have

size of n

i

� n

i�1

smallest pieces in G

i

�

2

n

i

� 1

(n

i

� n

i�1

) :

So,

total size of discards � 6 +

r�1

X

i=2

2

n

i

� 1

(n

i

� n

i�1

)

� 6 + 2

r�1

X

i=2

"

1

n

i

� 1

+

1

n

i

� 2

+ : : :+

1

n

i

� (n

i

� n

i�1

)

#

(since

1

n

i

�1

�

1

n

i

�k

for any k � 1)

= 6 + 2

n

r�1

�1

X

j=n

1

1

j

� 6 + 2H

n

r

Since each piece has size �

1

SIZE(I)

and each group has size at most 3, the number of

pieces in each group is at most 3SIZE(I). In particular, n

r

� 3SIZE(I). So,

total size of discards � 6 + 2H

n

r

= O(log(n

r

))

= O(log(SIZE(I)))

�

Observe that the number of groups in I

0

is at most

SIZE(I)

2

since each group has

size at least 2. In I

0

, all pieces in the same group get the same size. So,

number of piece sizes in I

0

�

SIZE(I)

2

which implies by Lemma 4.10

SIZE(I

0

� I

0

int

) �

SIZE(I)

2

:

Thus, the size of an instance goes down by a factor of two after grouping, solving the

linear program, rounding down, and recursing on the remaining fractional part. We
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stop the algorithm when SIZE(I) becomes less than 1. Thus, there can be at most

O(log(SIZE(I))) iterations of the algorithm.

We summarize the algorithm below.

KK

Let I

0

be large pieces, i.e., pieces of size �

1

SIZE(I)

i 0

While (SIZE(I

i

) � 1)

perform geometric grouping to get I

0

i

pack the discards in O(log(SIZE(I))) bins (follows from proof of Lemma 4.12)

Run LP on I

0

i

: pack the integral part I

0

i;int

using the solution to the LP.

I

i+1

 I

0

i

� I

0

i;int

i i+ 1

Pack remainder I

i

in 1 bin

Use FF to pack small pieces

Theorem 4.13 (Karmarkar, Karp '82) KK(I) � OPT (I)+O(log

2

(SIZE(I)) for any

bin packing instance I.

Proof: Using Lemma 4.12 and the fact that there are at most O(log(SIZE(I)))

iterations, we get

KK(I) = O(log

2

(SIZE(I))) +

X

i

LP (I

0

i;int

)

� O(log

2

(SIZE(I))) +

X

i

(LP (I

0

i

)� LP (I

0

i

� I

0

int

))(4.3)

= O(log

2

(SIZE(I))) +

X

i

(LP (I

0

i

)� LP (I

i+1

))

� O(log

2

(SIZE(I))) +

X

i

(LP (I

i

)� LP (I

i+1

))(4.4)

= O(log

2

(SIZE(I))) + LP (I

0

)

� O(log

2

(SIZE(I))) +OPT (I);

where (4.3) follows by Claim 4.9 and (4.4) follows by Lemma 4.12.

�
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ORIE 634 Approximation Algorithms September 24, 1998

Lecture 5

Lecturer: David P. Williamson Scribe: Rif \Andrew" Hutchings

5.1 Randomization: MAX SAT

5.1.1 Johnson's Algorithm

Today we start looking at some more modern results, as opposed to the 20 year old

\classical" results that have occupied us thus far.

For purposes of these randomized algorithms we will make use of a function

random(p). This is de�ned as:

random(p): [0; 1]! f0; 1g

random(p) = 1 with probability p

random(p) = 0 with probability 1 � p

This leads to the following de�nition.

De�nition 5.1 We have a randomized �-approximation algorithm if the algorithm

runs in randomized polynomial time, and if it produces a solution that is always within a

factor of � of an optimal solution

� with high probability (that is, at least 1�

1

n

c

for some constant c > 1)

� OR in expectation,

over the random choices of the algorithm.

We begin by introducing the maximum satis�ability problem (MAX SAT) and a

\dumb" randomized algorithm for it.

MAX SAT

� Input:

{ n boolean variables x

1

; x

2

; : : : ; x

n

{ m clauses C

1

; C

2

; : : : ; C

m

(e.g. x

3

_ �x

5

_ �x

7

_ x

11

)

{ weight w

i

� 0 for each clause C

i

� Goal: Find an assignment of TRUE/FALSE for the x

i

that maximizes total

weight of satis�ed clauses. (e.g. x

3

_ �x

5

_ �x

7

_ x

11

is satis�ed if x

3

is set TRUE,

x

5

is set FALSE, x

7

is set FALSE, or x

11

is set TRUE).
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What is the dumbest possible use of randomization for this problem?

DumbRandom

For i 1 to n

If random(

1

2

) = 1

x

i

 TRUE

else

x

i

 FALSE.

Theorem 5.1 (� Johnson '74) DumbRandom is a

1

2

-approximation algorithm.

Proof: Consider a random variable X

j

such that

X

j

=

(

1 if clause j is satis�ed

0 otherwise.

Let

W =

X

j

w

j

X

j

:

Then

E[W ] =

X

j

w

j

E[X

j

] =

X

j

w

j

Pr[clause j is satis�ed]

=

X

j

w

j

 

1 �

�

1

2

�

l

j

!

�

1

2

X

j

w

j

�

1

2

OPT;

where l

j

= # literals in clause j, since l

j

� 1 and the sum of the weights of all clauses

is an upper bound on the value of an optimal solution. �

Observe that if l

j

� k 8j, then we have a (1 � (

1

2

)

k

)�approximation algorithm.

Thus Johnson's algorithm is bad when clauses are short, but good if clauses are long.

Although this seems like a pretty naive algorithm, a recent theorem shows that

in fact this is the best that can be done in some cases. MAX E3SAT is the subset of

MAX SAT instances in which each clause has exactly three literals in it. Note that

Johnson's algorithm gives a

7

8

-approximation algorithm in this case.

Theorem 5.2 (H�astad '97) If MAX E3SAT has an �-approximation algorithm, � >

7

8

,

then P = NP .
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5.1.2 Derandomization

We can make the algorithm deterministic using Method of Conditional Expectations

(Spencer, Erd�os). This method is very general, and allows for the derandomization

of many randomized algorithms.

Derandomized Dumb

For i 1 to n

W

T

 E[W jx

1

; x

2

; : : : ; x

i�1

; x

i

 TRUE]

W

F

 E[W jx

1

; x

2

; : : : ; x

i�1

; x

i

 FALSE]

If W

T

� W

F

x

i

 TRUE

else

x

i

 FALSE.

How do we calculate E[W jx

1

; x

2

; : : : ; x

i

] in this algorithm? By linearity of expec-

tations, we know that

E[W j x

1

; x

2

; : : : ; x

i

] =

X

j

w

j

E[X

j

j x

1

; x

2

; : : : ; x

i

]:

Furthermore, we know that

E[X

j

j x

1

; x

2

; : : : ; x

i

] = Pr[clause j is satis�ed j x

1

; : : : ; x

i

]:

It is not hard to determine that

Pr[clause j is satis�ed j x

1

; : : : ; x

i

]

=

(

1 if x

1

; : : : ; x

i

already satisfy clause j

1 � (

1

2

)

k

otherwise when k=# variables of x

i+1

; : : : ; x

n

in clause j

Consider, for example, the clause x

3

_ �x

5

_ �x

7

_ x

11

. It is not hard to see that

Pr[clause satis�ed j x

1

 T; x

2

 F; x

3

 T; x

4

 F ] = 1;

since x

3

 T satis�es the clause. On the other hand,

Pr[clause satis�ed j x

1

 T; x

2

 F; x

3

 F; x

4

 F ] = 1�

�

1

2

�

3

=

7

8

;

since only the \bad" settings of x

5

; x

7

; and x

11

will make the clause unsatis�ed.

Why does this give a

1

2

-approximation algorithm?

E[W jx

1

; x

2

; : : : ; x

i�1

] = Pr[x

i

= TRUE]E[W jx

1

; : : : ; x

i�1

; x

i

 TRUE]

+ Pr[x

i

= FALSE]E[W jx

1

; : : : ; x

i�1

; x

i

 FALSE]:

By construction of the algorithm, after setting x

i

E[W jx

1

; x

2

; : : : ; x

i

] � E[W jx

1

; x

2

; : : : ; x

i�1

]:
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Therefore,

E[W jx

1

; : : : ; x

n

] � E[W ] �

1

2

OPT:

Notice that E[W j x

1

; : : : ; x

n

] is the value of the solution using the algorithm.

We can think of this sort of derandomization as a walk down a tree, with each

choice of a variable value corresponds to a choice of a branch of the tree. The ex-

pectation at each node is the average of the expected values of the nodes below it.

Thus we can assure ourselves that as we make these choices, our expected value is

staying as least as large as it was initially. Thus the factor of

1

2

still holds in this

derandomized case.

The Method of Conditional Expectations allows us to give deterministic variants

of randomized algorithms for most of the randomized algorithms we discuss. Why

discuss the randomized algorithms, then? It turns out that usually the randomized

algorithm is easier to state and analyze that its corresponding deterministic variant.

5.1.3 Flipping Bent Coins

As a stepping stone to better approximation algorithms for the maximumsatis�ability

problem, we consider what happens if we bias the probabilities for each boolean

variable. To do this, we restrict our attention for the moment to MAX SAT instances

in which all length 1 clauses are not negated.

Bent Coin

For 1 1 to n

If random(p) = 1

x

i

 TRUE

else

x

i

 FALSE.

We assume p �

1

2

.

Lemma 5.3 Pr[clause j is satis�ed] � min(p; 1 � p

2

)

Proof: If l

j

= 1 then

Pr[C

j

is satis�ed] = p;

since every length 1 clause appears positively. If l

j

� 2 then

Pr[C

j

is satis�ed] � 1 � p

2

:

This follows since p �

1

2

� (1� p). For example, for the clause �x

1

_ �x

2

;

Pr[clause is satis�ed] = 1 � p � p = 1� p

2

;
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while for �x

1

_ x

2

;

Pr[clause is satis�ed] = 1 � p(1 � p) � 1� p

2

:

�

We set p = 1 � p

2

) p =

1

2

(

p

5 � 1) � 0:618:

Theorem 5.4 (Lieberherr, Specker '81) Bent Coin is a p-approximation algorithm for

MAX SAT when all length 1 clauses are not negated.

Proof:

E[W ] =

X

j

w

j

Pr[C

j

is satis�ed] � p

X

j

w

j

� p �OPT:

�

We can actually extend this result to the general case when the length 1 clauses

can be negated or non-negated. First note that if only a variable's negation appears

as a length 1 clause, then we can rede�ne our variables to have a non-negated variable

in that clause instead. The only case we really have to worry about, then, is the case

where both a variable and its negation appear as length 1 clauses. In this case we can

get the result above by making a stronger statement about the optimal value, OPT .

WLOG, assume that the weight of clause x

i

is greater than weight of clause �x

i

.

Let v

i

= wt. of �x

i

. This allows a better bound on OPT :

OPT �

X

j

w

j

�

X

i

v

i

;

since the optimal solution can only satisfy either x

i

or �x

i

.

Letting C

j

denote the j

th

clause, we have:

E[W ] =

X

j

w

j

Pr[clause j satis�ed] �

X

j:8i C

j

6=�x

i

w

j

Pr[C

j

satis�ed]

� p �

X

j:8i C

j

6=�x

i

w

j

� p � [

X

j

w

j

�

X

i

v

i

]

� p �OPT

5.1.4 Randomized Rounding

We now consider what would happen if we tried to give di�erent biases to determine

each x

i

. To do that, we go back to our general technique for deriving approximation

algorithms. Recall that our general technique is:
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1. Formulate the problem as an integer program.

2. Relax it to a linear program and solve.

3. Use the solution (somehow) to obtain an integer solution close in value to LP

solution.

We now consider a very general technique introduced by Raghavan and Thompson,

who use randomization in Step 3.

Randomized Rounding (Raghavan, Thompson '87)

1. Create an integer program with decision variables x

i

2 f0; 1g.

2. Get an LP solution with 0 � x

�

i

� 1.

3. To get an integer solution:

If random(x

�

i

) = 1

x

i

 1

else

x

i

 0

We now attempt to apply this technique to MAX SAT.

Step 1: Wemodel MAX SAT as the following integer program, in which we introduce

a variable z

j

for every clause and a variable y

i

for each boolean variable x

i

.

Max

X

j

w

j

z

j

subject to:

X

i2I

+

j

y

i

+

X

i2I

�

j

(1 � y

i

) � z

j

8C

j

:

_

i2I

+

j

x

i

_

_

i2I

�

j

�x

i

y

i

2 f0; 1g

0 � z

j

� 1:

Step 2: To obtain an LP, we relax y

i

2 f0; 1g to 0 � y

i

� 1. Note that if z

LP

is the

LP optimum and OPT is the integral optimum, then z

LP

� OPT .

Step 3: Now applying randomized rounding gives the following algorithm:

Random Round

Solve LP, get solution (y

�

; z

�

)

For i 1 to n

If random(y

�

i

) = 1

x

i

 TRUE

else

x

i

 FALSE.
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Theorem 5.5 (Goemans, W '94) Random Round is a (1�

1

e

)-approximation algorithm,

where 1 �

1

e

� 0:632:

Proof: We need two facts to prove this theorem.

Fact 5.1

k

p

a

1

a

2

: : : a

k

�

1

k

(a

1

+ a

2

+ � � �+ a

k

)

for nonnegative a

i

.

Fact 5.2 If f(x) is concave on [l; u] (that is, f

00

(x) � 0 on [l; u]), and f(l) � al+ b and

f(u) � au+ b; then

f(x) � ax+ b on [l; u]:

Consider �rst a clause C

j

of the form x

1

_ x

2

_ : : : _ x

k

. Notice that the corre-

sponding LP constraint is

P

k

i=1

y

�

i

� z

�

j

.

Pr[clause is satis�ed] = 1 �

k

Y

i=1

(1 � y

�

i

)

� 1 �

 

k �

P

k

i=1

y

�

i

k

!

k

(5.1)

� 1 �

 

1 �

z

�

j

k

!

k

(5.2)

�

"

1 �

�

1 �

1

k

�

k

#

z

�

j

;(5.3)

where (5.1) follows from Fact 5.1, (5.2) follows by the LP constraint, and (5.3) follows

by Fact 5.2, since

z

�

j

= 0 ) 1� (1 � z

�

j

=k)

k

= 0

z

�

j

= 1 ) 1� (1 � z

�

j

=k)

k

= 1 �

�

1 �

1

k

�

k

and 1� (1 � z

�

j

=k)

k

is concave.

We now claim that this inequality holds for any clause, and we prove this by

example. Consider now the clause x

1

_ x

2

_ : : : _ x

k�1

_ �x

k

. Then

Pr[clause is satis�ed] = 1 �

k�1

Y

i=1

(1 � y

�

i

)y

�

k

= 1 �

 

(k � 1) �

P

k�1

i=1

y

�

i

+ y

�

k

k

!

:
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However, since

P

k�1

i=1

y

�

i

+ (1 � y

�

k

) � z

�

j

for this clause, the result is the same.

Therefore,

E[W ] =

X

j

w

j

Pr[clause j is satis�ed]

� min

k

"

1�

�

1�

1

k

�

k

#

X

j

w

j

z

�

j

� min

k

"

1�

�

1�

1

k

�

k

#

�OPT �

�

1 �

1

e

�

�OPT;

since (1 �

1

x

)

x

converges to e

�1

from below. �

Observe that this algorithm does well when all clauses are short. If l

j

� k for all

j, then the performance guarantee becomes 1� (1� 1=k)

k

.

5.1.5 A Best-of-Two Algorithm for MAX SAT

In the previous section we used the technique of randomized rounding to improve a

:618-approximation algorithm to a :632-approximation algorithm for MAX SAT. This

doesn't seem like much of an improvement.

But notice that Johnson's algorithm and the randomized rounding algorithm have

conicting bad cases. Johnson's algorithm is bad when clauses are short, whereas

randomized rounding is bad when clauses are long. It turns out we can get an

approximation algorithm that is much better than either algorithm just by taking

the best solution of the two produced by the two algorithms.

Best-of-two

Run DumbRandom, get assign x

1

of weight W

1

Run RandomRound, get assign x

2

of weight W

2

If W

1

�W

2

return x

1

else

return x

2

.

Theorem 5.6 (Goemans, W'94) Best-of-two is a

3

4

-approximation algorithm for MAX

SAT.
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Proof:

E[max(W

1

;W

2

)] � E

�

1

2

W

1

+

1

2

W

2

�

=

X

j

w

j

�

1

2

Pr[clause j is satis�ed by DumbRandom]

+

1

2

Pr[clause j is satis�ed by RandomRound]

�

�

X

j

w

j

2

4

1

2

 

1 �

�

1

2

�

l

j

!

+

1

2

2

4

1 �

 

1 �

1

l

j

!

l

j

3

5

z

�

j

3

5

�

X

j

w

j

�

3

4

z

�

j

�

(5.4)

=

3

4

X

j

w

j

z

�

j

�

3

4

OPT:

We need to prove inequality (5.4), which follows if

1

2

 

1�

�

1

2

�

l

j

!

+

1

2

2

4

1�

 

1�

1

l

j

!

l

j

3

5

z

�

j

�

3

4

z

�

j

:

The cases l

j

= 1; 2 are easy:

l

j

= 1 )

1

2

�

1

2

+

1

2

z

�

j

�

3

4

z

�

j

l

j

= 2 )

1

2

�

3

4

+

1

2

�

3

4

z

�

j

�

3

4

z

�

j

For the case l

j

� 3, we take the minimum possible value of the two terms:

l

j

� 3 )

1

2

�

7

8

+

1

2

(1�

1

e

)z

�

j

�

3

4

z

�

j

�

5.1.6 Non-linear Randomized Rounding

Nothing says that we had to take the output of the linear program directly into our

randomized rounding scheme. We could have just as easily used some function of the

output to generate rounding probabilities. This will result in a so-called non-linear

randomized rounding approach.

Consider the following algorithm:
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Nonlinear-Round

Solve LP, get (y

�

; z

�

).

Pick any function g(y) such that 1 � 4

�y

� g(y) � 4

y�1

for y 2 [0; 1].

For i 1 to n

If random(g(y

�

i

)) = 1

x

i

 TRUE

else

x

i

 FALSE.

Theorem 5.7 (Goemans, W '94) Nonlinear-Round is a 3=4-approximation algorithm for

MAX SAT.

Proof: Recall Fact 5.2 in previous section: If f(x) is concave in [l; u], and f(l) �

al+ b; f(u) � au+ b, then f(x) � ax+ b on [l; u].

First consider a clause of form x

1

_ : : : _ x

k

. Then

Pr[C

j

satis�ed] = 1�

k

Y

i=1

(1 � g(y

�

i

))

� 1�

k

Y

i=1

4

�y

�

i

= 1� 4

�

P

k

i=1

y

�

i

� 1� 4

�z

�

j

(5.5)

�

3

4

z

�

j

;(5.6)

where (5.5) follows from the LP constraint

P

k

i=1

y

�

i

� z

�

j

, and (5.6) follows from Fact

5.2.

To show that this result holds in greater generality, suppose we negate the last

variable, and have a clause of form x

1

_ : : : _ �x

k

. Then

Pr[C

j

satis�ed] = 1�

k�1

Y

i=1

(1 � g(y

�

i

))� g(y

�

k

)

� 1�

k�1

Y

i=1

4

�y

�

i

� 4

�(1�y

�

k

)

� 1� 4

�z

�

j

(5.7)

�

3

4

z

�

j

;(5.8)

where again (5.7) follows from the LP constraint

P

k�1

i=1

y

�

i

+ (1 � y

�

k

) � z

�

j

and (5.8)

follows from Fact 5.2. Clauses of other forms are similar.
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Hence,

E[W ] =

X

j

w

j

Pr[C

j

satis�ed] �

3

4

X

j

w

j

z

�

j

�

3

4

OPT

�

So where do you go from here? It turns out that this is the end of the line

insofar as comparing against the linear programming bound. To see this, consider

the instance x

1

_ x

2

,x

1

_ �x

2

, �x

1

_ x

2

, �x

1

_ �x

2

, where each clause has weight 1. An

optimal LP solution for this instance sets y

i

=

1

2

for all i and z

j

= 1 for all clauses

(indeed, this is true for any instance which has no length 1 clauses). Thus Z

LP

= 4,

and the best bound we can get comparing our solution against Z

LP

is

3

4

. Observe that

in the case there are no length 1 clauses, the optimal solution of y

i

=

1

2

for all i gives

no information about how to set the variables; essentially we are back to Johnson's

algorithm in this case!

The best known approximation algorithm for MAXSAT so far is� 0:78-approximation

algorithm, and makes use of techniques we will see in the near future.

Research question: Can you get a

3

4

-approximation algorithm for MAX SAT with-

out solving an LP?
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ORIE 634 Approximation Algorithms October 1, 1998

Lecture 6

Lecturer: David P. Williamson Scribe: Tim Roughgarden

6.1 Randomization: MAX CUT

Today, with the goal of showing that the use of randomization can get quite sophis-

ticated, we turn to the maximum cut problem.

MAX CUT

� Input: Undirected graph G = (V;E), and weights w

ij

� 0;8(i; j) 2 E (assume

w

ij

= 0 for (i; j) =2 E).

� Goal: Find subset S � V that maximizes w(S) =

P

i2S;j 62S or i 62S;j2S

w

ij

6.1.1 A Dumb Randomized Algorithm for MAX CUT

We begin as we did with the MAX SAT problem, by considering the simplest possible

use of randomization.

DumbRandom

S  ;

For i 1 to n,

If random(1=2) = 1

S  S [ fig.

For notational simplicity, assume that V = f1; : : : ; ng.

Theorem 6.1 (� Sahni, Gonzalez '76) DumbRandom is a 1=2-approximation algorithm.

Proof: For all i; j 2 V de�ne a random variable X

ij

such that

X

ij

=

8

<

:

1 if i 2 S; j =2 S or i =2 S; j 2 S

0 otherwise

and let

W =

X

i<j

w

ij

X

ij
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Let us consider the expected value of W , which is the value of the cut obtained

by the randomized algorithm. Then

E[W ] = E

2

4

X

i<j

w

ij

X

ij

3

5

=

X

i<j

w

ij

E[X

ij

]

=

X

i<j

Pr[i 2 S; j =2 S or i =2 S; j 2 S]

=

1

2

X

i<j

w

ij

�

1

2

OPT

since

P

i<j

w

ij

must certainly be an upper bound on the value of a maximum cut

(using the fact that all weights are non-negative). �

Remark 6.1 DumbRandom can be derandomized using the method of conditional ex-

pectations, yielding a deterministic 1=2-approximation algorithm.

6.1.2 MAX CUT in Dense Graphs

Unlike the case of MAX SAT, we can't do better than the dumb random algorithm

with the tools that we have seen so far. In the second half of the lecture we will

introduce a new tool that will help us do better. For the moment, we will show how

the tools we already have help us to do better for a particular subcase of the MAX

CUT problem. For the time being, we consider the case that the graph is unweighted

(i.e. w

ij

= 1 8(i; j) 2 E) and the graph is dense, i.e. jEj � �n

2

for some � > 0,

where n = jV j. We give a result of Arora, Karger, and Karpinski that gives a PTAS

for MAX CUT in this case.

An implication of this case is that OPT �

�

2

n

2

. To see this, recall our Dumb-

Random algorithm for the maximum cut problem that produced a cut with expected

value at least

1

2

P

(i;j)2E

w

ij

. Since the expected value of a random cut is this large,

the value of the maximum cut must also be this large.

Let us consider a particular model of the maximum cut problem. The problem

can be restated as to �nd an assignment x which maps each vertex in V to 0 or 1,

with x

i

= 1 i� i 2 S, and the objective function becomes

max

x

i

2f0;1g

X

i2V

x

i

X

(i;j)2E

(1� x

j

):

To see this, note that

P

(i;j)2E

(1�x

j

) counts the number of edges adjacent to x

i

that

have endpoints of value 0. Since we multiply each such term by x

i

, we only count
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these edges when x

i

= 1. So for each vertex x

i

we count all the edges that have an

endpoint on the other side of the cut.

Since we will be using the term

P

(i;j)2E

(1 � x

j

) quite frequently, we de�ne some

notation for it. Let ZN(x; i) as the \Number of Zero Neighbors of i under x", i.e.,

P

(i;j)2E

(1� x

j

).

Let x

�

denote an optimal solution. Suppose there is a Genie that gives us values

Z

i

such that Z

i

� �n � ZN(x

�

; i) � Z

i

+ �n. Can we make use of this information to

obtain a near-optimal solution?

The answer is \yes", and we do this by using randomized rounding. Consider the

following linear program:

Max

X

i2V

Z

i

y

i

subject to:

Z

i

� �n �

X

(i;j)2E

(1� y

j

) � Z

i

+ �n 8i

0 � y

i

� 1

Notice by the de�nition of Z

i

, the optimal solution x

�

is feasible for this LP. And

the objective function value for x

�

is close to OPT , as we see below:

X

i2V

Z

i

x

�

i

�

X

i2V

(ZN(x

�

; i)� �n)x

�

i

= OPT � �n

X

i2V

x

�

i

� OPT � �n

2

�

�

1�

2�

�

�

OPT

So the LP optimal Z

LP

� (1�

2�

�

)OPT .

Now consider the following randomized rounding algorithm.

AKK (Arora, Karger and Karpinski '95)

Get Z

i

from genie. Solve LP, get y

�

.

For all i 2 V ,

If random(y

�

i

) = 1

x

0

i

 1

else

x

0

i

 0.

Observe that the value of the cut obtained is

P

i2V

x

0

i

ZN(x

0

; i).

We need the following well-known result in our proof. This theorem is extremely

important, and is used repeatedly in the analysis of randomized algorithms.
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Theorem 6.2 (Cherno�) Let X

1

; : : : ;X

n

be n independent 0-1 random variables (not

necessarily from the same distribution). Then for X =

P

n

i=1

X

i

and � = E[X], and

0 � � < 1,

Pr[X � (1 + �)�] > 1� e

���

2

=3

;

and

Pr[X � (1� �)�] > 1 � e

���

2

=2

:

A slight generalization of this bound is also useful.

Theorem 6.3 (Hoe�ding) Let X

1

; : : : ;X

n

be n independent random variables (not

necessarily from the same distribution), such that each X

i

takes either the value 0 or a

i

for some a

i

� 1. Then for X =

P

n

i=1

X

i

and � = E[X], and 0 � � < 1,

Pr[X � (1 + �)�] > 1� e

���

2

=3

;

and

Pr[X � (1� �)�] > 1 � e

���

2

=2

:

Let's �rst calculate the expected value of ZN for the solution x

0

.

E[ZN(x

0

; i)] = E

2

4

X

(i;j)2E

(1 � x

0

j

)

3

5

=

X

(i;j)2E

(1 � E[x

0

j

])

=

X

(i;j)2E

(1 � y

�

j

)

= ZN(y

�

; i)

We now show that with high probability this expected value is close to the

value from the linear programming solution by applying Cherno� bounds. Set �

i

=

q

2c lnn

maxfZN(y

�

;i);2c lnng

. Then

Pr[ZN(x

0

; i) < (1 � �

i

)ZN(y

�

; i)] � e

���

2

=2

= e

�ZN(y

�

;i)

c ln n

maxfZN(y

�

;i);2c ln ng

� e

�c lnn

= 1=n

c

Then by the Union Bound, with probability at least 1 � 1=n

c�1

,

X

i

x

0

i

ZN(x

0

; i) �

X

i

x

0

i

(1� �

i

)ZN(y

�

; i)

�

X

i

x

0

i

�

ZN(y

�

; i)�

q

2c lnnZN(y

�

; i)

�

�

X

i

x

0

i

�

Z

i

� �n�

q

2c ln nZN(y

�

; i)

�

�

X

i

x

0

i

Z

i

�

�

�n+

p

2cn ln n

�

X

i

x

0

i
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Now we stop to bound

P

i

x

0

i

Z

i

. Since

E

"

X

i

x

0

i

Z

i

#

=

X

i

Z

i

E[x

0

i

] =

X

i

Z

i

y

�

i

Using the Hoe�ding bound with Z = max

i

Z

i

and � =

r

2c lnn

maxf2c lnn;

P

i

y

�

i

Z

i

Z

g

Pr[

X

i

x

0

i

Z

i

Z

< (1� �)

X

i

Z

i

Z

y

�

i

] �

1

n

c

:

So w.h.p.,

X

i

x

0

i

Z

i

� (1� �)

X

i

Z

i

y

�

i

=

0

@

1 �

v

u

u

t

2c lnn

maxf2c lnn;

P

i

y

�

i

Z

i

Z

g

1

A

X

i

Z

i

y

�

i

�

X

i

Z

i

y

�

i

�

s

2Zc ln n

X

i

y

�

i

Z

i

�

X

i

Z

i

y

�

i

� n

p

2cn ln n

Using this result to continue, we have

X

i

x

0

i

ZN(x

0

; i) �

X

i

Z

i

y

�

i

� n

p

2cn ln n� (�n+

p

2cn lnn)

X

i

x

0

i

�

�

1 �

2�

�

�

OPT � n

p

2cn ln n� �n

2

� n

p

2cn ln n

�

�

1 �

2�

�

�

OPT �

2�

�

OPT � o(1)OPT

�

�

1 �

5�

�

�

OPT;

where the last line follows for n large enough to swamp out the o(1) term by

�

�

OPT .

Then if we set �

0

=

5�

�

, Algorithm AKK produces solution of value � (1 � �

0

)OPT

with high probability for su�ciently large n.

6.1.3 Degenie-izing the algorithm

We need to show how the \genie" works, which is based on the theorem below.

Theorem 6.4 Given a

1

; : : : ; a

n

2 f0; 1g, Z =

P

n

i=1

a

i

. If we pick a random set S �

f1; : : : ; ng, with jSj = c log n=�

2

, then, w.h.p.

Z � �n �

n

jSj

X

i2S

a

i

� Z + �n:
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Pick random subset S of c log n=�

2

vertices. Set Z

i

=

n

jSj

P

(i;j)2E;j2S

(1 � x

�

). By

the theorem, w.h.p.,

ZN(x

�

; i)� �n � Z

i

� ZN(x

�

; i) + �n

But we still don't know x

�

! In order to get around this problem, we run the

algorithm for all 2

jSj

= n

O(1=�

2

)

possible settings of x

�

j

2 f0; 1g. We don't know which

one gives the optimal solution, but it doesn't matter; we simply return the largest

cut found, and that will be guaranteed to be within a (1 � �

0

) factor of OPT , since

at least one of the cuts will be this large.

6.2 Semide�nite Programming

We now turn to a new tool which gives substantially improved approximation algo-

rithms in some cases. We saw that in the case of MAX SAT, we could do no better

than a

3

4

-approximation algorithm using the linear programming relaxation we in-

troduced. In the case of MAX CUT, no known linear programming relaxation can

lead to anything better than a

1

2

-approximation algorithm by bounding against the

value of the LP objective function. So we turn to convex programming relaxations of

various problems; in particular, to something called semide�nite programming.

First we de�ne a positive semide�nite (psd) matrix X; we sometimes write X � 0

to denote that X is psd.

De�nition 6.1 A matrix X 2 <

n�n

is positive semide�nite (psd) i� 8a 2 <

n

, a

T

Xa �

0.

If X 2 <

n�n

is a symmetric matrix, then the following are equivalent:

1. X is psd;

2. X has non-negative eigenvalues;

3. X = V

T

V for some V 2 <

m�n

, where m � n.

A semide�nite program (SDP) can be formulated as

Max or Min

X

c

ij

x

ij

subject to:

X

i;j

a

ijk

x

ij

= b

k

8k

X = (x

ij

) � 0 and X is symmetric

SDP's have the useful property that they can be solved in polynomial time using
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� the ellipsoid method

� modi�cations of interior-point methods that are used to solve LP's

to within an additive error of �. The running time depends only on log(1=�). This

additive error of � is necessary because sometimes the solutions to SDP's may be

irrational numbers. SDPs also need to meet some additional specialized conditions

(e.g., having an interior point in both the primal and the dual) to be solvable in this

way, but all the SDPs we consider will be well-behaved, and so we will ignore these

additional conditions.

SDP is equivalent to vector programming (VP) which can be formally stated as

Max or Min

X

c

ij

(~v

i

� ~v

j

)

subject to:

X

i;j

a

ijk

(~v

i

� ~v

j

) = b

k

8k

~v

i

2 <

n

8i

This follows since X is psd and X is symmetric i� X = V

T

V i.e., i� x

ij

= ~v

i

� ~v

j

where

V =

0

B

B

B

@

.

.

.

.

.

.

.

.

.

~v

1

~v

2

� � � ~v

3

.

.

.

.

.

.

.

.

.

1

C

C

C

A

(That is, the ~v

i

are the column vectors of V ). So if we have a feasible solution to

SDP, then we have a solution to VP with the same value and vice versa.

6.2.1 MAX CUT using Semide�nite Programming

We now consider applying semide�nite programming to the MAX CUT problem. Let

us consider the following formulation of the MAX CUT problem which we denote by

(A).

Max

1

2

X

i<j

w

ij

(1� y

i

� y

j

)

(A) y

i

2 f�1;+1g 8i

We claim that if we can solve (A), then we can solve the MAX CUT problem.

Claim 6.5 The formulation (A) models MAX CUT.
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Proof: Consider the cut given by S = fi 2 V jy

i

= �1g. We have

1

2

X

i<j

w

ij

(1� y

i

� y

j

) =

1

2

X

i<j:y

i

=y

j

w

ij

(1� y

i

� y

j

) +

1

2

X

i<j:y

i

6=y

j

w

ij

(1 � y

i

� y

j

)

This is because y

i

2 f�1;+1g for all i. So for a given i and j, either y

i

= y

j

or

y

i

6= y

j

. If y

i

= y

j

, then 1 � y

i

� y

j

= 0 and if y

i

6= y

j

, then 1 � y

i

� y

j

= 2. So in the

above expression, the �rst term becomes zero. So we have

1

2

X

i<j

w

ij

(1� y

i

� y

j

) =

1

2

X

i<j:y

i

6=y

j

w

ij

(1 � y

i

� y

j

)

=

1

2

X

i<j:y

i

6=y

j

w

ij

� 2

=

X

i<j:i2S;j 62S or i 62S;j2S

w

ij

�

Let us now consider a vector programming relaxation (denoted (B)) of (A).

Z

SDP

= Max

1

2

X

i<j

w

ij

(1 � ~v

i

� ~v

j

)

(B) ~v

i

� ~v

i

= 1 8i

~v

i

2 <

n

8i:

To see that (B) is indeed a relaxation of (A), we can view the y

i

's in (A) as 1-

dimensional vectors and so anything that is feasible for (A) is feasible for (B). Also

note that this implies Z

SDP

� OPT .

We can solve (B) in polynomial time, but not (A). So how do we convert a

solution of (B) to a solution of (A) ? To do this, we would like to apply randomized

rounding in some way.

Consider the following algorithm:

VectorRound

Solve vector programming problem (B) and get vectors

~

v

�

Choose a random vector ~r uniformly from the unit n-sphere

S  ;

for i 1 to n

if

~

v

�

i

� ~r � 0

S  S [ fig

The vector ~r is a normal to some hyperplane. So everything that has a non-

negative dot product with ~r will be on one side of the hyperplane and everything
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v_k

r

v_i

v_j

Figure 6.1: A random hyperplane example

that has a negative dot product with ~r will be on the other side (see Figure 6.1).

To get vector ~r, choose ~r = (r

1

; r

2

; � � � ; r

n

), such that r

i

2 N (0; 1) where N is a

normal distribution. (The normal distributionN (0; 1) can be simulated using uniform

distribution on [0; 1].)

Theorem 6.6 VectorRound is a 0:878-approximation algorithm.

To prove this theorem we require a couple of facts and a couple of lemmas which

we give below.

Fact 6.1

~r

k~rk

(i.e., normalization of ~r) is uniformly distributed over a unit sphere.

Fact 6.2 The projection of ~r onto two lines l

1

and l

2

are independent and normally

distributed i� l

1

and l

2

are orthogonal.

Corollary 6.7 Let

~

r

0

be the projection of ~r onto a plane.

~

r

0

k

~

r

0

k

is uniformly distributed

on a unit circle on the plane (see Figure 6.2).

Lemma 6.8 Pr[i 2 S; j 62 S or i 62 S; j 2 S] =

1

�

arccos(

~

v

�

i

�

~

v

�

j

).

Proof:

Let

~

r

0

be the projection of ~r onto the plane de�ned by

~

v

�

i

and

~

v

�

j

.
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r’

r

Figure 6.2: Projection of r to r

0

r

v_j*

v_i*
r’’

r’

Figure 6.3: Projection of r into plane de�ned by v

�

i

and v

�

j
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θ

θ

θ

E

B

C

A
v_j*

F

v_i*

D

O

not in

in

not

in

in

i

j

S

S

i

j

S

S

Figure 6.4: Determining the probability
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If ~r =

~

r

0

+

~

r

00

(Figure 6.3), then

~

v

�

i

� ~r =

~

v

�

i

� (

~

r

0

+

~

r

00

)

=

~

v

�

i

�

~

r

0

The second equality follows because

~

r

00

is orthogonal to

~

v

�

i

. Similarly,

~

v

�

j

� ~r =

~

v

�

j

�

~

r

0

.

There are a total of 2� possible orientations of

~

r

0

. If

~

r

0

lies on the semi-circular

plane AFB (see Figure 6.4) then

~

v

�

i

�

~

r

0

� 0 and so i 2 S. If

~

r

0

lies on the semi-

circular plane AEB, then i 62 S. Likewise, if

~

r

0

lies on the semi-circular plane CFD,

then j 2 S and if

~

r

0

lies on the semi-circular plane CED, then j 62 S. Let � be

the angle between the vectors

~

v

�

i

and

~

v

�

j

. So by construction,

[

AOC =

\

BOD = �.

Note that in the sector AOC, i 62 S and j 2 S and in the sector BOD, i 2 S and

j 62 S. Therefore, 2� of the orientations out of a total of 2� orientaions for

~

r

0

cause

i 2 S; j 62 S or i 62 S; j 2 S. Therefore the required probability is

2�

2�

. We have

~

v

�

i

�

~

v

�

j

= k

~

v

�

i

k �k

~

v

�

j

k cos �. Therefore, � = arccos(

~

v

�

i

�

~

v

�

j

), since the

~

v

�

i

's are unit vectors.

Hence the result. �

Lemma 6.9

min

�1�x�1

1

�

arccos(x)

1

2

(1� x)

� 0:878:

Proof: Using Mathematica! �

So now we can prove the theorem.

Theorem 6.10 (Goemans, W '95) VectorRound is a 0:878-approximation algorithm.

Proof: Consider the random variables

X

ij

=

(

1 if i 2 S; j 62 S or i 62 S; j 2 S

0 otherwise

and

W =

X

i<j

w

ij

X

ij

:

Then

E[W ] =

X

i<j

w

ij

� Pr[i 2 S; j 62 S or i 62 S; j 2 S]

=

X

i<j

w

ij

1

�

arccos(

~

v

�

i

�

~

v

�

j

)(6.1)

� 0:878 �

1

2

X

i<j

w

ij

(1�

~

v

�

i

�

~

v

�

j

)(6.2)

= 0:878 � Z

SDP

� 0:878 �OPT;

where (6.1) follows by Lemma 6.8 and (6.2) follows by Lemma 6.9. �
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ORIE 634 Approximation Algorithms October 8, 1998

Lecture 7

Lecturer: David P. Williamson Scribe: Kathryn Nyman

7.1 Semide�nite Programming

7.1.1 MAX CUT, continued

In the last lecture we saw that a semide�nite program (SDP) is equivalent to vector

programming (VP) which can be formally stated as

Max or Min

X

c

ij

(~v

i

� ~v

j

)

subject to:

X

i;j

a

ijk

(~v

i

� ~v

j

) = b

k

8k

~v

i

2 <

n

8i;

where n is the number of vectors in the vector program.

Last time, we considered the following formulation of the MAX CUT:

Max

1

2

X

i<j

w

ij

(1� y

i

� y

j

)

y

i

2 f�1;+1g 8i

We showed that it could be relaxed to the following vector program.

Z

SDP

= Max

1

2

X

i<j

w

ij

(1� ~v

i

� ~v

j

)

~v

i

� ~v

i

= 1 8i

~v

i

2 <

n

8i:

We proved the following two lemmas:

Lemma 7.1 Pr[i 2 S; j 62 S or i 62 S; j 2 S] =

1

�

arccos(

~

v

�

i

�

~

v

�

j

).

Lemma 7.2 For �1 � x � 1,

1

�

arccos(x) � :878

1

2

(1 � x)

These two lemmas imply that the Vector Round algorithm from last time gives a

.878-approximation algorithm for MAX CUT. Can we do better than this? It turns

out that we will have to do something quite di�erent, as the following theorems attest.
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Corollary 7.3 For any graph with non-negative weights,

OPT

Z

SDP

� 0:878:

Theorem 7.4 (Delorme, Poljak '93) For the 5-cycle,

OPT

Z

SDP

=

32

25 + 5

p

5

� 0:884:

Theorem 7.5 (Karlo� '95) There exists graphs G such that,

E[W ]

OPT

=

E[W ]

Z

SDP

! min

�1�x�1

1

�

arccos(x)

1

2

(1� x)

:

This is true even if any valid inequality is added to the SDP.

The theorem by Delorme and Poljak implies that we can't do much better than

a performance guarantee of .878 using this SDP. The theorem of Karlo� implies that

we can't do any better at all with this SDP or anything obtained by adding valid

inequalities as long as we obtain the cut by choosing a random hyperplane. So far,

no better approximation algorithm is known. However, some very recent work shows

that the worst case of the algorithm is quite con�ned: in many cases, we can get an

approximation algorithm with a performance guarantee better than .878.

Theorem 7.6 (Zwick, 10/7/98) If for a graph G

Z

SDP

P

i<j

w

ij

< :84� �

then there is a (:878 + f(�))-approximation algorithm, where f is an increasing function.

Compare this with previously known work:

Theorem 7.7 (Goemans, W '95) If for a graph G

Z

SDP

P

i<j

w

ij

> :84 + �

then VectorRound is a (:878 + g(�))-approximation algorithm, where g is an increasing

function.

It turns out that there is a limit on how well we can do in any case.

Theorem 7.8 (H�astad '97) If 9 an �-approximation algorithm for MAX CUT, � >

16

17

�

0:941, then P = NP .

Research Question: Can you get a 0.878-approximation algorithm without solv-

ing an SDP?
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7.1.2 Quadratic Programming

We now show that we can get an approximation algorithm for some kinds of quadratic

programming by using the same techniques. Consider quadratic programs of the form

Max

X

i;j

a

ij

(x

i

� x

j

)

(A) x

i

2 f�1;+1g 8i

We get into some conceptual trouble if OPT < 0, since then our notion of coming

within a factor of � < 1 for a maximization problem implies that we would be doing

better than optimal! We could rede�ne the notion of an approximation algorithm

for this case, but for now we restrict our attention to a case in which the objective

function is non-negative. Assume A � 0. This solves the problem since the objective

function is x

t

Ax, and we know that since A is psd, then x

t

Ax � 0.

As before we can relax this to the following vector program:

Max

X

i;j

a

ij

(~v

i

� ~v

j

)

(B) ~v

i

� ~v

i

= 1 8i

~v

i

2 <

n

:

Consider the same vector rounding algorithm.

VectorRound2

Solve the SDP and get vectors

~

v

�

Choose a random vector ~r uniformly from the unit n-sphere

for i 1 to n

if

~

v

�

i

� ~r � 0

�x

i

 1

else

�x

i

 �1

We will now give two lemmas similar to Lemmas 7.1 and 7.2. Dimitris Bertisimas

has observed that the �rst lemma was shown by Shepherd in 1900.

Lemma 7.9 E[ �x

i

� �x

j

] =

2

�

arcsin(

~

v

�

i

�

~

v

�

j

)
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Proof:

E[ �x

i

� �x

j

] = Pr[ �x

i

� �x

j

= 1]� Pr[ �x

i

� �x

j

= �1]

=

�

1 �

1

�

arccos(

~

v

�

i

�

~

v

�

j

)

�

�

�

1

�

arccos(

~

v

�

i

�

~

v

�

j

)

�

= 1�

2

�

arccos(

~

v

�

i

�

~

v

�

j

)

= 1�

2

�

�

�

2

� arcsin(

~

v

�

i

�

~

v

�

j

)

�

=

2

�

arcsin(

~

v

�

i

�

~

v

�

j

)

The second term in the second equality follows from Lemma 7.1, and the fourth

equality follows since arcsin(x) + arccos(x) =

�

2

. �

We would like our proof to proceed as follows. We would like to prove an equivalent

of Lemma 7.2; suppose there is some � such that the following is true:

Lemma 7.10

min

�1�x�1

2

�

arcsin(x)

x

� �:

We would then like the proof to go the same as before:

E[

X

i;j

a

ij

( �x

i

� �x

j

)] =

X

i;j

a

ij

E[ �x

i

� �x

j

]

=

X

i;j

a

ij

2

�

arcsin(

~

v

�

i

�

~

v

�

j

)

� �

X

i;j

a

ij

(

~

v

�

i

�

~

v

�

j

)(7.1)

� � �OPT:(7.2)

But we cannot do this because the inequality (7.1) is not correct. This is because

some of the a

ij

's may be negative. That is, the inequality

2

�

arcsin(x) � �x will

become

2

�

a

ij

arcsin(x) � �xa

ij

if a

ij

< 0.

Thus to analyze this algorithm, we will have to do something di�erent. We will

have to consider comparing the expected value of the solution to the SDP value on a

global basis, rather than a term-by-term basis.

Fact 7.1 If A � 0, B � 0, then

P

ij

a

ij

b

ij

� 0.

Fact 7.2 If X � 0, jx

ij

j � 1, and Z = (z

ij

) such that z

ij

= arcsin(x

ij

) � x

ij

, then

Z � 0.
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Theorem 7.11 (Nesterov '97) VectorRound2 is a

2

�

-approximation algorithm.

Proof: We want to show

E[

X

ij

a

ij

( �x

i

� �x

j

)] �

2

�

X

ij

a

ij

(

~

v

�

i

�

~

v

�

j

) �

2

�

�OPT

We know

E[

X

ij

a

ij

( �x

i

� �x

j

)] =

2

�

X

ij

a

ij

arcsin(

~

v

�

i

�

~

v

�

j

)

So we want to show

2

�

X

ij

a

ij

arcsin(

~

v

�

i

�

~

v

�

j

)�

2

�

X

ij

a

ij

(

~

v

�

i

�

~

v

�

j

) � 0

Setting x

ij

=

~

v

�

i

�

~

v

�

j

, we obtain that X = (x

ij

) � 0 and jx

ij

j � 1, since

~

v

�

i

�

~

v

�

j

= k

~

v

�

i

kk

~

v

�

j

k cos �

ij

= cos �

ij

:

Thus the left-hand side is equal to

2

�

X

ij

a

ij

(arcsin(x

ij

)� x

ij

):

Setting z

ij

= arcsin(x

ij

)� x

ij

, this is equal to

2

�

X

ij

a

ij

z

ij

� 0;

since Z = (z

ij

) is psd by Fact 7.2 and thus

P

ij

a

ij

z

ij

� 0 by Fact 7.1. Hence the

result. �

7.1.3 Graph Coloring

Next we will show that semide�nite programming can be applied to the graph coloring

problem. In particular, we will show the following result:

Theorem 7.12 (Karger, Motwani, Sudan '94) There is a polynomial-time algorithm to

color a 3-colorable graph with

~

O(n

1=4

) colors.

The previous best algorithms used

~

O(n

3=8

) colors (Blum '94) and O(

p

n) colors

(Wigderson '83).
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De�nition 7.1 A function f(n) =

~

O(g(n)) when the following is valid:

9 n

0

; c

1

; c

2

s.t. 8 n � n

0

f(n) � c

1

g(n) log

c

2

n

The following facts are known about coloring graphs.

� We can color 2-colorable (aka bipartite) graphs in polynomial time.

� We can color G with � + 1 colors (� = max degree of G) in polynomial time.

Proof: Color greedily (color with color not used by neighbors yet). �

The following coloring algorithm for 3-colorable graphs was also previously known.

Color1

While 9v 2 G s.t. deg(v) �

p

n

Color v with color #1

Color neighbors of v in polynomial time with 2 new colors

Remove v and its neighbors from graph

Color remaining G with

p

n new colors

Theorem 7.13 (Widgerson '83) Color1 colors 3-colorable graphs in polynomial time

with O(

p

n) colors.

Proof: We can execute the while loop at most

n

p

n

times, since we remove at least

p

n vertices from the graph every time. Hence we use 1 + 2

n

p

n

colors in the while

loop. The last step takes

p

n colors by the fact above (since the maximum degree is

p

n� 1), so the total numbers of colors needed is 3

p

n + 1. �

We now think about applying semide�nite programming to the problem of coloring

3-colorable graphs. Consider the following vector programm:

Min �

subject to:

v

i

� v

j

� � 8 (i; j) 2 E

v

i

� v

i

= 1 8 i

v

i

2 R

n

Claim 7.14 For a 3-colorable graph � � �

1

2

.
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Proof: Consider an equilateral triangle, and associate the vectors for the three

di�erent colors with the three di�erent vertices of the triangle. Note that the angle

between any two vectors of the same color is 0, while the angle between any two

vectors of di�erent color is 2�=3. Then for v

i

; v

j

such that (i; j) 2 E

v

i

� v

j

= kv

i

k kv

j

k cos �

= cos

�

2�

3

�

= �

1

2

;

So this solution is a feasible solution to the vector program with � = �1=2: Thus in

the optimal solution, � � �1=2: �

As before we will consider randomized algorithms. It turns out that it is too much

to expect that we will get an algorithm that colors the whole graph correctly with

high probability. Instead, we will aim for an algorithm that colors mostly correctly. In

particular, we want a semicoloring, which means that at most

n

4

edges have the same

colored endpoints. In such a solution at least

n

2

of the vertices are colored \correctly"

(any edge between these vertices has di�erently colored endpoints).

Note then if we can semicolor a graph with k colors, then we can color the graph

with k log n colors: we obtain a semicoloring of the graph with k colors, and take

the half of the graph colored correctly. We then semicolor the remaining half of the

graph with k new colors, and take the half colored correctly, and so on. This takes

log n iterations, after which the graph is colored correctly with k log n colors.

Consider now the following algorithm.

KMS1

Solve vector program, get v

i

Pick t = 2 + log

3

� random vectors r

1

; : : : ; r

t

Let R

1

= fi : r

1

� v

i

� 0; r

2

� v

i

� 0; : : : ; r

t

� v

i

� 0g

R

2

= fi : r

1

� v

i

< 0; r

2

� v

i

� 0; : : : ; r

t

� v

i

� 0g

.

.

.

R

2

t

= fi : r

1

� v

i

< 0; r

2

� v

i

< 0; : : : ; r

t

� v

i

< 0g

Color vertices in R

i

with color i

Theorem 7.15 (Karger, Motwani, Sudan '94) The algorithm KMS1 gives a semicoloring

of O(�

log

3

2

) colors with probability

1

2

.

Proof: Since we used 2

t

colors, this is 2

t

= 4 � 2

log

2

�

= 4�

log

3

2

colors.
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Now

Pr[i and j get the same color for edge (i; j)]

=

�

1�

1

�

arccos(v

i

� v

j

)

�

t

�

�

1�

1

�

arccos(�)

�

t

�

�

1�

1

�

arccos(�

1

2

)

�

t

=

�

1�

1

�

2�

3

�

t

=

�

1

3

�

t

�

1

9�

:

This follows since for any particular random vector r

k

, we know (from the analysis

for MAX CUT) that the probability that v

i

� r

k

� 0 and v

j

� r

k

� 0 OR that v

i

� r

k

< 0

and v

j

� r

k

< 0 is 1 �

1

�

arccos(v

i

� v

j

). Thus the probability that v

i

and v

j

get the

same color is the probability that this happens for each of the t vectors, which is

(1�

1

�

arccos(v

i

� v

j

))

t

, since each of these events is independent.

Let m denote the number of edges in the graph. Note that m � n�=2. Thus

E[# bad edges] �

m

9�

�

�n

2

9�

�

n

8

;

and therefore

Pr[ more than

n

4

bad edges] �

1

2

:

�

If we just plug in n for �, this gives us an algorithm that colors with

~

O(n

log

3

2

) =

~

O(n

:631

), which is worse than Widgerson's algorithm. But we can use Widgerson's

technique to make things better:

Color2

While 9v 2 G s.t. deg(v) � �

Color v with color #1

2-color neighbors of v in polynomial time with 2 new colors

Remove v & neighbors

Apply KMS1 to color remaining graph with O(�

log

3

2

) colors

Let's analyze this algorithm. The While loop uses O(

n

�

) colors, since we remove

� vertices from the graph each time. The �nal step uses

~

O(�

log

3

2

) colors. To balance

these two parts, we set � such that

n

�

= �

log

3

2

, which gives � = n

0:613

. This gives a

coloring with

~

O(n

0:387

) colors.
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But this algorithm is still worse than Blum (whose algorithm uses

~

O(n

3

8

) colors)!

We consider next the following algorithm:

KMS2

Solve vector program, get vectors v

i

Pick t =

~

O(�

1

3

) random vectors r

1

; : : : ; r

t

Assign vector v

i

to random r

j

that maximizes v

i

� r

j

Color vectors assigned to r

j

with color j

Theorem 7.16 (Karger, Motwani, Sudan)

Pr[i and j get same color for edge (i; j)] =

~

O(t

�3

) =

~

O(�

�1

)

We omit the proof of this theorem. To see that this theorem leads to a better

algorithm, note that if we use t =

~

O(�

1

3

) vectors, for an appropriate choice of the

right constants, we get that

Pr[i and j get same color for edge (i; j)] �

1

9�

;

just as with the previous algorithm, and the previous analysis goes through, except

now our algorithm uses

~

O(�

1

3

) colors. If we now apply Widgerson's technique using

this algorithm, we get an algorithm that colors the graph with

~

O(n

1

4

) colors.
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ORIE 634 Approximation Algorithms October 15, 1998

Lecture 8

Lecturer: David P. Williamson Scribe: Vardges Melkonian

8.1 The Primal-Dual Method

8.1.1 The Basic Method

Recall our meta-method for designing approximation algorithms:

1. Formulate problem as an integer program

2. Relax to an LP

3. Use LP to obtain a near optimal solution

We will now look at another way of carrying out the third step, a technique known

as the primal-dual method for approximation algorithms. To illustrate this we look

at the following problem:

Hitting Set

� Input:

{ ground set E = fe

1

; e

2

; : : : ; e

n

g

{ subsets T

1

; T

2

; : : : ; T

p

� E

{ costs c

e

� 0 e 2 E

� Goal: Find min-cost A � E s.t. A \ T

i

6= ; 8i.

Note that this problem is equivalent to the Set Cover problem. Namely, the

ground element e

i

of the Hitting Set corresponds to the subset S

i

of the Set Cover,

and the subset T

i

of the Hitting Set corresponds to the ground element t

i

of the Set

Cover.

We now carry out our meta-method for the hitting set problem. First we formulate

the problem as an integer program:
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� Step 1

Min

X

e2E

c

e

x

e

subject to:

X

e2T

i

x

e

� 1 8i

x

e

2 f0; 1g:

� Step 2. We then relax it to a linear program:

x

e

2 f0; 1g ! x

e

� 0:

� Step 3. For the third step, we are going to consider the dual of the linear

programming relaxation, which is the following:

Max

X

i

y

i

subject to:

X

i:e2T

i

y

i

� c

e

8e 2 E

y

i

� 0 8i:

We can now state the general primal-dual method for approximation algorithms:

Primal-Dual Method for Approximation Algorithms

y  0

While there does not exist an integral solution obeying primal complementary

slackness conditions (x

e

> 0 )

P

i:e2T

i

y

i

= c

e

)

Get direction of increase for dual

Return feasible integral solution x obeying primal complementary slackness.

The primal-dual method for approximation algorithms di�ers from the classical

primal-dual method in that the dual complementary slackness conditions are not

enforced.

In order to check the while condition, we note that the while condition only

allows x

e

> 0 for e :

P

i:e2T

i

y

i

= c

e

. Thus if setting x

e

= 1 (i.e. e 2 A) for all

e :

P

i:e2T

i

y

i

= c

e

still does not satisfy feasibility (i.e. 9 T

i

such that A\ T

i

= ;) then

there is no feasible integral x obeying primal complementary slackness conditions. So

we need only check if A = fe 2 E :

P

i:e2T

i

y

i

= c

e

g is feasible (i.e. it hits every

subset, A \ T

i

6= ;;8i).

We claimed that if A is not feasible, then there is some direction of increase for the

dual. Note that if A is not feasible then it does not hit every set, so there is some T

k

such that A \ T

k

= ;. By construction of A this means that 8e 2 T

k

;

P

i:e2T

i

y

i

< c

e

.
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Now y

k

appears in these constraints and only in these constraints. It thus follows

that every constraint in which y

k

participates is not tight (c

e

�

P

i:e2T

i

y

i

> 0), and

we can therefore increase y

k

by the minimum of these di�erences while keeping all

of these di�erences � 0. Thus none of the constraints containing y

k

are violated -

though the one corresponding to that minimum is now tight. Given this new dual

feasible solution we may now set x

e

for e corresponding to that newly tight constraint

to 1, i.e. we may add e to A and the new A will hit T

k

as well.

Thus we can translate the general primal-dual method for approximation algo-

rithms to the following algorithm:

Primal-Dual1

y  0

A ;

While A is not feasible

Find violated T

k

(i.e. T

k

s.t. A \ T

k

= ;)

Increase y

k

until 9 e 2 T

k

such that

P

i:e2T

i

y

i

= c

e

A A [ feg

Return A.

We consider now the performance guarantee of this algorithm. Note that by the

construction of A,

X

e2A

c

e

=

X

e2A

X

i:e2T

i

y

i

=

X

i

jA \ T

i

jy

i

;

since each y

i

is counted once for each e 2 A that is also in T

i

. If we could �nd an �

such that whenever y

i

> 0 then jA \ T

i

j � � then it would follow that

X

e2A

c

e

� �

X

i

y

i

� �OPT;

(since OPT � OPT

primal

�

P

i

y

i

for any dual feasible solution y) and the above

algorithm would be an �-approximation algorithm.

As an example, we apply this algorithm to the vertex cover problem. Note that

vertex cover can be translated into a hitting set problem, where V is the ground set

of elements, the costs c

i

of the elements are the weights of the vertices, and we must

hit the sets T

i

= fu; vg for each (u; v) 2 E. Then since jT

i

j = 2 for each set, it follows

that jA \ T

i

j � 2 for all i, and by the reasoning above we have a 2-approximation

algorithm for vertex cover.

Application: Feedback Vertex Set Problem

Let us consider another example:
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Feedback Vertex Set in Undirected Graphs

� Input:

{ Undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find S � V minimizing

P

i2S

w

i

such that for every cycle C in G,

C\S 6= ;. (Equivalently, �nd a min-weight set of vertices S such that removing

S from the graph causes the remaining graph to be acyclic).

We claim that the feedback vertex set problem is just a hitting set problem with:

� Ground set V

� Cost w

i

� Sets to hit: T

i

= C

i

for each cycle C

i

in graph

We now have a hitting set problem with potentially an exponential number of sets

to hit. How do we deal with this problem? The answer is that we do not need to

enumerate or �nd all cycles: the algorithm only needs to �nd a violated set when one

exists.

To apply the primal-dual method to this problem, we �rst need the following

observation: we can reduce the input graph G to an equivalent graph G

0

with no

degree 1 vertices and such that every degree 2 vertex is adjacent to a vertex of higher

degree. To see this suppose we have two vertices of degree two adjacent to each other,

i and j, and WLOG w

i

� w

j

. Note that every cycle which goes through i must also

go through j. Thus there is no reason to include j in any solution: we should always

choose i. We can then shortcut j out of the graph.

To get our algorithm, we need the following lemma:

Lemma 8.1 (Erd�os, Posa) In every non-empty graph in which there are no degree 1

vertices and such that for each vertex of degree 2 every neighbor has higher degree, there

is a cycle of length no longer than 4 log

2

n.

Proof: Do breadth-�rst search of the graph. By the properties of the graph, if we

do not close a cycle by revisiting a previously explored node, then at least in every

other level the number of explored nodes increases by a factor of 2. Thus at depth i,

we will have explored 2

i=2

nodes. By depth 2 log

2

n, we will have found a cycle. �

Thus in our algorithm, we always choose as our violated set any unhit cycle of

length no longer than 4 log

2

n.

Theorem 8.2 (Bar-Yehuda, Geiger, Naor, Roth '94) If we choose a cycle of length no

more than 4 log

2

n as our violated set, we get a 4 log

2

n-approximation algorithm for the

feedback vertex set problem in undirected graphs.
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Proof: By construction, whenever y

i

> 0, jT

i

j = jC

i

j � 4 log

2

n. Thus jA \ T

i

j �

4 log

2

n, and by the reasoning above this implies that we have a 4 log

2

n-approximation

algorithm. �

8.1.2 Deleting Unnecessary Elements

The above algorithm (Primal-Dual1) has the shortcoming that though at any particu-

lar iteration the edge added to A was needed for feasibility, by the time the algorithm

terminates it may no longer be necessary. These unnecessary elements increase the

cost of A. Consider the following re�nement to remove the unnecessary elements in

A:

Primal-Dual2

y  0

A ;

l 0 (l is a counter)

While A is not feasible

l l + 1

Find violated T

k

Increase y

k

until 9 e

l

2 T

k

such that

P

i:e

l

2T

i

y

i

= c

e

l

A A [ fe

l

g

For j  l down to 1

If A� fe

j

g is still feasible

A A� fe

j

g

Return A.

Let A

f

denote the solution returned by the algorithm. The algorithm performs

a total of l iterations (where l refers to the value of the counter at termination).

Iteration j �nds the violated set T

k

j

, increases the dual variable y

k

j

, and adds the

element e

j

to A. It follows then that T

k

j

\ fe

1

; e

2

; : : : ; e

j�1

g = ; by construction.

To analyze more carefully the performance guarantee of this algorithm, we need

the following de�nition.

De�nition 8.1 A set Z � E is a minimal augmentation of a set X � E if:

1. X [ Z is feasible, and

2. for any e 2 Z; X [ Z � feg is not feasible.

We claim thatA

f

�fe

1

; e

2

; : : : ; e

j�1

g is a minimal augmentation of fe

1

; e

2

; : : : ; e

j�1

g.

By de�nition the union is feasible, satisfying condition (1). Now note that A

f

�

fe

1

; e

2

; : : : ; e

l

g implies that A

f

� fe

1

; e

2

; : : : ; e

j�1

g � fe

j

; e

j+1

; : : : ; e

l

g. For any

e

t

2 fe

j

; e

j+1

; : : : ; e

l

g such that e

t

2 A

f

as well, letting A

t

be the version of A
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considered by the algorithm in the iteration of its for-loop which attempted (unsuc-

cessfully) to remove e

t

we know that A

t

�e

t

is not feasible (or else e

t

would have been

removed), but since A

f

� A

t

then A

f

� e

t

is certainly infeasible and condition (2) is

satis�ed as well.

It follows then that jA

f

\ T

k

j

j � max jB \ T

k

j

j where the maximum is taken over

all B such that B is a minimum augmentation of fe

1

; e

2

; : : : ; e

j�1

g.

Theorem 8.3 Let T (A) be the violated set the algorithm chooses given an infeasible

A. If

� = max

infeasible A�E

max

minimal augmentations B of A

jB \ T (A)j;

then

X

e2A

f

c

e

=

X

i

jA

f

\ T

i

jy

i

� �

X

i

y

i

� �OPT:

Proof: This follows from jA

f

\ T

k

j

j � max jB \ T

k

j

j � �. �

We see that if we can �nd a bound � (the maximum number of elements of

any violated set chosen by the algorithm that could possibly be introduced under

a minimal augmentation) then the above algorithm is a �-approximation algorithm.

We now consider two problems in which the above procedure can be implemented.

Application: Shortest s-t path

Here we consider the problem of �nding the shortest s-t path in an undirected graph.

This problem can be seen as a hitting set problem as follows:

Ground Set : the set of edges E

Costs : c

e

� 0; 8e 2 E

Sets to Hit : T

i

= �(S

i

), s 2 S

i

, t =2 S

i

where �(S) = f(u; v) 2 E : u 2 S and v =2 Sg. That is, the sets S

i

are the s-t cuts

and the sets T

i

= �(S

i

) are the edges crossing the s-t cuts.

To see that this hitting set problem captures the shortest s-t path problem, we

need that a set of edges contains an s-t path if and only if it hits every s-t cut

1

. First,

if a set of edges A does not cross some s-t cut S

i

then A must consist exclusively of

edges joining two vertices of S

i

or joining two vertices of the complement of S

i

. Thus

any path starting from s 2 S

i

consisting of such edges can only bring us to vertices

that are also in S

i

, but t =2 S

i

. Conversely, if a set of edges does not contain an s-t

path then let S

i

be the largest connected component (corresponding to those edges)

containing s. By assumption t =2 S

i

and the set of edges could not contain any edge

from �(S

i

) or else we could have found a larger connected component containing s

1

This follows directly from the max-ow/min-cut theorem, but for completeness we prove it here.
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by including the other vertex incident on that edge. Thus the absence of an s-t path

implies that some s-t cut was not hit. We �nd then that a set of edges contains an

s-t path if and only if it hits every s-t cut.

We now wish to apply the algorithm Primal-Dual2 to this problem. Suppose

that whenever A is infeasible, the algorithm chooses the violated set T

k

= �(S

k

),

where S

k

is the connected component of (V;A) containing s. As is shown above,

A \ T

k

= ;. We can then prove the following theorem.

Theorem 8.4 Given the choice of T

k

in each iteration, Primal-Dual2 is a 1-approximation

(optimal) algorithm for the shortest s-t path problem.

Proof: We need only show that � = 1 for the � de�ned in Theorem 8.3. Let

A be an infeasible solution, and let B be a minimal augmentation of A. Now let

s; v

1

; v

2

; : : : ; v

l

; t be an s-t path in (V;A [B). Choose i such that v

i

2 S

k

; v

i+1

=2 S

k

where i is as large as possible. Since S

k

is a connected component there must be

a s-v

i

path exclusively in S

k

of the form s;w

1

; w

2

; : : : ; w

j

; v

i

, where w

`

2 S

k

. Thus

s;w

1

; w

2

; : : : ; w

j

; v

i

; v

i+1

; : : : ; v

l

; t is an s-t path, and if we letB

0

= f(v

i

; v

i+1

); (v

i+1

; v

i+2

); : : : ; (v

l

; t)g,

then B

0

is an augmentation. Since all the edges in B

0

have at least one endpoint not

in S

k

then (as above) none of these edges is from A which implies that they are all

from B, i.e. B

0

� B. But minimality of B then implies that B

0

= B. So

jB \ �(S

k

)j = jB

0

\ �(S

k

)j = jf(v

i

; v

i+1

)gj = 1;

since the �rst edge is the only one to have an endpoint in S

k

. Therefore, � = 1. �

Application: Generalized Steiner Trees

We now consider another problem for which the primal-dual method gives a good

approximation algorithm, the Generalized Steiner Tree problem.

Generalized Steiner Tree Problem

� Input:

{ An undirected graph G = (V;E)

{ l pairs of vertices (s

i

; t

i

); i = 1 : : : l

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

the same connected component of (V; F ).

This can be modelled as a hitting set problem:

Ground Set : the set of edges E

Costs : c

e

� 0;8e 2 E

Sets to Hit : T

i

= �(S

i

) i� jS

i

\ fs

j

; t

j

gj = 1 for some j (the s

j

-t

j

cuts).
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Note that by the logic we used for the shortest s-t path problem that a set of edges

will be feasible for this hitting set problem if and only if it contains a path between

s

i

and t

i

for each i.
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ORIE 634 Approximation Algorithms October 22, 1998

Lecture 9

Lecturer: David P. Williamson Scribe: Christina Ahrens

9.1 The Primal-Dual Method

9.1.1 Generalized Steiner Trees, continued

We will now continue our discussion of the Generalized Steiner Tree problem. Recall

�rst the de�nition of a minimal augmentation:

De�nition 9.1 A set Z � E is a minimal augmentation of a set X � E if:

1. X [ Z is feasible, and

2. for any e 2 Z; X [ Z � feg is not feasible.

And also the Generalized Steiner Tree problem itself:

Generalized Steiner Tree Problem

� Input:

{ An undirected graph G = (V;E)

{ l pairs of vertices (s

i

; t

i

); i = 1 : : : l

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

the same connected component of (V; F ).

Recall that this can be modeled as a hitting set problem:

Ground Set : the set of edges E

Costs : c

e

� 0;8e 2 E

Sets to Hit : T

i

= �(S

i

) where jS

i

\ fs

j

; t

j

gj = 1 for some j (the s

j

-t

j

cuts).

Note that by the logic we used for the shortest s-t path problem that a set of edges

will be feasible for this hitting set problem if and only if it contains a path between

s

i

and t

i

for each i.
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Let us consider how to apply the algorithm Primal-Dual2 to this problem. Sup-

pose we do more or less the same thing here we did for the shortest s-t path problem.

We know that if A is not feasible then there must be some connected component S

k

containing s

j

but not t

j

for some j. Suppose the algorithm picks T

k

= �(S

k

) as the

violated set. The di�culty is that the reasoning used above in the s-t path problem

will not yield a good bound here since a minimal augmentation may cross the cut

many times. Consider the problem for which s = s

1

= s

2

= � � � = s

l

and for which

there are edges (s; t

j

);8j and say that A = ;. Then f(s; t

j

)g; j = 1 : : : n is a minimum

augmentation that crosses the cut �(fsg) l times, which (using Theorem 8.3) would

imply a �-approximation algorithm, for � � l. This is not very good.

Perhaps we picked the wrong infeasible solution to augment; that is, maybe our

previous algorithm will work if we change the way that we choose the violated set.

It turns out that this approach does not work either because it still leads to a l-

approximation in the worst case scenario (where all the s's are in one group, uncon-

nected to any of the t's).

Notice, however, that even though a bound of l hardly tells us anything at all,

those l times that the violated set is hit by the augmentation correspond to hits

on l di�erent violated sets as well (each �(ft

i

g) is hit by (s; t

i

)), each of which is

hit only once. So on the average the number of hits per violated set (among the

group f�(fsg); �(ft

i

g);8ig) is only

l+l

l+1

< 2. Therefore it might be wise to pick several

violated sets and increase the associated dual variables all at the same time. This

observation leads to the following variation of the primal-dual method:

Primal-Dual3

y  0

A ;

l 0 (l is a counter)

While A is not feasible

l l + 1

V  Violated(A) (a subroutine returning several violated sets)

Increase y

k

uniformly for all T

k

2 V until 9 e

l

=2 A such that

P

i:e

l

2T

i

y

i

= c

e

l

A A [ fe

l

g

For j  l down to 1

If A� fe

j

g is still feasible

A A� fe

j

g

Return A.

The following theorem can be shown about the algorithm Primal-Dual3.

Theorem 9.1 If for any infeasible A and any minimal augmentation B of A,

X

T

i

2Violated(A)

jT

i

\Bj � �jViolated(A)j;
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then

X

e2A

f

c

e

� �

X

i

y

i

� �OPT:

Proof: Homework problem, problem set 4. Note that this theorem is a general-

ization of Theorem 8.3. �

For the Generalized Steiner Tree Problem, we let Violated(A) return fT

k

= �(S

k

) :

S

k

is a connected component of (V;A);9j s.t. jS

k

\ fs

j

; t

j

gj = 1g:

Theorem 9.2 (Agrawal, Klein, Ravi `95, Goemans, W `95) For this subroutine

Violated, Primal-Dual3 is a 2-approximation algorithm for the Generalized Steiner Tree

Problem.

Proof: Given infeasible A, let C(A) = fS : S is a connected component of (V;A)

s.t. jS \ fs

j

; t

j

gj = 1 for some jg .

All we need to show is, for any minimal augmentation B,

X

S2C(A)

jB \ �(S)j � 2jC(A)j:

Suppose we contract every connected component of (V;A) where A is an infeasible

set of edges. In this contracted graph, call the nodes corresponding to the connected

components in C(A) red and the rest blue. Now consider the graph G

0

= (V

0

; B) where

V

0

is the vertex set. We note that G

0

must be a forest, since if it had a cycle we could

remove an edge of the cycle and maintain feasibility, contradicting the minimality of

B.

How does the inequality we wish to prove translate to the graph G

0

? Note that

jB \ �(S)j in G for a connected component S is equal to deg(v) in G

0

for the vertex

v corresponding to S. Similarly, jC(A)j in G is simply the number of red vertices in

G

0

. We let Red and Blue represent the sets of red and blue vertices in G

0

, so that we

can rewrite the above inequality as

X

v2Red

deg(v) � 2jRedj:

We will need the following claim.

Claim 9.3 If v 2 Blue then deg(v) 6= 1.

Proof: If deg(v) = 1 then we claim B � e is feasible for e 2 B and adjacent to v.

If true, this contradicts the minimality of B. Let S be the connected component in

G that corresponds to the vertex v in G

0

. If B� e is not feasible, then there must be

some s

i

-t

i

pair that is connected in (V;A[B) but not in (V;A[B � e). Thus either
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s

i

or t

i

is in S, and the other vertex is in V �S. But then it must have been the case

that S 2 C(A) and v 2 Red, which is a contradiction. �

To complete the proof, we �rst discard all blue nodes with deg(v) = 0. Then

X

v2Red

deg(v) =

X

v2Red[Blue

deg(v)�

X

v2Blue

deg(v)

� 2(jRedj + jBluej)� 2jBluej

= 2jRedj

The inequality follows since the sum of the degrees of nodes in a forest is at most

twice the number of nodes, and since every blue node has degree at least two. �

Note that we can actually improve one of the previous results slightly to

X

v2Red

deg(v) � 2jRedj � 2c;

where c = the number of components in G

0

= (V

0

; B).

This 2-approximation algorithm for the generalized Steiner tree is just an example

of the kind of graph problem for which the primal-dual method can obtain a good

approximation algorithm. A generalization of the proof above gives 2-approximation

algorithms for many other graph problems.

9.1.2 Feedback Vertex Set Problem, revisited

Recall the Feedback Vertex Set Problem:

Feedback Vertex Set in Undirected Graphs

� Input:

{ Undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find S � V minimizing

P

i2S

w

i

such that for every cycle C in G,

C\S 6= ;. (Equivalently, �nd a min-weight set of vertices S such that removing

S from the graph causes the remaining graph to be acyclic).

By using the primal-dual method we were able to obtain a 4 log

2

n approximation

algorithm.

Recall also the general IP formulation of the problem that we used:

Min

X

v2V

w

v

x

v

subject to:

X

v2C

x

v

� 1 8 cycles C

x

v

2 f0; 1g
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De�nition 9.2 The integrality gap of an integer program is the worst-case ratio of the

optimum value of the integer program to the optimum value of its linear programming

relaxation.

Because our approximation algorithm for the FVS problem was based on a dual

feasible solution, we know that the integrality gap for the above formulation of the

FVS problem is at most 4 log

2

n: To see this, observe that in any primal-dual algorithm

that gives a performance guarantee of � we �nd a solution A and a dual feasible

solution y such that

IP

OPT

�

X

e2A

c

e

� �

X

i

y

i

� �LP

OPT

:

We would like to improve our approximation algorithm, but we are in trouble

because it is known that for the above formulation of the FVS, the integrality gap

is 
(log

2

n): Therefore, to obtain a better bound using the primal-dual method we

must use a di�erent IP formulation of the problem.

Some facts about biconnected components

In order to develop our new integer programming formulation of the feedback vertex

set problem, we will need to de�ne the biconnected components of a graph, and state

some simple facts about them. A biconnected (or 2-connected or 2-vertex-connected)

graph is one such that for all distinct x; z 2 V and for all a 2 V there exists a path

in G from x to z not containing a.

Any graph (biconnected or not) can be decomposed into \biconnected compo-

nents"; that is, subgraphs which behave like biconnected graphs, just like the con-

nected components of a graph are subgraphs that are connected. To be more precise,

the edges of an undirected graph can be partitioned into biconnected components

E

1

; E

2

; : : : ; E

k

using the following equivalence relationship: e

1

� e

2

i� e

1

= e

2

or e

1

and e

2

are in some common simple cycle. Let V

i

= vertices of edges in E

i

. Then the

following are true:

� G

i

= (V

i

; E

i

) is biconnected;

� jV

i

\ V

j

j � 1 for all i 6= j:

Now let d(v) = degree of V , b(v) = jfi : v 2 V

i

gj; c(G) = the number of connected

components in G; and k = number of biconnected components in G: As a warm up,

we prove the following fact that we will need later.

Lemma 9.4

X

v2V

b(v) � jV j+ k � c(G):
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Proof: We prove the statement by contradiction. Note that the inequality holds

for the empty graph. Now let H by the smallest graph (in terms of number of

vertices) for which the inequality does not hold. For any graph, there must exist

some biconnected component such that there is at most one vertex of the component

with b(v) � 2; this follows since otherwise there would exist a cycle whose edges were

in di�erent biconnected components, which violates the equivalence relation. Pick

such a biconnected component E

i

of H. If b(v) = 1 for all v 2 V

i

, then V

i

is a

connected component of H; deleting V

i

and E

i

from H decreases both the left-hand

side of the inequality and the right-hand side of the inequality by jV

i

j (note that

on the right-hand side the number of connected and biconnected components both

decrease by 1). Thus if the inequality does not hold for H, it does not hold for H

with V

i

and E

i

deleted, which contradicts the minimality of H.

Now suppose that b(v) � 2 for exactly one v 2 V

i

. Deleting E

i

and V

i

� v from

H decreases both the left-hand side and right-hand side of the inequality by jV

i

j, the

left-hand side since b(v) decreases by 1 for jV

i

j vertices, and the right-hand side since

jV

i

j � 1 vertices are removed and one biconnected component is removed. This again

contradicts the minimality of H. �

A new integer programming formulation for FVS

To get a new integer programming formulation for the feedback vertex set problem,

we prove the following lemma.

Lemma 9.5 For any FVS F;

X

v2F

(d(v)� b(v)) � jEj � jV j+ c(G):

Proof: We �rst start by proving a simpler inequality. We know that if we remove

F and adjacent edges from the graph, the remaining set of edges is acyclic. Since

P

v2F

d(v) is a bound on the number of edges removed, and jV j � jF j � c(G) is a

bound on the number of edges left over, we have that

jEj �

X

v2F

d(v) + jV j � jF j � c(G):

Rearranging terms gives us

X

v2F

(d(v)� 1) � jEj � jV j+ c(G);

which is a start on what we want.

Now de�ne d

S

(v) � degree of vertex v in graph (S;E[S]); where E[S] is the subset

of E that has both endpoints in S. Now assume that we have partitioned our graph
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into biconnected components E

1

; E

2

; : : : ; E

k

: Now we apply the inequality above to

each of the biconnected components of the graph. This gives us

jEj �

k

X

i=1

0

@

X

v2V

i

\F

d

V

i

(v) + jV

i

j � jV

i

\ F j � 1

1

A

=

X

v2F

d(v) +

X

v2V

b(v)�

X

v2F

b(v)� k:

Applying the lemma above gives

jEj �

X

v2F

d(v) + jV j+ k � c(G) �

X

v2F

b(v)� k:

Rearranging terms we arrive at the statement of the lemma. �

Now consider S � V and G[S] = (S;E[S]): Set f(S) = jE[S]j � jSj + c(G[S]):

Then by observing that F \ S is an fvs for G[S], we have the following corollary.

Corollary 9.6 For any subset S � V ,

X

v2F\S

(d

S

(v)� b

S

(v)) � f(S):

Using this we can formulate the following integer program:

Min

X

v2V

w

v

x

v

subject to:

X

v2S

(d

S

(v)� b

S

(v))x

v

� f(S) 8S � V

x

v

2 f0; 1g:

Note that every FVS is feasible for the IP because of the corollary above. If x is

not a FVS, we need to show some constraint is violated. We know that if x is not

an FVS, there must exist a cycle C such that x

v

= 0 8v 2 C: So now look at the

constraint corresponding to C; the left-hand side will be zero, but the right-hand side

will be at least one because f(C) � 1; this follows since the number of edges in C

must be at least jCj (in order for there to be a cycle) and c(G[C]) � 1. Therefore, the

integer program above exactly models the feedback vertex set problem in undirected

graphs.

Next time we will take the dual of this new IP and apply the primal-dual method

to get a 2-approximation algorithm.
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ORIE 634 Approximation Algorithms October 29, 1998

Lecture 10

Lecturer: David P. Williamson Scribe: dan brown

10.1 The Primal-Dual Method

10.1.1 The Feedback Vertex Set Problem, cont.

From last lecture, we remember what the feedback vertex set problem is:

Feedback Vertex Set in Undirected Graphs

� Input:

{ Undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find S � V minimizing

P

i2S

w

i

such that for every cycle C in G,

C\S 6= ;. (Equivalently, �nd a min-weight set of vertices S such that removing

S from the graph causes the remaining graph to be acyclic).

We've shown a primal-dual method which gave a 4 log n-approximation for this

problem. However, since the LP which gave rise to this algorithm has an integrality

gap which is 
(log n), this is essentially the best approximation algorithm possible

from this particular LP (to within a constant factor).

Last time, we came up with a di�erent IP formulation for the problem{this time

we show that it can give a 2-approximation algorithm via the primal-dual method.

First, some notation:

� Let d(v) be the degree in the graph G of node v.

� Let b(v) be the number of biconnected components of G that include the vertex

v.

� Let c(G) the the number of connected components of the graph G.

� Let G[S], for a graph G = (V;E) and S � V , be the induced subgraph of G on

S. That is, G[S] is a graph whose vertex set is S, and whose edges are those

edges of E with both endpoints in S.

� Let E[S] be the edge set of G[S] (those edges whose endpoints are both in S).
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� Let d

S

(v) be the degree of the node v in the graph G[S].

� Let b

S

(v) be the number of biconnected components of G[S] which include v.

� Let f(S) = jE[S]j � jSj+ c(G[S]):

Last time, we showed that the following integer program is a correct formulation

for the feedback vertex set problem (FVS):

Min

X

v2V

w

v

x

v

subject to:

X

v2S

(d

S

(v)� b

S

(v))x

v

� f(S) 8S � V

x

v

2 f0; 1g 8v 2 V:

Our goal for today is to use the relaxation of this IP to get a 2-approximation

algorithm for FVS. This idea is from [Becker, Geiger '94] and [Bafna, Berman, Fujito

'95], and was made into a primal-dual algorithm by [Chudak, Goemans, Hochbaum,

W]. The approach we use today is from Fujito.

The dual of the linear programming relaxation of the above IP is:

Max

X

S

f(S)y

S

subject to:

X

S:v2S

(d

S

(v)� b

S

(v)) � w

v

8v 2 V

y

S

� 0 8S � V:

Using our previous primal-dual algorithms as a guide, we devise the following

primal-dual algorithm.
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FVSPrimalDual

y  0

F  ;

S  V

i 0 (i is a counter)

While F is not feasible (G[S] isn't acyclic)

i i+ 1

Increase y

S

until

P

S:v

i

2S

(d

S

(v

i

)� b

S

(v

i

))y

S

= w

i

for some v

i

2 S.

F  F [ fv

i

g

T  fv 2 S : v not on some cycle in G[S � v

i

]g

S  S � fv

i

g � T

For l i down to 1

If F � fv

l

g is still a feedback vertex set

F  F � fv

l

g

Return F .

This is a very standard primal-dual method; let's try the analysis mode we've been

using for a while. Let F

f

be the �nal feedback vertex set returned by the algorithm.

We know that the following is true, by simple reversal of sums:

X

v2F

f

w

v

=

X

v2F

f

X

S:v2S

(d

S

(v)� b

S

(v))y

S

=

X

S

X

v2F

f

\S

y

S

(d

S

(v)� b

S

(v))

If we can show that this sum is less than or equal to 2

P

S

f(S)y

S

, twice the feasible

dual solution's objective function value, then we have a 2-approximation algorithm,

since the primal objective will be less than two times a lower bound on the problem's

objective. So we'd like to show that, if y

S

> 0, then

X

v2F

f

\S

(d

S

(v)� b

S

(v)) � 2f(S):

As in previous proofs about the primal-dual method, we would like to frame this

inequality as one about minimal augmentations or minimal feedback vertex sets, so

that the inequality reduces to a general statement about graphs, rather than one

about the workings of this particular algorithm. The following claim will allow us to

do this.

Claim 10.1 F

f

\ S is a minimal FVS for G[S], for all S with y

S

> 0.

Proof: Pick an S for which y

S

> 0. We raised y

S

in, say, the ith iteration of the

while loop. We prove the statement by contradiction: suppose there exists an element
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v

j

2 F

f

\S such that F

f

\S�v

j

is a feedback vertex set for G[S]. By the construction

of the algorithm, we know that it must be the case that fv

1

; v

2

; : : : ; v

j�1

g [ F

f

� v

j

must not be a feedback vertex set for G, otherwise we would have removed v

j

from the

solution in the reverse delete step of the algorithm. Thus if fv

1

; v

2

; : : : ; v

j�1

g[F

f

�v

j

is not a feedback vertex set for G, it follows that v

j

must lie on some cycle C such

that v

j

is the only vertex of fv

1

; : : : ; v

j�1

g [ F

f

in C. Also, C � S since S consists

only of vertices lying on cycles remaining after the removal of fv

1

; : : : ; v

i

g and i < j

since v

j

2 S. Thus since C is in G[S] and C \ F

f

= fv

j

g, it cannot be the case that

F

f

\ S � v

j

is a feedback vertex set for G[S]. �

So we know now that for any S such that y

S

> 0, F

f

\ S is a minimal feedback

vertex set. If we combine this fact with the following theorem, we can show that

we have a 2-approximation algorithm by our previous reasoning; i.e., it implies that

P

v2F

f

w

v

� 2

P

S

f(S)y

S

:

Theorem 10.2 For any graph G such that every v 2 V is contained in some cycle, and

for any minimal feedback vertex set F of G,

X

v2F

(d(v)� b(v)) � 2f(V ) = 2(jEj � jV j+ c(G)):

Proof: We know that

P

v2V

d(v) = 2jEj, so removing 2jEj from both sides of the

inequality, and doing some rearranging, we are left with trying to prove:

X

v 62F

d(v) � 2jV j �

X

v2F

b(v)� 2c(G):

Notice that

P

v 62F

d(v) =

P

v 62F

d

V�F

(v) + j�(F )j: Consider the �rst term on the

right-hand side. Let l = c(G[V � F ]) be the number of connected components of

G[V � F ]. G[V � F ] is a forest, since it's the acyclic graph we get when we remove

F from V , so we know that

P

v 62F

d

V�F

(v) = 2(jV j � jF j � l). Subtracting that from

both sides, we are left with wanting to show that:

j�(F )j � 2jF j+ 2l �

X

v2F

b(v)� 2c(G);

or

2jF j+ 2l � j�(F )j+

X

v2F

b(v) + 2c(G):

Since F is a minimal feedback vertex set for G, each v 2 F is the unique vertex

of F which is in some cycle C

v

(otherwise we could delete v and still have a feedback

vertex set). Hence, each v in F is adjacent to two \cycle" edges from F to V � F ,

and we can \charge" the quantity 2jF j on the left-hand side to these edges in j�(F )j

on the right-hand side. Observe that these two cycle edges for any vertex v 2 F must

both be adjacent to the same component of G[V � F ].
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Now, wish to show that for each component of G[V � F ], we can \charge" 2

against the right-hand side of the above inequality; either to the number of connected

components of G (which counts double because of their coe�cient), to the non-cycle

edges of �(F ), or to b(v) for some v 2 F . If we can successfully show that we can

charge 2 to the right-hand side for each component in G[V �F ], then we have shown

that the left-hand side is, in fact, no more than the right-hand side.

We will do this by a large case analysis based on the components C of G[V � F ].

Notice that since every vertex in G lies on some cycle, every cycle contains some

vertex of F , it must be the case that every component C of G[V � F ] is adjacent to

at least two edges from �(F ).

1. If there are any number of cycle edges and at least 2 non-cycle edges connecting

C to F , then charge 2 for the non-cycle edges to j�(F )j.

2. If there is exactly one pair of cycle edges which connect C to v 2 F , and no

other edges in G between F and C, then either v[C is a connected component

of G, and we can charge 2 to 2c(G), or v [ C is a biconnected component of G

with b(v) � 2, and we can charge 2 to b(v).

3. If there is exactly one pair of cycle edges between C and v 2 F , and exactly

one other edge between u 2 C and w 2 F , then charge 1 to b(v) and 1 to the

edge (u;w) 2 �(F ).

4. If there are at least 2 pairs of cycle edges connecting C to v;w 2 F , then we

can charge 1 each to b(v) and b(w).

�

Through this theorem, then, the desired 2-approximation is shown.

10.2 Metric Methods

10.2.1 The Minimum Multicut Problem

We now turn from the primal-dual method to yet another technique for obtaining

approximation algorithms for a wide range of problems. To illustrate this technique,

we look at the MinimumMulticut Problem:
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Minimum Multicut Problem

� Input:

{ An undirected graph G = (V;E)

{ k pairs of vertices (s

i

; t

i

); i = 1 : : : k

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

di�erent connected components of G

0

= (V;E � F ).

This problem is NP-hard even if G is a tree.

For a given G, let P

i

denote the set of all paths P from s

i

to t

i

. As usual, we begin

by modelling this problem as an integer program. One (admittedly exponentially

large) integer programming formulation of the problem is:

Min

X

e2E

c

e

x

e

subject to:

X

e2P

x

e

� 1 8P 2 P

i

; 8i

x

e

2 f0; 1g: 8e 2 E:

We then relax the integer program to a linear program by replacing the constraints

x

e

2 f0; 1g by x

e

� 0.

This linear program can be solved in polynomial time by the ellipsoid method,

even though it is exponential-sized, if we can provide a polynomial-time separation

oracle for the problem. A separation oracle for a problem is a subroutine which,

when given a possibly feasible vector x either certi�es that x is feasible for the LP, or

supplies a violated LP inequality which the x fails to satisfy.

In this case, a separation oracle is simple, since we can just use a subroutine which

solves the shortest path problem. That is, let x

e

be the length of the edge e. The LP

constraints,

P

e2P

x

e

� 1 for all s

i

� t

i

paths P , will be satis�ed if the shortest s

i

� t

i

path is at least 1 in length. If the shortest s

i

� t

i

path for some i is less than 1 in

length, then that path provides a violated primal inequality. On the other hand, if,

for all i the shortest s

i

� t

i

path is at least 1 in length, then all paths are at least 1

in length, and x is a feasible vector. So a separation oracle is trivial to construct.

For that matter, we can also construct a polynomial-sized linear program which

is equivalent to this LP and use more practical linear programming algorithms than

the ellipsoid method.

We can gain some insight into the linear program by considering a physical inter-

pretation of it. We think of the LP as a pipe system, where e = (i; j) 2 E means

there's a pipe between i and j, x

e

is the length of the pipe, and c

e

is the cross-sectional

area of the pipe. Thus the volume of pipe e is c

e

x

e

, its cross-sectional area times its
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length. For an example, see Figure 10.1. Note that the LP is to compute the pipe

system with minimum total volume, where all s

i

� t

i

pairs are at least 1 unit apart.

s1

t1

s2

t2

1/2

1/2

1/2

1/4

1/4

1/4

1/2

1/2

Figure 10.1: LP solution as a pipe system.

Given a feasible LP solution, x, let dist

x

(u; v) be the shortest path length between

u and v with edge lengths x. Let B

x

(u; r) = fv : dist

x

(u; v) � rg be the ball of radius

r around u with the edge lengths x. See Figure 10.2 for an example.

1/4

1/2

r = 3/8

1/4

1/4

s

Figure 10.2: Example of a ball of radius 3/8.

This gives rise to a very simple approximation algorithm for the problem:
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GVY

F  ;.

Solve LP and get optimal solution x.

While there exists some connected s

i

; t

i

pair in current graph:

Let S = B

x

(s

i

; r) for some choice of r s.t. r < 1=2.

Add �(S) to F .

Remove S and �(S) from current graph.

Return F .

Two simple lemmas are immediate.

Lemma 10.3 The algorithm terminates.

Proof: The algorithm terminates because we disconnect at least one pair per

iteration of the while loop; s

i

and t

i

are separated. �

Lemma 10.4 The algoritm returns a multicut.

Proof: The only di�culty in proving this statement is that in some iteration in

which we separated s

i

and t

i

, we ended up with both s

j

and t

j

in S for some j. Then

the algorithm would remove S from the graph and s

j

and t

j

might not be separated in

the solution returned by the algorithm. Suppose this happens. Then by construction

of the algorithm it follows that dist

x

(s

i

; s

j

) � r and dist

x

(s

i

; t

j

) � r. This means

that a path from s

j

to s

i

to t

j

exists of length less than 2r. But, since r < 1=2,

that means there's a path between s

j

and t

j

of length less than 1, which violates the

LP feasibility of x. Hence, this can't happen, and the algorithm returns a feasible

solution to the LP. �

Next time, we'll prove that this algorithm is a good approximation algorithm.
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ORIE 634 Approximation Algorithms November 5, 1998

Lecture 11

Lecturer: David P. Williamson Scribe: Amit Kumar

11.1 Metric Methods

In today's lecture, we continue our discussion of metric methods. We will consider ap-

plications to the minimummulticut, balanced cut, and minimum linear arrangement

problems.

11.1.1 Minimum Multicut

Recall the minimum multicut problem:

Minimum Multicut Problem

� Input:

{ An undirected graph G = (V;E)

{ k pairs of vertices (s

i

; t

i

); i = 1 : : : k

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

di�erent connected components of G

0

= (V;E � F ).

Last time we considered the following LP relaxation of the problem:

Min

X

e2E

c

e

x

e

subject to:

X

e2P

x

e

� 1 8P 2 P

i

; 8i

x

e

� 0;

where P

i

denotes the set of all paths P from s

i

to t

i

.

We can give a physical interpretation to a solution to the LP as a \pipe system"

as follows.

� An edge e = (i; j) is a pipe from i to j

� x

e

= length of pipe
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� c

e

= cross section area of pipe

With this interpretation,

P

e

c

e

x

e

is the total volume of the pipe system. So, the

objective is to minimize the total volume such that for all i, the distance between s

i

and t

i

is at least 1.

We de�ned dist

x

(u; v) be the distance from u to v given edge lengths x, B

x

(u; r) =

fv 2 V : dist

x

(u; v) � rg for a solution to the LP.

De�nition 11.1 For an optimal solution x to the above LP, de�ne V

�

as

P

e2E

c

e

x

e

.

Clearly, V

�

� OPT , where OPT denotes the value of optimal minimummulticut.

We gave the following approximation algorithm for minimum multicut :

GVY

F  ;

Solve LP and get optimal solution x

While 9 some connected s

i

; t

i

pair in current graph

S = B

x

(s

i

; r) for an appropriate choice of r s.t. r < 1=2

Add �(S) to F

Remove S and edges incident to S from current graph

Return F .

We argued that the algorithm did indeed return a multicut. Fix some iteration of

the algorithm in which the pair (s

i

; t

i

) is chosen. To prove the performance guarantee

of the algorithm, de�ne the following two quantities

De�nition 11.2

V

x

(s

i

; r) =

V

�

k

+

X

e=(u;v):u;v2B

x

(s

i

;r)

c

e

x

e

+

X

e=(u;v)2�(B

x

(s

i

;r))

c

e

(r � dist

x

(s

i

; u));

C

x

(s

i

; r) =

X

e2�(B

x

(s

i

;r))

c

e

:

That is, V

x

(s

i

; r) is the total volume of pipe in the ball of radius r around s

i

plus an extra

term V

�

=k. Also, C

x

(s

i

; r) is the cost of the cut de�ned by the vertices in the ball of

radius r around s

i

.

Let us observe some properties of these two functions. Clearly, V

x

(s

i

; r) is an

increasing function of r (as we increase r, the ball of radius r contains more volume).

In fact this is piece-wise linear function, with possible discontinuities at those values

of r for which there exists a vertex v such that dist

x

(s

i

; v) = r. So, if there doesn't

exist a vertex v 2 V such that dist

x

(s

i

; v) = r, then V

x

(s

i

; r) is di�erentiable at r.

Moreover, from the de�nition of V

x

(s

i

; r) and C

x

(s

i

; r), it is clear that

d(V

x

(s

i

; r))

dr

= C

x

(s

i

; r)

We will prove the following theorem.
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Theorem 11.1

9 r < 1=2 s.t.

C

x

(s

i

; r)

V

x

(s

i

; r)

� 2 ln 2k:

Furthermore, we can �nd such an r in polynomial time.

Intuitively, this theorem says that if we choose this particular value of r, then we

can charge the cost of the cut C

x

(s

i

; r), i.e., the set of edges removed, to the volume

of the pipe system we remove. Let us make this formal by showing how the theorem

leads to a good approximation algorithm for the minimum multicut problem.

Theorem 11.2 (Garg, Vazirani, Yannakakis '96) GVY is a (4 ln 2k)-approximation al-

gorithm for the minimummulticut problem.

Proof: To prove the bound, we charge the cost of the edges in each cut �(B

x

(s

i

; r))

added to F in each iteration against the volume removed from the graph plus V

�

=k;

that is, against V

x

(s

i

; r). We know that C

x

(s

i

; r) � (2 ln 2k)V

x

(s

i

; r). Since the edges

in B

x

(s

i

; r) and �(B

x

(s

i

; r)) are removed from the graph, we can only charge against

these edges once. Thus the total cost of edges in our solution can be no more than

2 ln 2k times the total volume of the graph plus k � V

�

=k. That is,

X

e2F

c

e

� 2 ln 2k(V

�

+ V

�

)

� (4 ln 2k)V

�

� (4 ln 2k)OPT;

since V

�

is the value of a linear programming relaxation of the problem. �

Proof of Theorem 11.1: Relabel the vertices according to their distance from

s

i

, i.e., the vertices are relabeled as s

i

= v

1

; v

2

; : : : ; v

l

. De�ne r

j

= dist(s

i

; v

j

). So,

0 = r

1

� r

2

� : : : � r

l

=

1

2

.

Suppose the statement of the theorem is not true. Then, for r 2 (r

j

; r

j+1

) (recall

that V

x

(s

i

; r) is di�erentaible for this r), the fact that C

x

(s

i

; r) equals the derivative

of V

x

(s

i

; r) implies that

1

V

x

(s

i

; r)

d(V

x

(s

i

; r))

dr

> 2 ln 2k

We now integrate both sides from r

j

to r

j+1

(actually it should be from r

+

j

to

r

�

j+1

). we get

Z

r

j+1

r

j

1

V

x

(s

i

; r)

d(V

x

(s

i

; r))

dr

dr >

Z

r

j+1

r

j

2 ln 2kdr

i.e., ln(V

x

(s

i

; r

j+1

))� ln(V

x

(s

i

; r

j

)) > 2(r

j+1

� r

j

) ln 2k
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Now, we would like to add these terms for j varying from 1 to l�1 so that all but two

terms on the LHS cancel out. But there is a caveat. We are ignoring the discontinuities

of V

x

(s

i

; r) at r

j

for all j. But the fact that V

x

(s

i

; r) is an increasing function implies

that by doing this we will only underestimate the LHS of this telescopic sum. So, we

do not get the wrong result if we sum the above equation from j = 1 to l � 1. By

summing the above equation from j = 1 to l � 1 and cancelling terms, we get

lnV

x

(s

i

; r

l

)� lnV

x

(s

i

; 0) > 2(r

l

� 0) ln 2k

We know that r

l

=

1

2

and V

x

(s

i

; 0) =

V

�

k

. Substituting these facts, we get

lnV

x

(s

i

;

1

2

) > ln

�

V

�

k

�

+ ln 2k

Removing logarithms on both sides, we get

V

x

(s

i

;

1

2

) > 2V

�

which is a contradiction because V

x

(s

i

;

1

2

) is only a part of the total volume. Thus,

the theorem must be true.

In algorithm GVY, for our choice of an appropriate r < 1=2 , we choose an r < 1=2

such that the theorem is true. How can we �nd such an r? First, sort vertices of G

according to their distance from s

i

. That is, consider vertices v

1

; v

2

; : : : ; v

l

such that

s

i

= v

1

, and r

j

= dist

x

(s

i

; v

j

) for r

1

= 0 � r

2

� : : : � r

l

= 1=2. Notice that in any

interval (r

j

; r

j+1

) the value of V

x

(s

i

; r) is increasing, while the value of C

x

(s

i

; r) stays

the same. Thus in any interval (r

j

; r

j+1

) the ratio is largest at the very end of the

interval. Thus, given that we know that the theorem is true, we only need check the

ratio at r

j+1

� � for some tiny value of � > 0, for each j. �

11.1.2 Balanced Cut

The method we used to approximate solutions to the minimum multicut problem,

namely interpreting an LP solution as a \length" or metric or some clever way, extends

nicely to other problems. We consider now one of these, the balanced cut problem:

Balanced Cut Problem

� Input:

{ G = (V;E)

{ Costs c

e

� 0 for each edge e 2 E

{ A number, b 2 (0;

1

2

]

� Goal: Find a set S � V such that we minimize

P

e2�(S)

c

e

and which satis�es

bn � jSj � (1 � b)n:
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Note that b =

1

2

gives graph bisections, in which half the nodes of the graph are

on each side of the cut. Another typical value is b =

1

3

. But why do we care about

balanced cuts? As it turns out (and shall see later today), balanced cuts are useful

as subroutines in some divide and conquer strategies. Because each side of the cut

contains some constant fraction of the nodes, if we apply this recursively, we can only

do this O(log n) times. Furthermore, the minimization of the edges in the cut makes

the \merge" step of such strategies easier or in some way cheaper.

De�nition 11.3 By OPT (b), we mean the optimal value of a b-balanced cut.

Innocent as the balanced cut problem sounds and important as it is, there is very

little currently know about it. The best result to date is due to Leighton and Rao

(1988):

Theorem 11.3 There exists a polynomial-time algorithm for �nding a b-balanced cut

with b �

1

3

of value O(log n)OPT (b

0

) for b

0

> b+ �, for any �xed � > 0.

There is a small \cheat" above, in the sense that we don't get an algorithm truly

in the spirit of those we have considered in this course: OPT (b

0

) could be quite

large compared to OPT (b). Unfortunately, we know no better result. However, we

do know of a simpli�ed version of the above result, due to Even, Naor, Rao, and

Schieber (1995):

Theorem 11.4 There exists a polynomial time algorithm for �nding a

1

3

-balanced cut

of value O(log n)OPT (

1

2

).

As illustration of the fact that we know almost nothing about the balanced cut

problem, consider that our current stage of knowledge does not even allow us to

disprove the existence of a polynomial-time approximation scheme. So, let us now

study the simpli�ed approach, to learn what we can!

De�nition 11.4 By P

uv

we mean the set of all paths from u 2 V to v 2 V .

Now, consider the following linear program, whose optimal value we can use as a

bound:

Z

LP

:= Min

X

e2E

c

e

x

e

subject to:

X

v2S

X

e2P

uv

x

e

�

�

2

3

�

1

2

�

n 8 S s:t: jSj �

2

3

n; u 2 S; P

uv

2 P

uv

x

e

� 0:

The quanti�cation is intended to read that for any S such that jSj �

2

3

n, we pick any

u 2 S, and for each v 2 S, sum the x

e

over some u-v path. The total sum over all

v 2 S should be at least (

2

3

�

1

2

)n.

We show that this LP is a relaxation of the minimum bisection problem.
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Lemma 11.5 Z

LP

� OPT (

1

2

).

Proof: Given an optimal bisection S, construct a solution �x for the LP by setting

�x

e

= 1 if e 2 �(S), and �x

e

= 0 otherwise. We show that this is a feasible solution,

which is enough to prove the lemma.

Consider any S

0

such that jS

0

j �

2

3

n, and any u 2 S

0

. Note that there must be

at least (

2

3

�

1

2

)n verticies in S

0

�S, because in the worst case, S � S

0

(do the math).

S S’

u

v

Figure 11.1: Dark lines represent edges whose variable is set to one.

Suppose u 2 S. As \proof-by-picture", consider Figure 11.1. By our observation

about jS

0

� Sj, it is easy to see that

P

v2V

P

e2P

uv

�x

e

� (

2

3

�

1

2

) n.

When u =2 S, the argument is essentially the same (because there are at least

(

2

3

�

1

2

) n vertices in S

0

\ S). So, the solution given by �x is in fact feasible and hence,

Z

LP

� OPT (

1

2

). �

There is a problem we have ignored in all this { the LP could be quite large. If

we can �nd a polynomial-time separation oracle, we can apply the ellipsoid method

and not worry about the LP being too large. We can get our oracle as follows:

given a solution x to check for feasibility, �x a node u 2 V , run Dijkstra's algo-

tithm (with x

e

as edge lengths) to get an ordering of the nodes fu = v

1

; v

2

; : : : ; v

n

g

from closest to farthest from u. Now consider the sets S

0

=

n

v

1

; v

2

; : : : ; v
2

3

n

o

; S

1

=

n

v

1

; v

2

; : : : ; v
2

3

n+1

o

; : : : ; S
1

3

n

= fv

1

; v

2

; : : : ; v

n

g. If some constraint is violated for

this choice of u, then certainly it must be violated for one of these sets S

i

since these

are the sets of vertices closest to u; that is, the sum of the path lengths can be no

smaller for any other S such that jSj �

2

3

n. But note that S

0

� S

1

� : : : � S
1

3

n

. So,

it is su�cient to verify the constraint for S

0

only.
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We are now in position to state an algorithm, and begin its analysis.

ENRS

Solve the LP for optimal x.

S  ;

F  ;

While jSj <

n

3

Choose some u; v pair in the current graph such that

dist

x

(u; v) �

�

2

3

�

1

2

�

=

1

6

C  B

x

(u; r), for an appropriate r <

1

12

C

0

 B

x

(v; r

0

), for an appropriate r

0

<

1

12

Add C or C

0

to S, whichever gives minfjCj; jC

0

jg

and �(C) (or �(C

0

)) to F

Remove C (or C

0

) from the graph.

Lemma 11.6 If jSj <

n

3

, there exists a u; v pair in the current graph such that dist

x

(u; v) �

1

6

.

Proof: Consider

�

S = V � S. Then j

�

Sj >

2n

3

. This implies that

P

v2

�

S

P

e2P

uv

x

e

�

(

2

3

�

1

2

)n =

n

6

;8 u 2

�

S; P

uv

2 P

uv

. But then the average path length from u barS

to a v 2

�

S is at least

1

6

n

j

�

Sj

�

1

6

. Thus by the pigeon-hole principle, there exists some

v 2

�

S such that dist

x

(u; v) �

1

6

. �

Lemma 11.7 ENRS outputs a

1

3

-balanced cut.

Proof: jSj �

n

3

at termination, by design. So, we only need to show that jSj �

2n

3

.

Choose any iteration of the while loop. At the begining of the iteration, we certainly

have jSj <

n

3

, by design, and at the end of the iteration, jSj  jSj+minfjCj; jC

0

jg.

Note that dist

x

(u; v) �

1

6

. Since C = B

x

(u; r) and C

0

= B

x

(v; r

0

) for r; r

0

<

1

12

, it must

be the case that C and C

0

are disjoint. This implies that minfjCj; jC

0

jg �

1

2

(n�jSj),

i.e. the smaller of C and C

0

can be no more than half the remaining vertices. So,

jSj+minfjCj; jC

0

jg � jSj+

1

2

(n� jSj)

=

1

2

n +

1

2

jSj

�

2n

3

�

We have reached the point where the analysis will begin to look very familiar, i.e.

we follow closely the model of the minimum multicut analysis. So, we present the

following de�nitions, analogous to those we have seen before:
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De�nition 11.5

V

x

(u; r) :=

Z

LP

n

+

X

e=(u;v) : v;w 2 B

x

(u;r)

c

e

+

X

e=(v;w) 2 �(B

x

(u;r))

c

e

(r � dist

x

(u;w))

De�nition 11.6

C

x

(u; r) =

X

e=(v;w) 2 �(B

x

(u;r))

c

e

And now we prove a familiar looking theorem, whose bound is somewhat di�erent,

but whose proof is practically identical (and so we omit it):

Theorem 11.8 There exists r <

1

12

such that

C

x

(u;r)

V

x

(u;r)

� 12 ln 2n

We �nd the \appropriate choice" of r as before (i.e., one that achieves the bound

in the theorem). Now we may state the �nal theorem, due to Even, Naor, Rao, and

Schieber (1995):

Theorem 11.9 There exists a polynomial time algorithm for �nding a

1

3

-balanced cut

S such that

X

e 2 �(S)

c

e

� (24 ln 2n)Z

LP

= (24 ln 2n)OPT

�

1

2

�

:

We omit the proof due to its similarity to the analagous proof in the analysis of

the minimum multicut problem.

11.1.3 Minimum Linear Arrangement

We promised earlier to look at an example of an application of balanced cuts. One

application is in solving the minimum linear arrangement problem:

Minimum Linear Arrangement Problem

� Input:

{ G = (V;E), undirected.

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a bijection f : V ! f1; 2; : : : ; ng which minimizes

max

i

X

(u;v)2E:f(u)�i;f(v)>i

c

e

:
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1

3

6

42

5

1 2 3 4 5 6

Cost = 1 on all edges

Dark lines represent edges

Goal: minimize the max of these2 2 3 22

Figure 11.2: A graph and a representation of a corresponding linear arrangement.
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As an example, consider Figure 11.2. The curly lines represent \f(u) � i; f(v) >

i". The goal is to minimize the maximum number of edges crossing a curly line.

In the past we've used optimal value of a linear programs to bound in some

intelligent manner the value of something we're interested in. Balanced cuts will

allow us to do a similar trick for the linear arrangement problem.

Lemma 11.10 OPT (

1

2

) � OPT

LA

, where OPT

LA

is the optimal value of the linear

arrangement problem.

Proof: The proof here is quite simple: any linear arrangment gives us a bisection

by splitting the arrangement at

n

2

. Given the linear arrangement, let S be the set of

vertices assigned to the numbers 1 through n=2. Then certainlyOPT (

1

2

) �

P

e2�(S)

c

e

.

Furthermore, by the de�nition of the linear arrangement problem,OPT

LA

�

P

e2�(S)

c

e

.

See Figure 11.3 for a \proof-by-picture".

Edges

1 n/2 1+ n/2 n

Figure 11.3: Getting a bisection from a linear arrangment

So then OPT (

1

2

) � LA, where LA is the value of the linear arrangement. In

particular, this is true of the optimal arrangment, so we are done. �

This motivates the algorithm below. The algorithmLAYOUT �nds an

1

3

-balanced

cut S, then recursively lays out vertices in S on the numbers 1 through jSj and re-

cursively lays out vertices in V � S on the numbers jSj+ 1 through jV j.

LAYOUT(V;E; [i; i+ jV j � 1])

if V = fvg (i.e. singleton set)

f(v) i

1

;

else

Find a

1

3

-balanced cut S of (V;E)

LAYOUT(S;E[S]; [i; i+ jSj � 1])

LAYOUT(V � S;E

[

V � S]; [i+ jSj; i+ jV j � 1])

Note that we initially call LAYOUT (V;E; [1; 2; : : : ; n]).
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Theorem 11.11 LAYOUT is an O(log

2

n)-approximation algorithm for the linear ar-

rangment problem.

Note : The best known algorithm for the linear arrangement problem is an O(log n log log n)�

approximation algorithm.

Proof:

Let L(V;E) := value of LAYOUT(V;E).

Let B(V;E) := value of

1

3

-balanced cut S given by ENRS on (V;E).

We shall prove that

L(V;E) � c log

2

3

2

n OPT

LA

for a suitable constant c that we choose later. The proof is by induction on the size

of G, i.e., n.

So, assume that the fact is true for all graphs of size less than n.

Let G be a graph on n vertices. Observe that

L(V;E) � maxfL(S;E[S]); L(V � S;E[V � S])g+B(V;E)(11.1)

� maxfL(S;E[S]); L(V � S;E[V � S])g+ d log
3

2

n OPT

LA

(11.2)

where (11.1) follows from the fact that in the worst case, all the edges of the bal-

anced cut appear in all the divisions of the layout. (11.2) follows from the fact that

ENRS gives a

1

3

�balanced cut of value at most (d log
3

2

n)OPT

�

1

2

�

, which is at most

(d log
3

2

n)OPT

LA

(using Lemma 11.10), for some value of d.

Since the number of vertices in the graphs (S;E[S]) and (V �S;E[V �S]) are at

most

2n

3

(follows from the de�nition of a

1

3

�balanced cut), our induction hypothesis

implies that L(S;E[S]) and L(V �S;E[V � S]) are at most c log

2

3

2

�

2n

3

�

OPT

LA

. So,

equation (11.2) becomes

L(V;E) � c log

2

3

2

�

2n

3

�

OPT

LA

+ (d log
3

2

n)OPT

LA

= c

�

log
3

2

n� 1

�

2

OPT

LA

+ (d log
3

2

n)OPT

LA

If we choose c > d and simplify, we get L(V;E) � (c log

2

3

2

n)OPT

LA

, which proves the

induction hypothesis. �
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ORIE 634 Approximation Algorithms November 12, 1998

Lecture 12

Lecturer: David B. Shmoys Scribe: Tim Roughgarden

12.1 Uncapacitated Facility Location

Today, we will consider the uncapacitated facility location problem.

Uncapacitated Facility Location Problem (UFL)

� Input:

{ A set F of potential facility sites, with non-negative costs f

i

8i 2 F .

{ A set D of demand points, with cost c

ij

of assigning demand point j to

facility i (for all i 2 F; j 2 D).

{ Costs c

ij

obey the triangle inequality.

� Goal: Find S � F and assignment of demand points to facilities in S that

minimizes the total cost.

12.1.1 An LP Lower Bound

Before proceeding, we make one observation. Suppose S is chosen to be the set of

open facilities. Then the assignment of demand points to facilities is easy: simply

assign each demand point to the nearest open facility. Thus, one way to model the

problem is to choose a subset S � F that minimizes

P

i2S

f

i

+

P

j2D

min

i2S

fc

ij

g.

While this intuition will be useful later on, we now formalize the UFL more

traditionally, by an integer program with a linear objective function and a polynomial

number of variables:

Min

X

i2F

f

i

y

i

+

X

i2F

X

j2D

c

ij

x

ij

subject to:

X

i2F

x

ij

= 1 8j 2 D

x

ij

� y

i

8i 2 F;8j 2 D

x

ij

2 f0; 1g 8i 2 F;8j 2 D

y

i

2 f0; 1g 8i 2 F
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In this formulation, we have

y

i

=

8

<

:

1 if facility i is opened

0 otherwise

and

x

ij

=

8

<

:

1 if demand point j is assigned to facility i

0 otherwise

The �rst constraint of the integer program requires that every demand point be

assigned, and the second requires that demand points are only assigned to opened

facilities. We denote this integer program by (IP ). We can relax this integer program

to a linear program in the usual way, by replacing the last three constraints by

0 � x

ij

� y

i

for all i 2 F and j 2 D. We denote this linear program by (LP1). Since

UFL is a minimization problem, we know that any optimal solution to (LP1) gives a

lower bound on the optimal integer solution.

12.1.2 A Second LP Lower Bound

Consider an optimal solution to (LP1), say (x

�

; y

�

). As noted above, (x

�

; y

�

) gives us

a lower bound on the optimal integer solution. In this section we investigate a second

lower bound.

First, suppose that we ignore facility building costs entirely. Surely an optimal

solution to the facility location problem with f

i

= 0 for all i 2 F yields a lower

bound on the original problem. In addition, the optimal solution is easy to state

and compute: simply build all of the facilities and assign each demand point to the

closest one, thus incurring a cost of

P

j2D

min

i2F

fc

ij

g. However, this lower bound is

too weak to be of any use. Can we do better?

Suppose that we eliminate our facility costs in a more clever fashion. More pre-

cisely, for each facility i, we de�ne jDj nonnegative costs w

i1

; : : : ; w

ijDj

such that

P

j

w

ij

= f

i

. Intuitively, we wish to charge a portion of the facility building cost to

each demand point. Of course, a demand point should only incur this extra cost if

it actually uses the facility. Thus, in this new problem, there are no facility costs

and assigning demand point j to facility i incurs a cost of c

ij

+ w

ij

. We denote this

problem by (LB).

We claim that, for any legal assignment of values to the w's, the value of an

optimal solution to (LB) lower bounds the value of the optimal solution to UFL.

Intuitively, in the UFL problem an entire facility must be paid for before it can be

used, while in (LB) some demand points can be assigned to a facility while only

paying for a fraction of it. More formally, consider an optimal solution to an instance

of UFL, incurring a cost of

P

i2S

f

i

+

P

j2D

min

i2S

c

ij

for some S � F . Now consider

the same assignments of demand points to facilities in corresponding instance of (LB).
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As there are no facility costs in (LB), we can open all facilities in S at zero cost and

achieve a feasible solution. Since

P

j

w

ij

= f

i

for all i, we have

(IP ) soln =

X

i2S

f

i

+

X

j2D

min

i2S

c

ij

=

X

i2S

X

j2D

w

ij

+

X

j2D

min

i2S

c

ij

�

X

i2S

X

j2N(i)

w

ij

+

X

j2D

min

i2S

c

ij

= (LB) soln

where N(i) denotes the set of demand points assigned to facility i in the solution to

(IP ). Hence, an optimal solution to (LB) will be a lower bound for (IP ).

Notice that (LB) yields a lower bound for any legal choice of w's. We are of course

interested in the sharpest possible lower bound, a problem that can be modeled by

the following non-linear program:

Max

X

j2D

v

j

subject to:

v

j

= min

i2F

fc

ij

+ w

ij

g 8j 2 D

X

j2D

w

ij

= f

i

8i 2 F

w

ij

� 0 8i 2 F; j 2 D

Since we have a maximization problem, the following linear program is equivalent:

Max

X

j2D

v

j

subject to:

v

j

� c

ij

+ w

ij

8i 2 F;8j 2 D

X

j2D

w

ij

= f

i

8i 2 F

w

ij

� 0 8i 2 F; j 2 D

We denote this linear program by (LP2). Note that both (LP1) and (LP2) (one

minimization problem, one maximization problem) yield lower bounds on UFL. Thus,

the following facts may not come as a surprise.

Fact 12.1 (LP1) and (LP2) are duals of each other.

Fact 12.2 (LP1) and (LP2) have equal optimal values.

Fact 12.3 At optimality, both primal and dual complementary slackness conditions hold.

That is, for optimal (x

�

; y

�

) and (v

�

; w

�

), x

�

ij

> 0 implies that v

�

j

= c

ij

+w

�

ij

and w

�

ij

> 0

implies that x

�

ij

= y

�

i

.
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12.1.3 A General Decomposition Algorithm

In this section we present the main algorithmic tool on which all known approxima-

tion algorithm for UFL with a constant performance guarantee are based. Before

introducing this decomposition algorithm (due to (Shmoys, Tardos, & Aardal, '97)),

we �rst develop some motivation for it.

Lemma 12.1 If (x

�

; y

�

) and (v

�

; w

�

) are optimal primal and dual solutions, then x

�

ij

> 0

implies that c

ij

� v

�

j

.

Proof: By complementary slackness x

�

ij

> 0 implies that v

�

j

= c

ij

+ w

�

ij

. The

lemma then follows from the fact that w

�

ij

� 0. �

Consider optimal solutions to (LP1) and (LP2), say (x

�

; y

�

) and (v

�

; w

�

). We

construct a bipartite graph G

x

�

from x

�

as follows. Let G

x

�

= (F [ D;E), where

E = f(i; j) : x

�

ij

> 0g. We associate cost c

ij

with each (i; j) 2 E. Intuitively, G

x

�

encodes a \neighboring relation" among demand points and facilities, as determined

by the optimal LP solution. We make this relation more precise with the following

de�nition.

De�nition 12.1 Facility i is a neighbor of demand point j if (i; j) 2 E. Similarly,

demand point j is a neighbor of facility i if (i; j) 2 E.

We will also make use of one additional de�nition.

De�nition 12.2 A cluster centered at j is a set consisting of a demand point j, the

facilities neighboring j, and the demand points neighboring j's neighbors.

Pictorially, the cluster centered at j might look as follows:

k

k

k

�

�

�

�

�

�

�

�

�

D

D

D

D

D

D

D

H

H

H

H

H

H

C

C

C

C

C

C

`

`

`

`

`

`
`

j

i

k

x

�

ik

> 0

x

�

ij

> 0
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Observe that, by Lemma 12.1, edge (i; j) has cost at most v

�

j

. Thus, if we open

a set of facilities S such that each demand point has a neighbor in S, our total

assignment costs are upper bounded by

P

j

v

�

j

� OPT . Unfortunately, if we restrict

ourselves to sets of facilities with this property, we cannot guarantee a small total

facility cost. However, we can design a good approximation algorithm by opening a

set of facilities such that each demand point has some facility \close by" (though not

necessarily a neighbor):

UFL-Decomp

Solve (LP1) to obtain optimal solution (x

�

; y

�

).

S  D.

while S 6= ;

Choose some j 2 S.

Let X = fi 2 F : x

�

ij

> 0g.

Let Y = fj

0

2 S � fjg : 9i 2 X s.t. x

�

ij

0

> 0g.

Choose some i 2 X and open i.

Assign all demand points in fjg [ Y to i.

S  S � (fjg [ Y ).

Intuitively, the algorithm decomposes the demand points and facilities into clus-

ters, opens one facility for each cluster, and assigns every demand point to the facility

in its cluster. Observe that the clusters are disjoint, every demand point is contained

in exactly one cluster, and every facility is contained in at most one cluster.

Two actions of the algorithm are unspeci�ed: how to choose cluster centers and

how to choose which facility to open in each cluster. By our earlier discussion, once

we have decided the facilities to open, one merely assigns each demand point to its

nearest open facility. We will obtain two approximation algorithms by considering

di�erent implementations of these actions.

12.1.4 A Deterministic 4-Approximation Algorithm

In this section, we present a 4-approximation algorithm for the uncapacitated facility

problem, which is a simpli�cation, due to (Chudak '98), of the original result of

(Shmoys, Tardos, & Aardal '97). This algorithm relies on the following implementation

rules for UFL-Decomp:

1. When selecting a new cluster center, choose the demand point j such that v

�

j

is

minimized.

2. When opening a facility in a cluster, open the facility i such that f

i

is minimized.

We will call the �rst rule center rule #1 and the second rule facility rule #1.
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Let ~x and ~y denote the rounded (integral) solution produced by the decomposition

algorithm with the above two rules. We analyze the worst-case facility and assignment

costs separately, in the following two lemmas.

Lemma 12.2

P

i2F

f

i

~y

i

�

P

i2F

f

i

y

�

i

.

Proof: Since the algorithm opens exactly one facility per cluster and the clusters

are disjoint, it su�ces to prove the lemma for a single cluster (summing over all

clusters yields the more general result). Consider the cluster centered at j. Let X

denote the facilities contained in this cluster. Using the �rst LP constraint and the

fact that all of j's neighbors are contained in the cluster, we have

P

i2X

x

�

ij

= 1. Then,

using our facility selection rule and the second LP constraint we have:

X

i2X

f

i

~y

i

= min

i2X

f

i

�

X

i2X

f

i

x

�

ij

�

X

i2X

f

i

y

�

i

�

Lemma 12.3

P

i2F

P

j2D

c

ij

~x

ij

� 3

P

j2D

v

�

j

.

Proof: We consider two types of demand points separately: cluster centers and

non-centers. Since each cluster center j is assigned to a neighbor, by Lemma 12.1

we have

P

i2F

c

ij

~x

ij

� v

�

j

(for each cluster center j). Now consider a non-center k,

contained in a cluster centered at j. Let the facility opened in this cluster be facility i

(and thus k was assigned to i in the rounded solution). By our de�nition of a cluster,

two important properties hold. First, i and j are neighbors. Second, there is some

facility ` such that j and ` are neighbors, and k and ` are neighbors (see Figure

below). From the discussion of section 12.1.3, it follows that c

ij

� v

�

j

, c

`j

� v

�

j

, and

c

`k

� v

�

k

. Recalling that the costs obey the triangle inequality, we have c

ik

� 2v

�

j

+v

�

k

.

Finally, since the algorithm chose j as a center instead of k we conclude that v

�

j

� v

�

k

and hence c

ik

� 3v

�

k

.

Combining the bounds for centers and non-centers and summing over all demand

points yields the lemma. �
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�
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Figure: Bounding the assignment costs for non-centers.

Combining Lemmas 12.2 and 12.3 gives the desired result.

Theorem 12.4 (Chudak '98) UFL-Decomp with center rule #1 and facility rule #1 is

a 4-approximation algorithm for UFL.

Proof: By Lemmas 12.2 and 12.3 we have:

X

i2F

f

i

~y

i

+

X

i2F

X

j2D

c

ij

~x

ij

�

X

i2F

f

i

y

�

i

+ 3

X

j2D

v

�

j

� 4 �OPT

using the lower bounds provided by (LP1) and (LP2). �

12.1.5 A Randomized 3-Approximation Algorithm

In this section, we analyze another implementation of the general decomposition

algorithm. Before proceeding, we de�ne C

�

j

=

P

i2F

c

ij

x

�

ij

. That is, C

�

j

is the total

cost \paid by" the LP solution to (fractionally) assign demand point j. We then use

the following two rules:

1. When selecting a new cluster center, choose the demand point j such that

v

�

j

+ C

�

j

is minimized.

2. When opening a facility in a cluster centered at j, open a facility at random,

choosing from the distribution de�ned by the the x

�

ij

's (i.e., open exactly one

facility such that facility i is opened with probability x

�

ij

).
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We will call the �rst rule center rule #2 and the second rule facility rule #2.

The following lemma is necessary to show that the algorithm is well-de�ned.

Lemma 12.5 In the cluster centered at j, the x

�

ij

's de�ne a probability distribution.

Proof: From the LP constraints, x

�

ij

� 0 for all i 2 F and j 2 D. Letting X

denote the set of j's neighbors, we have from the proof of Lemma 12.2

P

i2X

x

�

ij

= 1.

�

Let ~x and ~y denote the rounded (integral) solution produced by the decomposition

algorithm with the above two rules. As before, we analyze the expected facility and

assignment costs separately, in the following two lemmas.

Lemma 12.6 E[

P

i2F

f

i

~y

i

] �

P

i2F

f

i

y

�

i

.

Proof: As in the proof of Lemma 12.6, it su�ces to prove the result for an

arbitrary cluster. Consider the cluster centered at j, and let X denote the facilities

contained in this cluster. Then, using linearity of expectation, our facility selection

rule, and the second LP constraint we have:

E[

X

i2X

f

i

~y

i

] =

X

i2X

f

i

E[~y

i

]

=

X

i2X

f

i

x

�

ij

�

X

i2X

f

i

y

�

i

�

Lemma 12.7 E[

P

i2F

P

j2D

c

ij

~x

ij

] � 2

P

j2D

v

�

j

+

P

j2D

C

�

j

.

Proof: As before, we consider cluster centers and non-centers separately. For a

cluster center j, we have:

E[

X

i2F

c

ij

~x

ij

] =

X

i2F

c

ij

E[~x

ij

]

�

X

i2F

c

ij

x

�

ij

= C

�

j

For a non-center k in the cluster centered at j, we �rst observe that, as before, there

exists a facility ` such that both j and k are neighbors of `. Thus, c

`j

� v

�

j

and

c

k`

� v

�

k

. By the analysis above, we also know that the expected cost of assigning

center j to facility i is at most C

�

j

. Thus, by triangle inequality, the expected cost

of assigning k to facility i is at most C

�

j

+ v

�

j

+ v

�

k

. Finally, since the algorithm
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chose j as a center instead of k we conclude that C

�

j

+ v

�

j

� C

�

k

+ v

�

k

and hence

E[

P

i2F

c

ik

~x

ik

] � 2v

�

k

+ C

�

j

.

Combining the bounds for centers and non-centers and summing over all demand

points yields the lemma. �

Combining Lemmas 12.6 and 12.7 gives the desired result.

Theorem 12.8 UFL-Decomp with center rule #2 and facility rule #2 is a randomized

3-approximation algorithm for UFL.

Proof: By Lemmas 12.6 and 12.7 we have:

E[

X

i2F

f

i

~y

i

+

X

i2F

X

j2D

c

ij

~x

ij

] �

X

i2F

f

i

y

�

i

+

X

j

C

�

j

+ 2

X

j2D

v

�

j

� 3 �OPT

using the lower bounds provided by (LP1) and (LP2). �

As an aside, it may be surprising that we are designing and analyzing relatively

complicated decomposition algorithms when the following simple scheme immediately

springs to mind: solve the LP to obtain an optimal solution (x

�

; y

�

), employ tradi-

tional randomized rounding (i.e., build each facility i independently with probability

y

�

i

), and assign each demand point to the nearest open facility. In addition to its

simplicity, this scheme has the advantage of assigning a constant fraction of the de-

mand points to neighbors (note that the previous two algorithms cannot make this

guarantee):

Pr[no neighbor of j is open] =

Y

i2X

(1� y

�

i

)

�

Y

i2X

e

�y

�

i

= e

�

P

i2X

y

�

i

�

1

e

However, at the time of this writing, it is not known how to obtain good bounds

on the expected cost incurred by demand points not assigned to neighbors. Thus,

proving a good approximation ratio for this simple scheme remains an interesting

open question.

12.1.6 A Randomized 1 + 3=e-Approximation Algorithm

In this section we develop an algorithm that attempts to leverage as much of the

analysis of the simple randomized rounding scheme as is possible while keeping the

good worst-case assignment bounds enjoyed by the �rst two algorithms. In what

follows, we shall argue that the optimal LP solution can be assumed to have an

additional structural property; this additional property simpli�es the proofs, but is

not essential to the guarantees obtained.
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De�nition 12.3 An optimal solution to (LP1), (x

�

; y

�

), is said to be complete if when-

ever x

�

ij

> 0 we have x

�

ij

= y

�

i

.

Lemma 12.9 For every instance of UFL, there exists an equivalent, polynomial-size

instance for which the optimal solution is complete. Moreover, such an instance can be

constructed in polynomial time.

Proof: We omit all but the following hint. Suppose that there is exactly one i; j

pair such that 0 < x

�

ij

< y

�

i

, replace facility i by two new facilities, i

1

and i

2

. Let

y

�

i

1

= x

�

ij

, y

�

i

2

= y

�

i

� x

�

ij

, x

�

i

1

j

= x

�

ij

, x

�

i

2

j

= 0 and for all k originally assigned to i let

x

�

i

1

k

= y

�

i

1

and x

�

i

2

k

= y

�

i

2

. In the general case (when there are more pairs i, j, for

which 0 < x

�

ij

< y

�

i

) one can repeat this argument in much the same way to obtain

an input for which the resulting LP optimum is complete. �

We now present the new algorithm. Recall that in our general decomposition

algorithm, while each demand point is contained in exactly one cluster, each facility

is contained in at most one cluster. An important change in the new algorithm is

that, in addition to building one facility per cluster, we may also open facilities not

contained in any cluster (thus improving the probability that a demand point gets

assigned to a neighbor).

UFL-Round2

Solve (LP1) to obtain optimal solution (x

�

; y

�

).

Modify (x

�

; y

�

) so that it is complete.

S  D.

T  F .

while S 6= ;

Choose some j 2 S.

Let X = fi 2 F : x

�

ij

> 0g.

Let Y = fj

0

2 S � fjg : 9i 2 X s.t. x

�

ij

0

> 0g.

Choose some i 2 X and open i.

S  S � (fjg [ Y ).

T  T �X.

For each i 2 T , open i (independently) with probability y

�

i

.

Assign each demand point to the nearest open facility.

In this section, we will use center rule #1 (see Section 12.1.4) and facility rule #2

(see Section 12.1.5).

Our analysis of the algorithm di�ers from that of the last two sections. In the last

two algorithms, our worst-case analysis assumed that possibly all demand points were

not assigned to neighbors, and we focused on bounding the worst-case assignment cost

for non-center demand points. Here, we will argue that a signi�cant portion of the

demand points are in fact assigned to neighbors (much as we did in our aside on simple

randomized rounding), and that those not assigned to neighbors will not incur too
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much assignment cost (which we were unable to claim in the case of simple randomized

rounding). We now proceed more formally, letting (~x; ~y) denote the (rounded) output

of the algorithm.

Lemma 12.10 For every facility i, Pr[~y

i

= 1] = y

�

i

.

Proof: Consider an arbitrary facility, i. If i is not in any cluster then i is opened

with probability y

�

i

by de�nition of the algorithm. Otherwise, i is in exactly one

cluster, say the cluster centered at j. Then, i is opened with probability x

�

ij

. The

lemma follows from the fact that (x

�

; y

�

) is complete. �

Lemma 12.11 E[

P

i2F

f

i

~y

i

] =

P

i2F

f

i

y

�

i

.

Proof: By linearity of expectation and Lemma 12.10 we have:

E[

X

i2X

f

i

~y

i

] =

X

i2X

f

i

E[~y

i

]

=

X

i2X

f

i

y

�

i

�

In analyzing the assignment cost incurred, we would like to mimic the analysis

for the case of simple randomized rounding. However, in UFL-Round2 facilities in

the same cluster are not opened independently of each other, and our analysis will

thus be a bit more complicated. To gain some intuition, consider one demand point

j, and focus on the nature of the dependency that exists between the events that two

neighbors of j, i

1

and i

2

, have facilities opened. If i

1

and i

2

are in di�erent clusters

of the decomposition, these are independent events. However, if they are in the same

cluster, then they are dependent. But now for the good news: the conditioning

between these two events only works to our advantage, since if i

1

is not opened, that

only increases the probability that i

2

has been opened.

Next we introduce some notation to facilitate the analysis of the expected as-

signment cost incurred by demand point j. Let X denote the neighbors of j, and

group them according to the cluster in which they belong; that is, partition X into

X

1

[ ::: [ X

r

, where each facility i not belonging to any cluster is one part of this

partition (i.e., a singleton set), and each other part X

i

consists of the intersection of

X with one cluster of the decomposition.

Lemma 12.12 For any demand point j, the probability that a facility is opened at none

of its neighbors is at most 1=e.

Proof: Let O

`

denote the event that some facility inX

`

is opened by the algorithm,

` = 1; : : : ; r. By the discussion above, these are independent events. Furthermore,

Pr[O

`

] =

P

i2X

`

y

�

i

; let Y

�

`

denote this value. Clearly,

P

r

`=1

Y

�

`

= 1. Hence, by

the same estimate as was used for the simple randomized rounding algorithm, the

probability that no neighbor is opened is

Q

r

`=1

(1� Y

�

`

) � e

�1

. �
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Lemma 12.13 For each demand point j 2 D, its expected assignment cost, E[

P

j2D

c

ij

~x

ij

] �

C

�

j

+

3

e

v

�

j

.

Proof: For any integer solution ~y, we can upper bound the corresponding assign-

ment cost for j in the following somewhat unnatural way. For each neighbor i of j for

which ~y

i

= 1, we incur a cost of c

ij

and, if no neighbors of j are opened (that is, ~y

i

= 0

for each i 2 X), then j can be assigned to the open facility its cluster, and so we

incur an assignment cost of at most 3v

�

j

(by the same argument as in Lemma 12.3).

So, if

~

Y is an indicator variable that denotes whether a neighbor of j is opened (i.e.,

~

Y = max

i2X

~y

i

), then

X

i2X

c

ij

~y

i

+ (1 �

~

Y )3v

�

j

an upper bound on the assignment cost of j. Computing the expectation of this

upper bound is simple: using linearity of expectation, the facts that E[~y

i

] = y

�

i

and

C

�

j

=

P

i2X

c

ij

y

�

i

, as well as Lemma 12.12, we get the bound claimed in the lemma.

�

Combining Lemmas 12.11 and 12.13 gives the desired result.

Theorem 12.14 (Chudak '98, Chudak & Shmoys '98) UFL-Round2 with center rule

#1 and facility rule #2 is a randomized 1 + 3=e (� 2:104)-approximation algorithm for

UFL.

Proof: By linearity of expectation together with Lemmas 12.11 and 12.13 we

have:

E[

X

i2F

f

i

~y

i

+

X

i2F

X

j2D

c

ij

~x

ij

] �

X

i2F

f

i

y

�

i

+

X

j2D

C

�

j

+

3

e

X

j2D

v

�

j

�

�

1 +

3

e

�

�OPT

using the lower bounds provided by (LP1) and (LP2). �

Remark 12.1 Much as our 4-approximation algorithm could be improved to a 3-approximation

algorithm, it can be shown that UFL-Round2 with center rule #2 is a 1 +

2

e

(� 1:736)-

approximation algorithm for UFL (currently the best published result).

Remark 12.2 All of the randomized algorithms presented in this lecture can be de-

randomized using the method of conditional expectations. In fact, the 3-approximation

algorithm can be derandomized by a more direct (greedy-like) method.

Finally, the following theorem provides the sharpest hardness of approximation

result currently known for UFL.

Theorem 12.15 (Guha, Khuller '98, Sviridenko '98) There is no 1.427-approximation

algorithm for UFL unless P = NP .
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ORIE 634 Approximation Algorithms November 19, 1998

Lecture 13

Lecturer: David P. Williamson Scribe: Nathan Edwards

13.1 Jain's Technique

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the �rst time.

{ T. S. Eliot, \Four Quartets"

For our last full lecture, we in essence return to a technique that we saw in our

�rst full lecture; namely, approximation algorithms via the deterministic rounding of

linear programming relaxations. We saw with the algorithmRound for the Set Cover

problem that we could set up a linear programming relaxation for the problem, and

round up every variable greater than a certain value 1=f to obtain an f -approximation

algorithm for the problem. Today we return to a much more sophisticated use of the

same technique, due to Jain.

13.1.1 The Survivable Network Design Problem

To illustrate this technique, we will consider the following problem, which is a gener-

alization of the generalized Steiner tree problem we saw earlier.

Survivable Network Design Problem (SNDP)

� Input:

{ Undirected graph G = (V;E).

{ Edge costs c

e

� 0, for each e 2 E.

{ Request counts r(u; v), for each u; v 2 V; u 6= v.

� Goal: Find F � E of minimum cost, such that G

0

= (V; F ) contains at least

r(u; v) edge-disjoint paths between u and v, for each u; v 2 V; u 6= v.
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There had been substantial work on this problem prior to Jain's result. De�ne

k = max

u;v

r(u; v). A 2k-approximation algorithm due to W, Goemans, Mihail and

Vazirani appeared in 1993 (conference version) and 1995 (journal version). This was

improved to a 2H

k

- approximation algorithm due to Goemans, Goldberg, Plotkin,

Shmoys, Tardos and W in 1994. We will see today a 2-approximation algorithm due

to Jain, a graduate student at Georgia Tech, that appeared in January 1998.

The �rst two results use the primal-dual method in stages, taking care of one of

the edge-disjoint paths required between each u and v per stage. Jain's result uses

an entirely di�erent proof strategy.

13.1.2 The Model

All three results use a relaxation of a certain integer programming formulation of

the problem. First, we de�ne f(S) = max

u2S;v 62S

r(u; v) and �(S) to be the edges

across the cut S. Then we can formulate the survivable network design problem as

the following integer program:

Min

X

e2E

c

e

x

e

subject to:

X

e2�(S)

x

e

� f(S) for each S � V;

x

e

2 f0; 1g for each e 2 E:

A maximum ow-minimum cut argument shows that this models the surviviable

network design problem.

As usual, we will relax this integer program to a linear program, replacing x

e

2

f0; 1g with 0 � x

e

� 1. The resulting linear program has exponentially many con-

straints, but we can construct a polynomial time separation oracle for it. The oracle

computes the maximumow between each u; v pair in turn using the current solution,

x

e

; e 2 E, as arc capacities. If the maximum ow between some pair u; v is less than

r(u; v), then the corresponding minimum cut S de�nes a violated constraint in our

linear program.

We'll use the shorthand notation x(F ) =

P

e2F

x

e

throughout, in particular, notice

that the constraints above become x(�(S)) � f(S).

13.1.3 Weak Supermodularity

The function f we de�ned has some particularly useful properties.

De�nition 13.1 A function g : 2

V

�! N is weakly supermodular if g(V ) = 0 and for

each A;B � V , one of the following holds:
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(i) g(A) + g(B) � g(A [ B) + g(A \B),

(ii) g(A) + g(B) � g(A�B) + g(B �A).

Claim 13.1 f is weakly supermodular.

The following result is the cornerstone of Jain's 2-approximation algorithm.

Theorem 13.2 [Jain 1998] For any weakly supermodular f and any extreme point x of

our linear program, there exists e 2 E such that x

e

� 1=2.

We �rst show how this theorem implies a 2-approximation algorithm for the sur-

vivable network design problem, and then turn to the proof of the theorem.

13.1.4 Jain's Algorithm

Given this theorem, we can obtain a 2-approximation algorithm for our problem in

only a slightly more complicated fashion than in the Round algorithm for set cover.

The basic idea is that we can solve the LP, obtain an extreme point, �nd some edge

of value at least 1/2, round it up to 1 (thereby losing a factor of 2 for that edge),

then recurse on a subproblem with a modi�ed function f and the edge removed from

the graph. We formalize this idea in the following algorithm.

Jain

f

0

(S) f(S) for each S � V

i 0

while [

i

j=1

F

j

is not a feasible solution

Solve the linear program on the graph (V;E �

S

i

j=1

F

j

) using the

function f

i

to obtain an extreme point solution x

�

for each e 2 E

if x

�

e

� 1=2

F

i+1

 F

i

[ feg

f

i+1

(S) f(S)� j�(S) \

S

i+1

j=1

F

j

j for each S � V

i i+ 1

To show that the algorithm works and that we can apply Jain's theorem, we need

to show two things: �rst, that we can solve the LP in every iteration, and secondly,

that the function f

i

is in fact weakly supermodular every iteration. For the survivable

network design problem the �rst is easy, via the following separation oracle: for every

edge in

S

i

j=1

F we install an edge of capacity 1, and again do a maxow computation

between every u; v pair in the graph G. We now show the second.
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Lemma 13.3 For any F � E, f

i

(S) = f(S) � j�(S) \ F j for each S � V , is weakly

supermodular.

Proof: De�ne z

e

=

(

1 if e 2 F;

0 otherwise;

and z(F

0

) =

P

e2F

0
z

e

for F

0

� E. We will

show that for any such z,

z(�(A)) + z(�(B)) � z(�(A [B)) + z(�(A\ B))

and

z(�(A)) + z(�(B)) � z(�(A�B)) + z(�(B �A));

for all A;B � V .

We claim that this implies the lemma. Notice that f

i

(S) = f(S) � z(�(S)) for

each S � V . Then suppose that for the pair A;B � V , condition (i) of weak

supermodularity holds for f . Then

f

i

(A) + f

i

(B) = f(A)� z(�(A)) + f(B)� z(�(B))

� f(A [B)� z(�(A [ B)) + f(A \B)� z(�(A \B))

= f

i

(A [ B) + f

i

(A \B):

which shows that condition (i) holds for f

i

. On the other hand, if condition (ii)

of weak supermodularity holds for f and the pair A;B, a similar argument shows

condition (ii) holds for f

i

. Hence f

i

is weakly supermodular.

To show these conditions on z we use a simple case analysis on the edges of F . It

is possible to show that every edge that contributes z

e

to the right-hand side of the

inequalities will also contribute z

e

to the left-hand side. For example, if edge e 2 F

has one end point in A�B and the other end point in A [B, then e contributes z

e

to

z(�(A)) and z(�(A[B)); and to z(�(A)) and z(�(A�B)). Notice that only one type

of edge contributes unequally to each side of these conditions on z: an edge e with

one end point in A�B and the other in B �A contributes 2z

e

to the left-hand side

of �rst condition, but zero to the right-hand side. Similarly, an edge e from A\B to

A [B contributes 2z

e

to the left-hand side of the second condition, but zero to the

right-hand side. �

We can now show the following.

Theorem 13.4 The algorithm Jain is a 2-approximation algorithm for any such integer

program with weakly supermodular functions f

i

such that we can solve the associated

linear programs.

Proof: The proof proceeds by induction on the number of iterations in the while

loop of the algorithm Jain.
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We want to show that the cost of the edges we choose in all iterations is no more

than twice the linear program optimal value. That is:

X

e2F

i

i�1

c

e

� 2

X

e2E

c

e

x

0

e

where x

0

is the solution of the linear program - the solution at the zeroth iteration.

More generally, de�ne x

i

as the solution of the LP with function f

i

.

Base case: Suppose that exactly one iteration of the while loop is necessary to

achieve feasibility. Then

X

e2F

1

c

e

� 2

X

e2E

c

e

x

0

e

since the solution F

1

involves rounding up exactly those x

0

e

� 1=2.

Inductive step: The inductive assumption is:

X

e2F

i

i�2

c

e

� 2

X

e2E�F

1

c

e

x

1

e

:

By similar reasoning as in the base case above, we know that

X

e2F

1

c

e

� 2

X

e2F

1

c

e

x

0

e

:

The crucial observation is that x

0

is a feasible solution to our linear program with

weakly supermodular function f

1

on the graph (V;E � F

1

). Notice that

X

e2�(S)

x

0

e

� f(S):

Therefore

X

e2�(S)�F

1

x

0

e

� f(S)� j�(S) \ F

1

j = f

1

(S):

Since x

0

satis�es the constraints for our LP with function f

1

on the graph (V;E�F

1

)

and x

1

is the optimal solution to this LP, we have

X

e2E�F

1

c

e

x

1

e

�

X

e2E�F

1

c

e

x

0

e

:

Putting this all together, we have

X

e2F

i

i�1

c

e

� 2

X

e2F

1

c

e

x

0

e

+ 2

X

e2E�F

1

c

e

x

1

e

� 2

X

e2F

1

c

e

x

0

e

+ 2

X

e2E�F

1

c

e

x

0

e

� 2

X

e2E

c

e

x

0

e

:

�
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13.1.5 Proof of Theorem 13.2

Throughout this section we'll assume that an extreme point solution x satis�es 0 <

x

e

< 1 for each e 2 E, since if x

e

= 1 for some e 2 E, then we are done, and if x

e

= 0

we can remove e from E without loss of generality.

De�ne m to be the number of edges in the graph, or equivalently, the number of

fractional variables in our linear programming extreme point solution. We need the

following de�nitions for our proof.

De�nition 13.2 The sets A;B � V are said to cross if A�B, B �A and A \B are

non-empty.

De�nition 13.3 A collection L of sets is laminar if no pair of sets in L cross.

De�nition 13.4 A set S � V is tight if x(�(S)) = f(S).

De�nition 13.5 The edge incidence vector�

F

2 f0; 1g

m

for F � E is de�ned component-

wise as �

F

(e) =

(

1 if e 2 F;

0 otherwise:

Theorem 13.5 For an extreme point solution x to our linear program, there exists a

collection L of m sets such that

1. S is tight for each S 2 L.

2. The set of vectors f�

�(S)

: S 2 Lg is linearly independent.

3. L is laminar.

Note that our linear program has �

T

�(S)

x � f(S) as constraints, that is, �

�(S)

is

a row of our constraint matrix for each S � V . Clearly, then, since x is an extreme

point of our linear program, it follows that there exists a collection L of m sets such

that Conditions 1 and 2 of Theorem 13.5 hold. To show that there exists L such that

Condition 3 holds, we'll need the following lemma.

Lemma 13.6 If A;B cross and are tight, then either

(i) A [B and A \B are tight and �

�(A)

+ �

�(B)

= �

�(A[B)

+ �

�(A\B)

,

or (ii) A�B and B �A are tight and �

�(A)

+ �

�(B)

= �

�(A�B)

+ �

�(B�A)

.
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Proof: f is weakly supermodular, and suppose that for A;B, we have that

f(A) + f(B) � f(A [B) + f(A \B):

However,

f(A) + f(B) = x(�(A)) + x(�(B))(13.1)

� x(�(A[ B)) + x(�(A \B))(13.2)

� f(A [B) + f(A \B);(13.3)

where (13.1) follows since A and B are tight, (13.2) follows from the proof of Lemma

13.3, and (13.3) follows since x is feasible. Therefore, by the feasibility of x, x(�(A[

B)) = f(A [B) and x(�(A \B)) = f(A \B).

To show the second part of condition (i), we recall the proof of Lemma 13.3. In

that analysis, there was only one type of edge that didn't contribute to both sides of

the inequality equally. However, we just showed that

x(�(A)) + x(�(B)) = x(�(A [B)) + x(�(A \B))

which indicates that any of these exceptional edges e must have x

e

= 0. Since we

discarded all edges with x

e

= 0, we must have no exceptional edges in E. Therefore,

the second part of condition (i) holds.

The proof is similar if the other condition of weak supermodularity holds for f

and A;B. �

Proof of Theorem 13.5: By the properties of basic (feasible) solutions there

exists a family T ofm sets satisfying conditions 1 and 2 of Theorem 13.5. Let span(T )

be the span of the vectors f�

�(S)

: S 2 T g. Note that span(T ) = <

m

. Let L be a

maximal collection of the sets in T that satisfy Conditions 1, 2 and 3 of Theorem 13.5.

If jLj = m, we are done. Otherwise, we can choose a tight set S such that

�

�(S)

2 span(T ) but �

�(S)

62 span(L) and such that no other such tight set crosses

fewer members of L. Note that S must cross at least one set in L, or it could be added

to T without violating Conditions 1, 2 and 3 of Theorem 13.5. We obtain a proof by

contradiction by obtaining another set U such that �

�(U)

2 span(T ), �

�(U)

=2 span(L),

and such that U crosses fewer members of L than T .

Pick T 2 L such that S and T cross, and apply Lemma 13.6. Suppose that for

the pair S; T we have that S � T and T � S are tight and

�

�(S)

+ �

�(T )

= �

�(S�T )

+ �

�(T�S)

:

Then it can't be the case that both �

�(S�T )

and �

�(T�S)

are in span(L) since

�

�(S)

62 span(L). On the other hand, for the pair S; T , we may have the other

alternative from Lemma 13.6, with S [ T and S \ T tight and

�

�(S)

+ �

�(T )

= �

�(S[T )

+ �

�(S\T )

:
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Figure 13.1: Sets of L that don't cross T but do cross one of S � T , T � S, S [ T or

S \ T .

In this case, at least one of �

�(S[T )

and �

�(S\T )

are not in span(L). Therefore, at least

one of S � T , T � S, S [ T and S \ T is not in span(L).

We'll show that S � T , T � S, S [ T and S \ T all cross fewer sets in L than S,

and hence we will have a set U such that �

�(U)

2 span(T ), �

�(U)

=2 span(L), with U

crossing fewer members of L than T .

Any set crossing S � T , T � S, S [ T or S \ T but not T must also cross S. See

Figure 13.1 for a schematic of the possible sets in L that must be considered. Note

too that S crosses T , but none of S � T , T � S, S [ T or S \ T do. Therefore, each

of S � T , T � S, S [ T and S \ T crosses strictly fewer sets of L than S. �

Observation: f(S) � 1 for each S 2 L since S is tight, �

�(S)

6= 0, all edges such

that x

e

= 0 have been discarded, and f(S) is an integer.

Finally, we can state the theorem that will complete our proof of Theorem 13.2.

Note however, that instead of showing that there exists an edge e such that x

e

� 1=2,

we'll show there exists an edge e such that x

e

� 1=3. This will make the proof of

Theorem 13.7 simpler, but won't change anything else of substance.

Theorem 13.7 There exists S 2 L such that j�(S)j � 3.

Note that, in combination with the observation above, this proves (our slightly

weaker version of) Theorem 13.2. We will need the following de�nition regarding the

edges and vertices of G.

De�nition 13.6 A socket is an edge-vertex pair (e; v) such that v is one of the two

endpoints of e.
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Figure 13.2: Example tree structure for a collection of laminar sets.

Observe that since the graph has m edges, it has 2m distinct sockets.

We'll consider the tree de�ned on the elements on L by the parent relation: for

each S 2 L, Parent(S) = the smallest set T 2 L that strictly contains S. See Fig-

ure 13.2 for an example.

Proof of Theorem 13.7: Suppose that the theorem is false. Then all S 2 L has

j�(S)j � 4. We'll use this to charge sockets uniquely to the elements of L so that each

element of L is charged 2 sockets except for the root of the tree, which is charged 4

sockets. Since L has m elements, we have 2m + 2 sockets, a contradiction, and the

theorem is proved.

We'll show that we can charge sockets as speci�ed above by induction on the tree

from the leaves on up.

Base case: We charge 4 sockets to each of the leaves of the tree. We can do this

because of our assumption that the theorem is false, and each S 2 L has j�(S)j � 4.

Thus each such S is associated with four sockets for the edges in �(S) and the endpoint

of each edge in �(S) that S contains.

Inductive step: For any parent, assume inductively that in each child's subtree, 2
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sockets are charged per non-root node and 4 sockets are charged to the root.

If there are 2 or more children, then each child can pass a charge of 2 to the

parent.

If there is exactly one child, but the parent has at least two additional sockets

then the child can pass a charge of 2 to the parent and the inductive assumption will

be satis�ed.

If the parent P has exactly one child C and no additional sockets, then �(P ) =

�(C) and hence �

�(P )

= �

�(C)

and the elements of L are no longer linearly independent.

Therefore, this case cannot happen.

If the parent P has exactly one childC and exactly one additional socket represent-

ing edge e, then since P and C are tight either f(P ) = f(C)�x

e

or f(P ) = f(C)+x

e

.

In either case, we have a contradiction since 0 < x

e

< 1 and f is integer-valued.

Therefore, this case cannot happen.

Thus we can, by induction, charge the sockets to the elements of the tree to satisfy

the condition that 2 sockets are charged to each non-root node and 4 sockets to the

root.

Considering where the falsehood of the theorem was used in constructing the

charging scheme, we notice that it was only used in charging 4 to each of the leaves

of the tree. Therefore, one of the leaves S of the tree must be such that j�(S)j � 3.

�

It would be nice to have a simple, intuitive proof that there exists e such that

x

e

� 1=2. It would also be nice to have a combinatorial 2-approximation algorithm

for the problem, rather than one that needs to solve a linear program.
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ORIE 634 Approximation Algorithms December 3, 1998

Lecture 14

Lecturer: David P. Williamson Scribe: David P. Williamson

14.1 Research Problems

For our �nal class, we will discuss open problems in the area of approximation algo-

rithms, covering some things that are known about them along the way. We've now

covered most of the major techniques that are used in approximation algorithms;

from here on you'll be able to make your own contributions.

In discussing research problems, we will give �ve hard problems and ten easy

problems. The hard problems might be considered the frontier of the �eld: they are

problems which many people have spent a good deal of time on and for which any

progress would be signi�cant. The easy problems are ones that I think should be

solvable without investing several years of one's life. But of course it is hard to tell

what is hard and what is easy; perhaps in retrospect some of the hard problems, when

solved, will appear easy, and vice versa!

14.1.1 Five Hard(?) Problems

Problem 1: Vertex Cover

The �rst hard problem is the vertex cover problem, which we discussed in Lectures 1

and 2. The best known performance guarantee for the problem is 2� o(1), while the

best known hardness bound is 7/6 (due to H�astad).

One idea one might consider for this problem is to use semide�nite programming

to get an improved approximation algorithm. Consider the following vector program-

ming relaxation of the problem:

Min

1

2

X

i2V

w

i

(1 + v

i

� v

0

)

subject to:

(v

0

� v

i

) � (v

0

� v

j

) = 0 8(i; j) 2 E

v

i

� v

i

= 1 8i 2 V

v

0

� v

0

= 1

If S � V is an optimal vertex cover, we obtain a feasible solution of value

P

i2S

w

i

by setting v

0

to an arbitrary unit vector, v

i

= v

0

for i 2 S, and v

i

= �v

0

for i =2 S.
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Notice that since for any (i; j) 2 E, either i 2 S or j 2 S, this implies that the

constraints are obeyed.

Unfortunately, the following theorem shows that this approach does not help.

Theorem 14.1 [Goemans, Kleinberg '98] For any � > 0, there exists a graph G such

that the ratio of OPT to the value of the SDP relaxation is at least 2� �.

Goemans and Kleinberg considered adding the constraints (v

0

� v

i

) � (v

0

� v

j

) � 0

for all i; j. These constraints are valid given our previous feasible solution: whenever

either i 2 S or j 2 S the left-hand side is 0, while if neither i 2 S or j 2 S, then the

left-hand side is (2v

0

) � (2v

0

) = 4. Lagergren and Russell claimed they had a proof

that the same theorem as above holds for this SDP relaxation as well, but their proof

had a bug in it; the proof may or may not be �xable.

Problem 2: Symmetric TSP with triangle inequality

In the lecture notes we discussed the Traveling Salesman Problem, given that edge

costs c

ij

obey the triangle inequality. The best known approximation algorithm for

this problem has a performance guarantee of 3/2 (Christo�des '76), while to my

knowledge the best known hardness bound is relatively insigni�cant (e.g. 1.000001).

Many people have studied the following linear programming relaxation of the

problem:

Z

LP

= Min

X

e

c

e

x

e

subject to:

X

e2�(S)

x

e

� 2 8S � V

X

e2�(fvg)

x

e

= 2 8v 2 V

x

e

� 0 8e 2 E:

If Z

C

is the value of the solution produced by Christo�des' algorithm, then one can

show that in fact Z

C

�

3

2

Z

LP

.

One reason there has been intense study of this LP relaxation is that in considering

the integrality gap of this relaxation, the worst-known example has ratio OPT=Z

LP

=

4=3: So it seems possible that this relaxation is within a factor of 4/3 of optimal.

Problem 3: Asymmetric TSP with triangle inequality

In the asymmetric TSP, we have the case that c

ij

is not necessarily equal to c

ji

.

Here, the best known approximation algorithm for this problem has a performance

124



guarantee of O(log n) (Frieze, Galbiati, Ma�oli '82). I am not aware of a result

showing a stronger hardness bound for asymmetric TSP than for symmetric TSP.

Here we present a new O(log n)-approximation algorithm for the ATSP. (Klein-

berg, W '98). First we need the following de�nition, theorem, and lemma.

De�nition 14.1 An Eulerian tour of a digraph (V;A) is a tour that visits each arc

exactly once.

Theorem 14.2 [Euler] The digraph (V;A) has an Eulerian tour if and only if it is

connected and the indegree of every vertex is the same as its outdegree.

Lemma 14.3 Let G = (V;A) be a complete digraph, with edge costs obeying the

triangle inequality. If (V;A

0

), A

0

� A, has an Eulerian tour, then G has a TSP tour of

no greater cost.

Proof: Traverse the Eulerian tour and shortcut vertices that have been previously

visited. �

For our algorithm, we will need the following concept.

De�nition 14.2 A minimum-mean cycle C of a digraph is a cycle C that minimizes

P

e2C

c

e

jCj

over all cycles in the graph.

Fortunately for us, this problem is solvable in polynomial time.

Theorem 14.4 [Karp '78] The minimum-mean cycle problem is solvable in O(mn) time.

Now consider the following algorithm that produces an Eulerian tour.

KW

G

0

 G

i 0

While jV

i

j > 1

Find min-mean cycle C

i

in G

i

Pick any node j 2 C

i

V

i+1

 V

i

� C

i

+ j

G

i+1

 (V

i

; A[V

i+1

])

Return

S

k

C

k

It is not di�cult to see that (V;

S

k

C

k

) has an Eulerian tour. It is also not di�cult

to see that for any i, OPT (G

i

) � OPT (G

0

), where OPT (G

i

) is the length of the

optimal TSP tour on G

i

: since G

i

contains a subset of the nodes and arcs of G

0

,

given the optimal tour on G

0

, we can simply shortcut the nodes in V

0

� V

i

to obtain

a tour of no greater cost on G

i

; thus the statement follows.

We can now show that KW is an O(log n)-approximation algorithm.
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Theorem 14.5 KW is an O(log n)-approximation algorithm for the asymmetric TSP

with triangle inequality.

Proof: Since we know that C

i

is the minimum-mean cycle of G

i

, it follows that

for any i

P

e2C

i

c

e

jC

i

j

�

OPT (G

i

)

jV

i

j

;

or

X

e2C

i

c

e

�

jC

i

j

jV

i

j

OPT (G

i

):

By construction we know that jV

i+1

j = jV

i

j � jC

i

j+ 1. The cost of the Eulerian tour

constructed by KW is the cost of all the edges in all the cycles found by KW, which

is

P

i

P

e2C

i

c

e

. We can bound this as follows:

X

i

X

e2C

i

c

e

�

X

i

jC

i

j

jV

i

j

OPT (G

i

)

�

X

i

 

1

jV

i

j

+

1

jV

i

j � 1

+ � � �+

1

jV

i

j � jC

i

j+ 1

!

OPT

=

X

i

 

1

jV

i

j

+

1

jV

i

j � 1

+ � � �+

1

jV

i+1

j+ 1

+

1

jV

i+1

j

!

OPT

�

0

@

n

X

j=1

1

j

+

X

i

1

jV

i

j

1

A

OPT

� (2 ln n)OPT:

�

Problem 4: Bin packing

As we saw earlier in the term, the best known approximation algorithm produces

a solution with OPT + O(log

2

OPT ) bins (Karmarkar, Karp). There is no known

hardness bound for this problem. It seems possible that better LP rounding schemes

will lead to a better algorithm, however. For the LP we discussed earlier, it is known

that there exist instances such that OPT�Z

LP

> 1, but there are no known instances

such that OPT � Z

LP

> 2.

Problem 5:

1

3

-balanced cuts

As we discussed when we covered �nding balanced cuts, there are essentially no

known approximation algorithms for this problem, and no known hardness bounds.

It is entirely possible, given our state of knowledge, that an approximation scheme

exists for these problems.

In the case of planar graphs, there is a 2-approximation algorithm for 1/3-balanced

cuts due to Garg, Saran, and Vazirani (1994).
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14.1.2 Ten Easy(??) Problems

In this section, I list ten problems that I view as being eminently solvable (with

the exception of problems 8 and 9). To provide further incentive for tackling these

problems, I also list a dollar amount that I will provide for the answer to any of these

problems that is given by 1/1/1.

Problem 1: ($30) Asymmetric p-center

Consider the following problem:

Asymmetric p-center

� Input:

{ Set V of vertices

{ Values d

ij

for all i; j 2 V obeying triangle inequality

{ Parameter p

� Goal: Find S � V with jSj = p such that

max

i2V

min

j2S

d

ij

is minimized.

If the distances d

ij

are symmetric, (that is, d

ij

= d

ji

for all i; j 2 V ) then a

2-approximation algorithms is known. This turns out to be best possible unless

P = NP . For the asymmetric version, the best approximation algorithm known is

an O(log

�

n)-approximation algorithm (Viswanathan, SODA '96).

For $30, give a constant approximation algorithm for this problem.

Problem 2: ($30) Combinatorial survivable network design

For $30, give a combinatorial version of Jain's 2-approximation algorithm for surviv-

able network design. If it makes the problem easier, consider the version in which

both the algorithm and the optimal solution may use multiple copies of any edge.

Problem 3: ($40) Scheduling related machines

Consider the scheduling problem known in the literature as QjprecjC

max

.
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QjprecjC

max

� Input:

{ m machines, of speeds s

1

� s

2

� � � � � s

m

{ n jobs, with processing requirements p

1

; p

2

; : : : ; p

n

{ Partial order � on jobs

� Goal: Find a schedule that minimizes the overall completion time, where the

running time of job j on machine i is p

j

=s

i

, and whenever j � j

0

, then j must

complete before j

0

starts.

The best currently known algorithm is an O(logm)-approximation algorithm due

to Chudak and Shmoys (SODA '97) (see also a simpli�ed version by Chekuri (IPCO

'97)).

For $40, give a constant approximation algorithm.

Problem 4: ($30) Subset feedback vertex set problem

Subset FVS

� Input:

{ Undirected graph G = (V;E)

{ Weights w

i

for all i 2 V

{ Set S � V

� Goal: Find a set F � V that minimizes

P

i2F

w

i

such that for all cycles C in

G with C \ S 6= ; it is also the case that C \ F 6= ;.

There is an 8-approximation algorithm known for this problem (Even, Naor, Zosin,

FOCS '96). For $30, give a 2-approximation algorithm.

Problem 5: ($40) Small distortion embeddings

In problem set 5, we claimed that any semimetric has an O(log n)-distortion embed-

ding; this was proven by Linial, London, and Rabinovich (Combinatorica 15, 1995).

In problem set 3, we saw that one could use semide�nite programming to obtain an

embedding with the lowest possible distortion; in particular, the objective function

of the semide�nite programming was c

2

, where c is the distortion of the embedding.

Thus another possible proof of the theorem of Linial, London, and Rabinovich is to

give a feasible solution to the dual of the semide�nite program with objective function

value O(log

2

n).

For $40, give such a proof.
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Problem 6: ($40) A bidirected relaxation of the Steiner tree problem

The following linear programming relaxation of the Steiner tree problem is known to

have an integrality gap of 2:

Min

X

e2E

c

e

x

e

subject to:

X

e2�(S)

x

e

� 1 8S � V : ; 6= S \ T 6= T

x

e

� 0 8e 2 E;

where T is the set of terminals. This is true even if T = V , and the linear program

is a relaxation of the minimum spanning tree problem.

There are linear programming relaxations, however, which are known to produce

the optimal solution in the case T = V . Here is one of them: suppose we replace

every undirected edge (u; v) 2 E with two directed arcs (u; v) and (v; u) in arcset A,

each having the same cost c

e

as the undirected edge. Let r be an arbitrary vertex in

T , and let �

�

(S) = f(u; v) 2 A : u =2 S; v 2 Sg. The consider the following relaxation:

Min

X

a2A

c

a

x

a

subject to:

X

a2�

�

(S)

x

a

� 1 8S � V � r : ; 6= S \ T 6= T � r

x

a

� 0:

It is easy to see that the optimal Steiner tree is a feasible solution of value OPT for

this linear program: given the optimal tree, we can direct all the edges of the tree

away from the chosen root r, and this gives a feasible solution for the same value.

The question is whether this relaxation gives an integrality gap of some constant

smaller than 2. Recently, Rajagopalan and Vazirani (SODA '99) have shown that if

the input graph is such that no non-terminal is adjacent to any other non-terminal,

then a primal-dual algorithm using this relaxation gives a

3

2

-approximation algorithm.

There is some speculation that the integrality gap is a factor of

3

2

in general. For $40,

give an approximation algorithm with constant performance guarantee better than 2

that uses this linear programming relaxation as a lower bound, or give an example

that shows that a factor of 2 is the best achievable using this formulation.

Problem 7: ($40) Tree metrics

Although we did not discuss them in this class, the tool of \probabilistically ap-

proximating" a metric by tree metrics has proven to be very useful in designing

approximation algorithms. For de�nitions, see the FOCS '96 paper by Bartal.

For $40, show that every metric can be O(log n)-probabilistically approximated

by tree metrics.
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Problem 8: Sparsest cut problem

Find an improved approximation algorithm to the sparsest cut problem which was

covered in problem set 5. I will give $50 for a performance guarantee of o(log n), and

$100 for a constant performance guarantee. It seems like semide�nite programming

should be useful for this problem.

Problem 9: MAX CUT

It has been observed that one could validly add the following \triangle inequality"

constraints to the vector programming relaxation of MAX CUT:

(v

i

� v

j

) � (v

i

� v

k

) � 0

for all distinct i; j; k. This should give an improved semide�nite programming relax-

ation. I will give $100 for a tight analysis of the integrality gap of this semide�nite

program, otherwise a sliding scale for improvement from .878 up to 16/17 (the known

hardness bound for MAX CUT).

Problem 10: ($50) Combinatorial MAX CUT

For $50, give a combinatorial .878-approximation algorithm for MAX CUT.
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