
RC 21273 (09/03/98)

Computer Science/Mathematics

IBM Research Report

Lecture Notes on Approximation Algorithms

Spring 1998

David P. Williamson

IBM Research Division

T.J. Watson Research Center

Yorktown Heights, New York

LIMITED DISTRIBUTION NOTICE

This report may be submitted for publication outside of IBM and will probably be copyrighted if accepted for publica-

tion. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright

to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and

speci�c requests. After outside publication, requests should be �lled only by reprints or legally obtained copies of the article

(e.g., payment of royalties).

IBM

Research Division

Almaden � T.J. Watson � Tokyo � Zurich

Lecture Notes on Approximation Algorithms

David P. Williamson

Spring 1998

Contents

Preface 4

Lecture 1 5

1.1 First Plunge: A look at the Traveling Salesman Problem (TSP) : : : 5

1.2 Some de�nitions and examples : 6

1.3 Vertex Cover: Three ways to skin a cat : : : : : : : : : : : : : : : : : 7

1.3.1 The Vertex Cover Problem : 7

1.3.2 First attempt: a greedy algorithm : : : : : : : : : : : : : : : : 7

1.3.3 Second attempt: formulate as an integer program (IP) : : : : 8

1.3.4 Third (and �nal) attempt: Dual-LP : : : : : : : : : : : : : : : 10

Lecture 2 12

2.1 Set Cover: description and approximation algorithms : : : : : : : : : 12

2.1.1 Method I: Rounding : 12

2.1.2 Method II: Dual LP : 14

2.1.3 Method III: Primal-Dual : 15

2.1.4 Method IV: Greedy Algorithm : : : : : : : : : : : : : : : : : : 17

2.2 Set Cover: An Application : 19

Lecture 3 20

3.1 Metric Traveling Salesman Problem : : : : : : : : : : : : : : : : : : : 20

3.2 Dynamic Programming: Knapsack : : : : : : : : : : : : : : : : : : : 22

3.3 Scheduling Identical Machines: List Scheduling : : : : : : : : : : : : : 25

Lecture 4 26

4.1 Scheduling Identical Machines: A PTAS : : : : : : : : : : : : : : : : 26

4.2 Randomization : 29

4.2.1 The Maximum Cut Problem : : : : : : : : : : : : : : : : : : : 29

4.2.2 The Maximum Satis�ability Problem : : : : : : : : : : : : : : 30

1

Lecture 5 32

5.1 Review of Johnson's Algorithm : 32

5.2 Derandomization : 33

5.3 Flipping Bent Coins : 34

5.4 Randomized Rounding : 35

5.5 A Best-of-Two Algorithm for MAX SAT : : : : : : : : : : : : : : : : 38

Lecture 6 40

6.1 Randomized Rounding continued : 40

6.2 MAX CUT in Dense Graphs : 42

6.2.1 Degenie-izing the algorithm : : : : : : : : : : : : : : : : : : : 45

Lecture 7 46

7.1 Semide�nite Programming : 46

7.1.1 MAX CUT using Semide�nite Programming : : : : : : : : : : 47

7.1.2 Quadratic Programming : 53

Lecture 8 56

8.1 Semide�nite Programming: Graph Coloring : : : : : : : : : : : : : : 56

8.2 The Primal-Dual Method : 60

Lecture 9 64

9.1 The Primal-Dual Method : 64

9.1.1 Finding the shortest s-t path : : : : : : : : : : : : : : : : : : 67

9.1.2 Generalized Steiner Trees : 68

Lecture 10 70

10.1 The Primal-Dual Method: Generalized Steiner Trees cont. : : : : : : 70

10.2 Metric Methods: MinimumMulticuts : : : : : : : : : : : : : : : : : : 73

Lecture 11 78

11.1 Metric Methods : 78

11.1.1 Minimum Multicut : 78

11.1.2 Balanced Cut : 80

11.1.3 Minimum Linear Arrangement : : : : : : : : : : : : : : : : : : 84

Lecture 12 88

12.1 Scheduling problems and LP : 88

12.1.1 Some deterministic scheduling notation : : : : : : : : : : : : : 88

12.1.2 1jj

P

j

w

j

C

j

: 88

2

12.1.3 1jprecj

P

j

w

j

C

j

: 91

12.1.4 1jr

j

j

P

j

w

j

C

j

: 92

Lecture 13 96

13.1 A PTAS for Euclidean TSP : 96

13.1.1 Perturbing the Problem Instance : : : : : : : : : : : : : : : : 96

13.1.2 Subdividing the Plane : 97

13.1.3 The Structure Theorem : 98

13.1.4 Applying Dynamic Programming : : : : : : : : : : : : : : : : 99

13.1.5 Proving the Structure Theorem : : : : : : : : : : : : : : : : : 100

Lecture 14 106

14.1 Uncapacitated Facility Location : 106

3

Preface

The contents of this book are lecture notes from a class taught in the Department

of Industrial Engineering and Operations Research of Columbia University during the

Spring 1998 term (IEOR 6610E: Approximation Algorithms). The notes were created

via the \scribe" system, in which each lecture one student was responsible for turning

their notes into a L

a

T

E

X document. I then edited the notes, and made copies for the

entire class. The students in the class who served as scribes were M. Tolga Cezik,

David de la Nuez, Mayur Khandewal, Eurico Lacerda, Yiqing Lin, J�orn Mei�ner,

Olga Raskina, R. N. Uma, Xiangdong Yu, and Mark Zuckerberg. Any errors which

remain (or were there to begin with!) are, of course, entirely my responsibility.

David P. Williamson

Yorktown Heights, NY

4

IEOR E6610 Approximation Algorithms January 21, 1998

Lecture 1

Lecturer: David P. Williamson Scribe: David de la Nuez

1.1 First Plunge: A look at the Traveling Sales-

man Problem (TSP)

The �rst problem we will consider today is the Traveling salesman problem.

Traveling salesman problem

� Input:

{ Undirected graph G = (V;E)

{ costs c

e

� 0 8 e 2 E

� Goal: Find a tour of minimum cost which visits each \city" (vertex in the

graph) exactly once.

There are many applications { at IBM the problem has been encountered in

working on batches of steel at a steel mill.

Naive Algorithm: Try all tours!

Why is it so naive? It would run too slowly, because the running time is O(n!)

where n = jV j. We need a better algorithm. Edmonds and Cobham were the �rst

to suggest that a \good" algorithm is one whose running time is a polynomial in the

\size" of the problem. Unfortunately, we don't know if such an algorithm exists for

the TSP. What we do know, thanks to Cook and Karp, is that the existence of such

an algorithm implies that P = NP . A lot of very intelligent people don't believe this

is the case, so we need an alternative! We have a couple of options:

1. Give up on polynomial-time algorithms and hope that in practice our algorithms

will run fast enough on the instances we want to solve (e.g. IP branch-and-

bound methods).

2. Give up on optimality and try some of these approaches:

(a) heuristics

(b) local search

(c) simulated annealing

5

(d) tabu search

(e) genetic algorithms

(f) approximation algorithms

1.2 Some de�nitions and examples

De�nition 1.1 An algorithm is an �-approximation algorithm for an optimization prob-

lem � if

1. The algorithm runs in polynomial time

2. The algorithm always produces a solution which is within a factor of � of the value

of the optimal solution.

Note that throughout the course we use the following convention: For minimiza-

tion problems, � > 1, while for maximization problems, � < 1 (� is known as the

\performance guarantee"). Also, keep in mind that in the literature, researchers often

speak of 1=� for maximization problems.

So, why do we study approximation algorithms?

1. As algorithms to solve problems which need a solution.

2. As ideas for #1.

3. As a mathematically rigorous way of studying heuristics.

4. Because it's fun!

5. Because it tells us how hard problems are.

Let us brie
y touch on item 5 above, beginning with another de�nition:

De�nition 1.2 A polynomial-time approximation scheme (PTAS) is a family of algo-

rithmsA

�

: � > 0 such that for each � > 0, A

�

is a (1+ �)-approximation algorithm which

runs in polynomial time in input size for �xed �.

Some problems which have the PTAS property are knapsack, Euclidean TSP

(Arora 1996, Mitchell 1996), and some scheduling problems. Other problems like

MAX SAT and MAX CUT are harder:

Theorem 1.1 (Arora, Lund, Motwani, Sudan, Szegedy 1992) There does not exist a

PTAS for any MAX SNP-hard problem unless P = NP .

6

There is a similarly exotic result with respect to CLIQUE:

Theorem 1.2 (H�astad 1996) There does not exist a O(n

1��

) approximation algorithm

for any � > 0 for MAX CLIQUE unless NP = RP .

What is MAX CLIQUE? Given a graph G = (V;E), �nd the clique S � V of

maximum size jSj. And what is a clique?

De�nition 1.3 A clique S is a set of vertices for which each vertex pair has its corre-

sponding edge included (that is, i 2 S, j 2 S implies (i; j) 2 E).

1.3 Vertex Cover: Three ways to skin a cat

1.3.1 The Vertex Cover Problem

Consider the following problems:

Vertex Cover (VC)

� Input: An undirected graph G = (V;E)

� Goal: Find a set C 2 V of minimum size jCj such that 8(i; j) 2 E, we have

either i 2 C or j 2 C.

Weighted Vertex Cover (WVC)

� Input:

{ An undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find a vertex cover C which minimizes

P

i2C

w

i

.

1.3.2 First attempt: a greedy algorithm

Greedy

1 C ;

2 while E 6= ;

3 (�) choose (i; j) 2 E

4 C C [fi; jg

5 Delete (i; j) from E and all edges adjacent to i and j.

Now we prove that the above is a 2-approximation algorithm:

7

Lemma 1.3 Greedy returns a vertex cover.

Proof: Edges are only deleted when they are covered, and at termination, E = ;.

�

Theorem 1.4 (Gavril) Greedy is a 2-approximation algorithm.

Proof: It is clear that it runs in polynomial time. Now, suppose the algorithm

goes through the while loop X times. By construction, each edge chosen in (�) must

be covered by a di�erent vertex in the optimal solution, so X � OPT , and thus

jCj = 2X � 2OPT . �

This algorithm, however, will not be very useful for the weighted problem, so we

skin the cat another way now.

1.3.3 Second attempt: formulate as an integer program (IP)

The technique we use here is as follows:

1. Formulate the problem as an IP

2. Relax to a Linear Program (LP)

3. Use the LP (and its solution) to get a solution to the IP

We will use this technique 1 million times in this course.

So, let's apply it to the WVC problem. Here is the IP formulation

Min

X

i2V

w

i

x

i

subject to:

X

i:e

i

2S

j

x

i

+ x

j

� 1 8(i; j) 2 E

x

i

2 f0; 1g 8i 2 V;

and the corresponding LP relaxation

Min

X

i2V

w

i

x

i

subject to:

X

i:e

i

2S

j

x

i

+ x

j

� 1 8(i; j) 2 E

x

i

� 0 8i 2 V:

8

Now, suppose that Z

LP

is the optimal value of the LP. Then

Z

LP

� OPT:

This follows since any solution feasible for the IP is feasible for the LP. Thus the

value of the optimal LP will be no greater than that for the IP. This is a fact we will

use many, many times throughout the course. In addition, we use it in analyzing the

algorithm below:

Round

1 Solve LP relaxation to get optimal x

�

2 C ;

3 8i 2 V

4 if x

�

i

� 1=2

5 C C [fig.

Lemma 1.5 Round produces a vertex cover.

Proof: Suppose by way of contradiction 9(i; j) 2 E s:t: i; j =2 C. Then x

�

i

; x

�

j

<

1=2. But then x

�

i

+ x

�

j

< 1, which contradicts the feasibility of x

�

. �

Theorem 1.6 (Nemhauser, Trotter 1975; Hochbaum 1983) Round is a 2-approximation

algorithm.

Proof: It is clear that it runs in polynomial time. Now, observe that

i 2 C) x

�

i

� 1=2

) 2x

�

i

� 1

) 2x

�

i

w

i

� w

i

:

Then

X

i2C

w

i

� 2

X

i2V

w

i

x

�

i

;

but then combining with our relation between the LP optimal and the true optimal

we have

X

i2C

w

i

� 2OPT:

�

9

1.3.4 Third (and �nal) attempt: Dual-LP

We now consider our third and �nal way of skinning the Vertex Cover cat. Our �rst

step is to take the dual of our LP:

Max

X

(i;j)2E

y

i;j

subject to:

X

j:(i;j)2E

y

i;j

� w

i

8i 2 V

y

(i;j)

� 0 8(i; j) 2 E:

Observe that for any feasible dual solution y, we have

X

(i;j)2E

y

i;j

� Z

LP

� OPT;

by weak duality. This motivates the following algorithm:

Dual-LP

1 Solve dual LP to get optimal y

�

2 C ;

3 8i 2 V

4 if

P

j:(i;j)2E

y

�

i;j

= w

i

5 C C [fig.

Lemma 1.7 Dual-LP produces a vertex cover.

Proof: Suppose by way of contradiction 9(k; l) 2 E s:t: k; l =2 C. Let

�

1

:= w

k

�

X

j:(k;j)2E

y

�

k;j

�

2

:= w

l

�

X

j:(l;j)2E

y

�

l;j

Note that by assumption, �

1

; �

2

> 0. But then we increase y

�

k;l

by minf�

1

; �

2

g (because

y

�

k;l

only appears in the constraints corresponding to �

1

and �

2

), which leads to an

increase of the objective function and contradicts the optimality of y

�

. �

Theorem 1.8 (Hochbaum 1982) Dual-LP is a 2-approximation algorithm.

Proof: It is clear that it runs in polynomial time. Now, by construction of C,

X

i2C

w

i

=

X

i2C

(

X

j:(i;j)2E

y

�

i;j

)

� 2

X

(i;j)2E

y

�

i;j

� 2OPT:

10

The second inequality follows from the �rst since each edge (i; j) 2 E can appear at

most twice in the double summation. The �nal line follows from our weak duality

relation above. �

To wrap up, note the following interesting result:

Theorem 1.9 (H�astad) If an �-approximation algorithm exists for vertex cover with

� < 7=6 then P = NP .

11

IEOR E6610 Approximation Algorithms January 30, 1998

Lecture 2

Lecturer: David P. Williamson Scribe: Mayur Khandelwal

2.1 Set Cover: description and approximation al-

gorithms

In this lecture, we discuss the set cover problem and three approximation algorithms,

as well as an application.

Set Cover

� Input:

{ Ground set E = fe

1

; : : : ; e

i

; : : : ; e

n

g

{ Subsets S

1

; S

2

; : : : ; S

m

� E

{ Costs w

j

for each subset S

j

� Goal: Find a set of indices of subsets I � f1; : : : ;mg that minimizes the sum

of the weights such that each element is in at least one subset. More precisely,

�nd a set I that minimizes

P

j2I

w

j

such that

S

j2I

S

j

= E.

2.1.1 Method I: Rounding

Apply the general method of rounding described for vertex cover.

1. Formulate problem as an integer program.

2. Relax the integer requirement and solve using a polynomial-time linear pro-

gramming solver (e.g. interior-point method).

3. Use the linear program solution in some unde�ned way to obtain an integer

solution that is close in value to the linear programming solution.

Here's how we can apply the process above to the set cover problem.

12

1. Formulate problem as an integer program. Here, we create a variable x

j

for

each subset S

j

. If S

j

2 I, then x

j

= 1, otherwise x

j

= 0.

Min

m

X

j=1

w

j

x

j

subject to:

X

j:e

i

2S

j

x

j

� 1 8e

i

2 E

x

j

2 f0; 1g:

2. Relax the integer requirement by changing the last constraint to x

j

� 0. Let

OPT equal the optimal objective value for the integer program. Let z

LP

be the

optimal objective value for the linear program. Note, z

LP

� OPT because the

solution space for the integer program is a subset of the solution space of the

linear program.

3. Use the linear program solution in some unde�ned way to obtain a solution that

is close in value to the linear programming solution. To go further, we must

�rst de�ne f as the following:

f = max

i

jfj : e

i

2 S

j

gj:

In plain English, f is maximum number of sets that contain any given element.

Now, we have the following algorithm:

Rounding

Solve the linear program to get solution x

�

.

I ;

for each S

j

if x

�

j

� 1=f

I I [fjg

Lemma 2.1 Rounding produces a set cover.

Proof: Suppose there is an element e

i

such that e

i

=2

S

j2I

S

j

. Then for each set

S

j

, which e

i

is a member of, x

�

j

< 1=f . Then

X

j:e

i

2S

j

x

�

j

<

1

f

� jfj : e

i

2 S

j

gj

� 1;

since jfj : e

i

2 S

j

gj � f . But this violates the linear programming constraint for e

i

.

�

13

Theorem 2.2 (Hochbaum '82) Rounding is an f -approximation algorithm for set cover.

Proof: It is clear that the rounding algorithm is a polytime algorithm. Further-

more,

X

j2I

w

j

�

X

j

w

j

� x

�

j

� f

= f

X

j

w

j

� x

�

j

� f �OPT:

The �rst inequality follows since j 2 I only if x

�

j

� f � 1. �

Recall that in the last lecture, we discussed 2-approximation algorithms for vertex

cover.

Weighted Vertex Cover (WVC)

� Input:

{ An undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find a vertex cover C which minimizes

P

i2C

w

i

.

We can translate this problem to the set cover problem: the edges correspond to

the ground set and vertices correspond to subsets (i.e., the subset corresponding to

vertex i is the set of all edges adjacent to i). Since each edge is in exactly two sets,

in this case f = 2; thus the f -approximation algorithms for set cover translate to

2-approximation algorithms for vertex cover.

2.1.2 Method II: Dual LP

Another way to use the rounding method is to apply it to the dual solution. The dual

of the linear programming relaxation for set cover is:

Max

X

i

y

i

subject to:

X

i:e

i

2S

j

y

i

� w

j

8S

j

y

i

� 0 8e

i

2 E:

If we have feasible dual solution y, then

X

i

y

i

� z

LP

� OPT

14

by weak duality. The algorithm to �nd an minimum-cost set cover using a dual LP

is as follows:

Dual-LP

Solve the Dual linear program to get optimal solution y

�

I ;

for each S

j

if

P

i:e

i

2S

j

y

�

i

= w

j

I I [fjg.

Theorem 2.3 Dual-LP is an f -approximation algorithm.

Proof: Left as a homework exercise. �

2.1.3 Method III: Primal-Dual

The problem with the previous algorithms is that they require solving a linear pro-

gram. While this can be done relatively quickly in practice, we would like algorithms

that are even faster. We now turn to an algorithm that behaves much like Dual-LP

above, but constructs its own dual solution, rather than �nding the optimal dual LP

solution.

Primal-Dual

I ;

~y

i

 0 8i

while 9e

i

0

: e

i

0

=2

S

j2I

S

j

j

0

= arg min

j:e

i

0

2S

j

n

w

j

�

P

k:e

k

2S

j

~y

i

o

�

j

0

 w

j

0

�

P

i:e

i

2S

j

0

~y

i

~y

i

0

 ~y

i

0

+ �

j

0

I I [fj

0

g.

Note that the function arg min returns the argument (index, in this case) that

attains the minimum value.

Lemma 2.4 Primal-Dual returns a set cover.

Proof: Trivial, since the algorithm does not terminate until it does return a set

cover. �

Lemma 2.5 Primal-Dual constructs a dual feasible solution.

15

Proof: By induction. The base case is trivial since initially

X

i:e

i

2S

j

~y

i

= 0 � w

j

8j:

Now assume that

X

i:e

i

2S

j

~y

i

� w

j

8j:

Consider �rst the case of S

j

, where j 6= j

0

, and e

i

0

2 S

j

. Then since ~y

i

0

is increased

by �

j

0

,

X

i:e

i

2S

j

~y

i

+ �

j

0

=

X

i:e

i

2S

j

~y

i

+ (w

j

0

�

X

i:e

i

2S

j

0

~y

i

)

�

X

i:e

i

2S

j

~y

i

+ (w

j

�

X

i:e

i

2S

j

~y

i

)

� w

j

:

In the case of S

j

0

,

X

i:e

i

2S

j

0

~y

i

+ �

j

0

=

X

i:e

i

2S

j

0

~y

i

+ (w

j

0

�

X

i:e

i

2S

j

0

~y

i

)

= w

j

0

:

Notice that we don't need to consider the case of a set S

j

such that e

i

0

=2 S

j

, since

P

i:e

i

2S

j

~y

i

does not change for these sets. �

Theorem 2.6 (Bar-Yehuda, Even '81) Primal-Dual is an f -approximation algorithm for

the set cover problem.

Proof:

X

j2I

w

j

=

X

j2I

X

e

i

2S

j

~y

i

�

X

1�i�n

~y

i

jfj : e

i

2 S

j

gj

� f �

X

i

~y

i

� f �OPT:

The �rst equality follows from the case of the set S

j

0

in the previous lemma: whenever

we choose a set S

j

0

, we know that

P

i:e

i

2S

j

0

~y

i

= w

j

0

. The next inequality follows since

each ~y

i

can appear in the double sum at most jfj : e

i

2 S

j

gj times. The next

inequality follows by the de�nition of f , and the last inequality follows from weak

duality. �

16

2.1.4 Method IV: Greedy Algorithm

So far every technique we have tried has led to the same result: every technique we

looked at last time gave a 2-approximation algorithm for the vertex cover problem, and

every technique we have looked at this time has given an f -approximation algorithm

for the set cover time. It seems that we get the same results no matter what we

do! This is not true in general: often cleverness will give us improved performance

guarantees. And sometimes the cleverest thing to do is the most obvious thing,

which is what we will try to do next, in devising a \greedy" algorithm for the set

cover problem.

The intuition here is straightforward. Go through and pick sets which will give

the most 'bang for the buck' { will cover the most elements yet to be covered at the

lowest cost. Before examining the algorithm, we de�ne two new items:

H

n

� 1 +

1

2

+

1

3

+ : : :+

1

n

� lnn

g � max

j

jS

j

j

Greedy

I ;

~

S

j

 S

j

8j

while

S

j2I

S

j

6= E

j

0

 arg min

j:

~

S

j

6=;

w

j

j

~

S

j

j

I I [fj

0

g

~y

i

w

j

0

j

~

S

j

j�H

g

8e

i

2

~

S

j

0

(y)

~

S

j

~

S

j

� S

j

0

8j.

Note: The y step has been added only for the proof and is not performed in prac-

tice.

Lemma 2.7 Greedy constructs a feasible dual solution ~y.

Proof: First, note one observation from the y step in the algorithm:

w

j

0

= H

g

X

i2

~

S

j

0

~y

i

:

Now, pick an arbitrary set S

j

= fe

1

; e

2

; : : : ; e

k

g and assume that greedy covers

this set in index order. Thus when e

i

is covered, j

~

S

j

j � k � i+1. Let j

0

be the index

17

of the �rst set chosen that covers e

i

. It follows that

~y

i

=

w

j

0

j

~

S

j

0

jH

g

�

w

j

j

~

S

j

jH

g

�

w

j

(k � i+ 1)H

g

The �rst inequality follows since at the step of the algorithm in which j

0

is chosen, it

must be the case that

w

j

0

j

~

S

j

0

j

�

w

j

j

~

S

j

j

:

We can now show that the variables ~y form a feasible solution to the dual of the

linear programming relaxation for set cover, since

X

i:e

i

2S

j

~y

i

=

k

X

i=1

~y

i

�

w

j

H

g

�

1

k

+

1

k � 1

+ : : :+

1

1

�

=

w

j

H

g

H

k

� w

j

;

since k = jS

j

j � g. �

Theorem 2.8 (Chvatal '79) Greedy is a H

g

-approximation algorithm.

Proof: In the previous lemma, we observed that for any set S

j

chosen to be in

the set cover, w

j

= H

g

P

e

i

2

~

S

j

~y

i

, where

~

S

j

is the set of elements in the set cover at

the time set j is chosen.

Thus

X

j2I

w

j

= H

g

X

i

~y

i

;

since each e

i

will be in exactly one of the

~

S

j

when that set is chosen.

By weak duality it follows that

X

j2I

w

j

� H

g

�OPT:

�

What else can we say about set cover?

18

Theorem 2.9 (Lund-Yannkakis '92, Feige '96, Raz-Safra '97, Arora-Sudan '97)

� If there exists a c lnn-approximation algorithmwhere c < 1 thenNP � DTIME(n

log

k

n

)

for some k.

� There exists some c < 1 such that if there exists a c log n-approximation algorithm

for set cover, then P = NP .

2.2 Set Cover: An Application

In the IBM labs, the set cover problem came up in the development of the IBM An-

tiVirus product. Antivirus programs typically detect viruses by checking programs

to see if they contain substrings of 20 or more bytes from a known virus. In terms of

the set cover problem, the problem was as follows:

� Sets: Substrings of 20 or more consecutive bytes (900 in number).

� Ground Set: Known viruses. (500 in number).

By using the greedy algorithm, a solution of 190 strings was found. The value of

the linear programming relaxation was 185, so the optimal solution had at least 185

strings in it. Thus the greedy solution was fairly close to optimal.

19

IEOR E6610 Approximation Algorithms February 4, 1998

Lecture 3

Lecturer: David P. Williamson Scribe: Olga Raskina

3.1 Metric Traveling Salesman Problem

We now turn to a well-known problem.

Metric Traveling Salesman Problem

� Input:

{ Complete graph G = (V;E) (graph is complete if 8i; j 2 V; 9(i; j) 2 E)

{ Costs c

i;j

� c(i; j) � 0 8(i; j) 2 E

{ c

i;j

= c

j;i

8(i; j) 2 E (symmetry property)

{ c

i;j

+ c

j;k

� c

i;k

8i; j; k 2 V (triangle inequality)

� Goal: Find a tour of minimum cost which visits each vertex in V exactly once.

De�nition 3.1 A tour in (V;E) is a sequence v

1

; v

2

; : : : ; v

k

such that v

i

2 V; (v

i

; v

i+1

) 2

E and v

k

= v

1

. The cost of the tour is

P

1�i�k�1

c(v

i

; v

i+1

).

De�nition 3.2 A Hamiltonian tour of (V;E) is a tour which visits each vertex in V

exactly once.

De�nition 3.3 An Eulerian tour of (V;E) is a tour which visits each edge in E exactly

once.

Theorem 3.1 (Euler) The graph (V;E) has an Eulerian tour if and only if it is connected

and every vertex has an even degree.

Lemma 3.2 Let G = (V;E) be a complete graph such that edge costs obey the triangle

inequality. If graph (V;E

0

), E

0

� E, has an Eulerian tour, then G has a Hamiltonian tour

of no greater cost.

Proof: Let's take the Eulerian tour of (V;E

0

), v

1

; v

2

; : : : ; v

i

; : : : ; v

j�1

; v

j

� v

i

; v

j+1

; : : : ; v

k

:

We can \shortcut" the visit to v

j

by considering the tour v

1

; v

2

; : : : ; v

i

; : : : ; v

j�1

; v

j+1

; : : : ; v

k

:

The change in the cost of the tour is c(v

j�1

; v

j+1

) � c(v

j�1

; v

j

) � c(v

j

; v

j+1

) � 0 (by

20

the triangle inequality). We can continue shortcutting vertices from the tour that are

visited more than once until we have a Hamiltonian tour of no greater cost. �

So we can �nd an Eulerian tour �rst and then get from it to a Hamiltonian tour.

Now consider Minimum-cost Spanning Tree (MST) of graph G. Let T be the edges

of MST. Let OPT be the cost of optimal tour in G.

Lemma 3.3

X

(i;j)2T

c

ij

� (1�

1

n

)OPT

Proof: Let v

1

; v

2

; : : : ; v

n

; v

n+1

� v

1

be an optimal tour. Since

P

1�i�n

c(v

i

; v

i+1

) �

OPT , there must exist some j such that c(v

j

; v

j+1

) �

OPT

n

: But we know that

f(v

1

; v

2

); (v

2

; v

3

):::(v

n

; v

n+1

)g � f(v

j

; v

j+1

)g is a spanning tree. So

X

(i;j)2T

c

i;j

�

X

1�i�n

c(v

j

; v

j+1

)� c(v

j

; v

j+1

) � OPT �

1

n

OPT = (1�

1

n

)OPT:

�

DoubleTree (DT)

Find MST T of G = (V;E).

Let E

0

be T with each edge repeated. Now every vertex has even degree,

and we can �nd Eulerian tour.

Find Eulerian tour of (V;E

0

).

Shortcut it to TSP tour of G = (V;E). Now we get Hamiltonian tour

of no greater cost.

Theorem 3.4 DoubleTree is a 2-approximation algorithm for Metric TSP.

Proof: Because of the duplication of edges the cost of the Eulerian tour of (V;E

0

)

is 2

P

(i;j)2T

c

ij

, and thus the Hamiltonian tour is no more than this amount. By the

previous lemma it is at most 2(1 �

1

n

)OPT . �

DT algorithm is wasteful since it doubles all the edges. To avoid it we can try

to use the fact that in every graph (and thus every spanning tree) the number of

odd-degree vertices is even.

In order to get a better algorithm, we need to �rst de�ne another problem, the

miminum-cost perfect matching problem (MCPM).

Minimum-cost Perfect Matching (MCPM)

� Input: G = (V;E), cost c

ij

8(i; j) 2 E, jV j is even

� Goal: Find a min-cost set of edges M such that each vertex is adjacent to

exactly one edge. (M does not necessarily exist)

The following theorem will prove useful.

21

Theorem 3.5 (Edmonds '67) There is a poly-time algorithm to �nd MCPM (if one

exists).

We can now give the following algorithm.

Christo�des

Find MST T

Let V

0

be the set of all odd-degree vertices in T

Let G

0

be the complete graph induced by V

0

Find a MCPM M in G

0

Shortcut T +M to a TSP tour of G.

Lemma 3.6 T +M has an Eulerian tour.

Proof: T was connected and we took all odd-degree vertices and added exactly

one edge adjacent to them. �

Theorem 3.7 (Christo�des '76) Christo�des is a

3

2

-approximation algorithm.

To prove the theorem we need the following lemma.

Lemma 3.8

P

(i;j)2M

c

ij

�

1

2

OPT

Proof: Let v

1

; v

2

; : : : ; v

n

; v

n+1

� v

1

be the optimal tour. Shortcut any v

i

such that

v

i

=2 V

0

. So we get the same tour v

i

1

; v

i

2

; : : : ; v

i

k

; v

i

k+1

� v

i

1

and all of these vertices

are in V

0

. Since we obtained it by shortcutting, we have

P

1�j�k

c(v

i

j

; v

i

j+1

) � OPT .

Since V

0

contains an even number of vertices, it must be the case that k = jV

0

j

is even. Then (v

i

1

; v

i

2

); (v

i

3

; v

i

4

); : : : ; (v

i

k�1

; v

i

k

) and (v

i

2

; v

i

3

); (v

i

4

; v

i

5

); : : : ; (v

i

k

; v

i

k+1

)

are both matchings of V

0

. Thus the cost of one of them is no more than

OPT

2

(since

their sum is no more than OPT). �

This proves the theorem, since the cost of the Eulerian tour T +M is then no

more than

3

2

OPT .

3.2 Dynamic Programming: Knapsack

Here we consider the \knapsack problem", and show that the technique of dynamic

programming is useful in designing approximation algorithms.

22

Knapsack

� Input: Set of items f1; : : : ; ng. Item i has a value v

i

and size s

i

. Total

\capacity" is B. v

i

; s

i

; B 2 Z

+

.

� Goal: Find a subset of items S that maximizes the value of

P

i2S

v

i

subject to

the constraint

P

i2S

s

i

� B.

We assume that s

i

� B 8i, since if s

i

> B it can never be included in any feasible

solution.

We now show that dynamic programming can be used to solve the knapsack

problem exactly.

De�nition 3.4 Let A(i; v) � size of \smallest" subset of f1; : : : ; ig with value exactly

v. (1 if no such subset exists).

Now consider the following dynamic programming algorithm. Note that if V =

max

i

v

i

, then nV is an upper bound on the value of any solution.

DynProg

V = max

i

v

i

For i 1 to n

A(i; 0) 0

For v 1 to nV

A(1; v)

(

s

1

if v

1

= v

1 otherwise

For i 2 to n

For v 1 to nV

if v

i

� v

A(i; v) min(A(i� 1; v); s

i

+A(i

1

; v � v

i

))

else

A(i; v) A(i� 1; v).

This algorithm computes allAs correctly and returns argmax

v

fA(n; v) : A(n; v) �

Bg, which is the largest value set of items that �ts in the knapsack. The running

time of the algorithm is O(n

2

V):

It is known that knapsack problem is NP-hard. But the running time of the

algorithm seems to be polynomial. Have we proven that P = NP ? No, since input

is usually represented in binary; that is, it takes dlog v

i

e bits to write down v

i

. Since

the running time is polynomial in max

i

v

i

, it is exponential in the input size of the v

i

.

We could think of writing the input to the problem in unary (i.e., v

i

bits to encode

v

i

), in which case the running time would be polynomial in the size of the input.

De�nition 3.5 An algorithm for a problem � with running time polynomial of input

encoded in unary is called pseudopolynomial.

23

If V were some polynomial in n, then the running time would be polynomial in

the input size (encoded in binary). We will now get an approximation scheme for

knapsack by rounding the numbers so that V is a polynomial in n and applying the

dynamic programming algorithm. This rounding implies some loss of precision, but

we will show that it doesn't a�ect the �nal answer by too much.

De�nition 3.6 A polynomial-time approximation scheme (PTAS) is a family of al-

gotithms fA

�

g for a problem � such that for each � > 0, A

�

is a (1 + �)-approximation

algorithm (for min problems) or (1 � �)-approximation algorithm (for max problems). If

the running time is also a polynomial in

1

�

, then A

�

is a fully polynomial approximation

scheme (FPAS, FPTAS).

Here is our new algorithm.

DynProg2

K

�V

n

v

0

i

 b

v

i

K

c 8i

Run DynProg on (s

i

; v

0

i

).

Theorem 3.9 DynProg2 is an FPAS for knapsack.

Proof: Let S be the set of items found by DynProg2. Let O be the optimal set.

We know V � OPT , since one possible knapsack is to simply take the most valuable

item. We also know, by the de�nition of v

0

i

,

Kv

0

i

� v

i

� K(v

0

i

+ 1);

which implies

Kv

0

i

� v

i

�K:

Then

X

i2S

v

i

� K

X

i2S

v

0

i

� K

X

i2O

v

0

i

(3.1)

�

X

i2O

v

i

� jOjK

�

X

i2O

v

i

� nK

=

X

i2O

v

i

� �V

� OPT � �OPT

= (1 � �)OPT:

24

Inequality (3.1) follows since the set of items in S is the optimal solution for the

values v

0

.

Furthermore, the running time is O(n

2

V

0

) = O(n

2

b

V

K

c) = O(n

3

1

�

), so it is an

FPAS. �

(Lawler '79) has given an FPAS which runs in time O(n log

1

�

+

1

�

4

).

3.3 Scheduling Identical Machines: List Schedul-

ing

We now turn to a scheduling problem. In the next lecture, we will see that dynamic

programming can be used to produce a PTAS for this problem as well.

Scheduling Identical Machines

� Input:

{ m identical machines

{ n jobs J

1

; : : : ; J

n

to be scheduled on the machines

{ p

1

; : : : ; p

n

the processing times of the jobs

� Goal: Find a schedule of jobs that minimizes the completion time of the last

job.

Before we get to the PTAS, we give what is quite possibly the �rst known approx-

imation algorithm.

List-scheduling

For i 1 to n

Schedule job i on the machine that has the least work assigned to it so far.

Theorem 3.10 (Graham '66) List-scheduling is a 2-approximation algorithm.

Proof: We will use two lower bounds on the length of the optimal schedule. The

average load

1

m

P

1�j�n

p

j

is a lower bound: the best possible schedule would be if

we could equally split all the processing time among all the machines, so the optimal

schedule will be at least as long as this. Furthermore, the optimal schedule has to be

as long as any processing time p

j

.

Suppose job J

k

is the last job to �nish in the List-Scheduling schedule. It must be

the case that no other machine is idle prior to the start of job J

k

, otherwise we would

have scheduled J

k

on that machine. So J

k

must start no later than

1

m

P

1�j�n

p

j

�

OPT . Then J

k

must �nish no later than

1

m

P

1�j�n

p

j

+ p

k

� OPT +OPT = 2OPT:

�

25

IEOR E6610 Approximation Algorithms February 11, 1998

Lecture 4

Lecturer: David P. Williamson Scribe: Eurico Lacerda

4.1 Scheduling Identical Machines: A PTAS

Scheduling Identical Machines

� Input:

{ m identical machines

{ n jobs J

1

; J

2

; : : : ; J

n

{ processing time of each job p

1

; p

2

; : : : ; p

n

� Goal: Schedule jobs on machines to minimize maximum completion time;

i.e. partition f1; : : : ; ng jobs into m sets M

1

; : : : ;M

m

so as to minimize

max

i

P

j2M

i

p

j

.

In the last class, we saw that List Scheduling is a 2-approximation algorithm.

In particular, we saw that we could produce a schedule of length no more than

1

m

P

j

p

j

+max

j

p

j

, and that both

1

m

P

j

p

j

and max

j

p

j

are lower bounds on the length

of the optimal schedule. The value

1

m

P

j

p

j

is sometimes called the average load.

We will now give a PTAS for the problem of scheduling identical machines. To

do this, we will use a (1 + �)-relaxed decision procedure.

De�nition 4.1 Given � and time T , a (1 + �)-relaxed decision procedure returns:

no: if there is no schedule of length � T

yes: if there is a schedule of length � (1 + �)T and it returns such a schedule

Let L � max(max

j

p

j

;

1

m

n

X

j=1

p

j

). We know that OPT 2 [L; 2L]. Our algorithm will

perform binary search on [L; 2L] with the decision procedure above, with �

0

�

3

down

to an interval of size �

0

L. The �rst step of the binary search is:

T =

3

2

L, �

0

�

3

Call relaxed decision procedure using T; �

0

If no: OPT 2 [

3

2

L; 2L]

yes: OPT 2 [L;

3

2

L], we get schedule of length (1 + �

0

)

3

2

L.

26

We continue in this way until we have an interval of length �

0

L; suppose it is [T; T+�

0

L]

By induction we know that OPT 2 [T; T + �

0

L], and we also have obtained a schedule

of length no more than (T + �

0

L)(1 + �

0

). It follows that

(T + �

0

L)(1 + �

0

) �

�

T +

�

3

L

��

1 +

�

3

�

� T

�

1 +

�

3

�

+ L

�

3

+

�

2

9

!

� OPT

�

1 +

�

3

�

+OPT

�

3

+

�

2

3

!

= OPT

1 + 2

�

3

+

�

2

9

!

� OPT (1 + �);

which holds for � < 1. Computationally, O(log

1

�

0

) calls to the procedure are required.

We now see how to get the necessary decision procedure by reducing it to yet

another decision procedure.

DecisionProcedure1

Split jobs into small jobs (p

j

� �T) and large jobs (p

j

> �T)

Call a (1 + �)-relaxed decision procedure on large jobs (with parameters T , �)

(�) If it returns no then return no

else use list scheduling of small jobs to complete schedule

(��) If schedule has length > (1 + �)T then return no

(���) else return yes

Lemma 4.1 DecisionProcedure1 is a (1 + �)-decision procedure.

Proof: It is trivial when no is returned in line (�) or yes is returned in line (���).

We only need to consider the case in which no is returned in line (��). This implies

that some machine is busy at time (1+ �)T , which implies that all machines are busy

at time T , since small jobs have length no more than �T . This means that the average

load is greater than T , which implies that there can be no schedule of length less than

or equal to T . �

Now, we only need to �nd a (1 + �)-relaxed decision procedure for large jobs.

Suppose only k di�erent-sized large jobs exist. Then, we can give a decision procedure

based on dynamic programming that returns yes/no if schedule of length � T exists

(and return such a schedule if it does.)

To do this, let a

i

denote the number of jobs of size i, let (a

1

; : : : ; a

k

) denote a set

of jobs, and letM(a

1

; : : : ; a

k

) denote the number of machines needed to schedule this

set of jobs by time T . Suppose there are n

i

large jobs of size i. Clearly,

P

i

n

i

� n.

27

BigJobDecProc

Let Q = f(a

1

; : : : ; a

k

) : (a

1

; : : : ; a

k

) can be scheduled on one machine

by time T; a

i

� n

i

;8ig

M(a

1

; : : : ; a

k

) 1;8(a

1

; : : : ; a

k

) 2 Q

M(0; 0; : : : ; 0) 0

For a

1

 1 to n

1

For a

2

 1 to n

2

: : :

For a

k

 1 to n

k

If (a

1

; : : : ; a

k

) =2 Q

M(a

1

; : : : ; a

k

) 1 + min

(b

1

;::: ;b

k

)2Q:b

i

�a

i

M(a

1

� b

1

; a

2

� b

2

; : : : ; a

k

� b

k

)

If M(n

1

; : : : ; n

k

) � m return yes

else return no

The running time of this algorithm is O(n

2k

): we execute the innermost statement

of the nested loop at most O(n

k

) times, and the innermost statement takes O(n

k

)

time, since there can be at most O(n

k

) elements in Q.

This does not yet give us a polynomial-time algorithm, since we might have as

many as n di�erent job sizes. But as with the Knapsack problem, we can cut down

the number of job sizes by rounding the data; this will lead only to a small loss of

precision. We do that with the following procedure.

RealBigJobDecProc

For each large job j

If p

j

2 [T�(1 + �)

i

; T �(1 + �)

i+1

)

p

0

j

 T�(1 + �)

i

Run BigJobDecProc on p

0

j

If it returns no then return no

else return yes and same schedule, with p

j

substituted for p

0

j

Note that the job lengths p

0

j

are: T�; T �(1 + �); T �(1 + �)

2

; : : : ; T �(1 + �)

l

= T , so

that l = O(log

1+�

�). Thus the number of di�erent job sizes is at most l + 1, which

implies that the running time is O(n

2(l+1)

) = O(n

log

(1+�)

1=�

).

Lemma 4.2 RealBigJobDecProc is a (1 + �)-relaxed decision procedure for the large

jobs.

Proof: If it returns no the algorithm is correct since p

0

j

� p

j

. If it returns yes

then each job's running time goes from p

0

j

! p

j

, an increase of at most a factor of

(1 + �). Since schedule for p

0

j

has length no more than T , the same schedule for p

j

has length no more than (1 + �)T . �

The algorithm and analysis given above is due to Hochbaum and Shmoys (1982).

28

Up until now, we have studied fairly \classical" approximation algorithms (what-

ever this means in a �eld less than 40 years old). From this point in the course

onwards, we will look at more modern techniques.

4.2 Randomization

We begin by looking at randomized approximation algorithms. We allow our algo-

rithms the additional step random(p) which has the property

random(p) =

(

1 w/ prob. p

0 w/ prob. 1� p

De�nition 4.2 A randomized �-approximation algorithm runs in randomized polyno-

mial time and outputs a solution of value within a factor of � of the optimal value:

� With high probability (� 1 �

1

n

c

, for some c)

OR

� In expectation over random choices of algorithm

4.2.1 The Maximum Cut Problem

We begin looking at randomized algorithms by looking at the maximum cut problem,

sometimes called MAX CUT for short.

Maximum cut (MAX CUT)

� Input:

{ Undirected graph G = (V;E)

{ Weights w

ij

� 0 for (i; j) 2 E; assume w

ij

= 0 for (i; j) =2 E

� Goal: Find S � V that maximizes

X

i2S

j =2S

w

ij

:

Unlike MIN CUT, this is an NP-hard problem, even if w

ij

2 f0; 1g. For notational

simplicity, assume V = f1; : : : ; ng.

What is the dumbest algorithm you could possibly have?

DumbRandom

S ;

For i 1 to n

If random (1=2) = 1

S S [fig

29

Theorem 4.3 (� Sahni, Gonzalez '76) DumbRandom is a 1=2-approximation algorithm.

Proof: Let the random variables:

X

ij

=

(

1 if i 2 S; j =2 S or i =2 S; j 2 S

0 otherwise

and let

W =

X

i<j

w

ij

X

ij

:

Let us consider the expected value of W , which is the value of the cut obtained

by the randomized algorithm. Then

E[W] = E[

X

i<j

w

ij

X

ij

]

=

X

i<j

w

ij

E[X

ij

]

=

X

i<j

w

ij

Pr[i 2 S; j =2 S or i =2 S; j 2 S]

=

1

2

X

i<j

w

ij

�

1

2

OPT;

since

P

i<j

w

ij

must certainly be an upper bound on the value of a maximum cut.

�

4.2.2 The Maximum Satis�ability Problem

We now turn to yet another problem, the maximum satis�ability problem, sometimes

called MAX SAT for short.

Maximum satis�ability (MAX SAT)

� Input:

{ n Boolean variables x

1

; x

2

; : : : ; x

n

(i.e., x

i

= TRUE or FALSE)

{ m Clauses C

1

; C

2

; : : : ; C

m

(e.g., C

3

= x

1

_ x

3

_ x

5

_ x

17

)

{ Weights w

j

for each clause C

j

� Goal: Find an assignment of TRUE/FALSE to each x

i

that maximizes weight

of satis�ed clauses (i.e., has a positive literal set to TRUE or a negative literal

set to FALSE).

We consider a randomized approximation algorithm for this problem that looks

suspiciously familar.

30

DumbRandom2

For i 1 to n

If random (1=2) = 1

x

i

= TRUE

else

x

i

= FALSE

Theorem 4.4 (� Johnson '74) DumbRandom2 is a 1=2�approximation algorithm.

Proof: Let the random variable:

X

j

=

(

1 if clause C

j

is satis�ed

0 otherwise

We let the random variable W denote the value of the satis�ed clauses:

W =

X

j

w

j

X

j

:

Suppose clause C

j

has l

j

literals. Then

E[W] = E[

X

j

w

j

X

j

]

=

X

j

w

j

E[X

j

]

=

X

j

w

j

Pr[C

j

is satis�ed]

=

X

j

w

j

1�

�

1

2

�

l

j

!

�

1

2

X

j

w

j

�

1

2

OPT;

since l

j

� 1 and certainly

P

j

w

j

� OPT . �

Observe that if we know that all clauses have at least k literals, then DumbRan-

dom2 is an �-approximation algorithm with � = 1 � (

1

2

)

k

. This will come in handy

next time when we discuss improved approximation algorithms for MAX SAT.

31

IEOR E6610 Approximation Algorithms February 18, 1998

Lecture 5

Lecturer: David P. Williamson Scribe: Yiqing Lin

5.1 Review of Johnson's Algorithm

We begin by reviewing the maximum satis�ability problem (MAX SAT) and the

\dumb" randomized algorithm for it.

MAX SAT

� Input:

{ n boolean variables x

1

; x

2

; : : : ; x

n

{ m clauses C

1

; C

2

; : : : ; C

m

(e.g. x

3

_ �x

5

_ �x

7

_ x

11

)

{ weight w

i

� 0 for each clause C

i

� Goal: Find an assignment of TRUE/FALSE for the x

i

that maximizes total

weight of satis�ed clauses. (e.g. x

3

_ �x

5

_ �x

7

_ x

11

is satis�ed if x

3

is set TRUE,

x

5

is set FALSE, x

7

is set FALSE, or x

11

is set TRUE).

DumbRandom

For i 1 to n

If random(

1

2

) = 1

x

i

 TRUE

else

x

i

 FALSE.

Theorem 5.1 (� Johnson '74) DumbRandom is a

1

2

-approximation algorithm.

Proof: Consider a random variable X

j

such that

X

j

=

(

1 if clause j is satis�ed

0 otherwise.

Let

W =

X

j

w

j

X

j

:

32

Then

E[W] =

X

j

w

j

E[X

j

] =

X

j

w

j

Pr[clause j is satis�ed]

=

X

j

w

j

1 �

�

1

2

�

l

j

!

�

1

2

X

j

w

j

�

1

2

OPT;

where l

j

= # literals in clause j, since l

j

� 1 and the sum of the weights of all clauses

is an upper bound on the value of an optimal solution. �

Observe that if l

j

� k 8j, then we have a (1 � (

1

2

)

k

)�approximation algorithm.

Thus Johnson's algorithm is bad when clauses are short, but good if clauses are long.

Although this seems like a pretty naive algorithm, a recent theorem shows that

in fact this is the best that can be done in some cases. MAX E3SAT is the subset of

MAX SAT instances in which each clause has exactly three literals in it. Note that

Johnson's algorithm gives a

7

8

-approximation algorithm in this case.

Theorem 5.2 (H�astad '97) If MAX E3SAT has an �-approximation algorithm, � >

7

8

,

then P = NP .

5.2 Derandomization

We can make the algorithm deterministic using Method of Conditional Expectations

(Spencer, Erd�os). This method is very general, and allows for the derandomization

of many randomized algorithms.

Derandomized Dumb

For i 1 to n

W

T

 E[W jx

1

; x

2

; : : : ; x

i�1

; x

i

 TRUE]

W

F

 E[W jx

1

; x

2

; : : : ; x

i�1

; x

i

 FALSE]

If W

T

� W

F

x

i

 TRUE

else

x

i

 FALSE.

How do we calculate E[W jx

1

; x

2

; : : : ; x

i

] in this algorithm? By linearity of expec-

tations, we know that

E[W j x

1

; x

2

; : : : ; x

i

] =

X

j

w

j

E[X

j

j x

1

; x

2

; : : : ; x

i

]:

Furthermore, we know that

E[X

j

j x

1

; x

2

; : : : ; x

i

] = Pr[clause j is satis�ed j x

1

; : : : ; x

i

]:

33

It is not hard to determine that

Pr(clause j is satis�ed j x

1

; : : : ; x

i

)

=

(

1 if x

1

; : : : ; x

i

already satisfy clause j

1 � (

1

2

)

k

otherwise when k=# variables of x

i+1

; : : : ; x

n

in clause j

Consider, for example, the clause x

3

_ �x

5

_ �x

7

_ x

11

. It is not hard to see that

Pr[clause satis�ed j x

1

 T; x

2

 F; x

3

 T; x

4

 F] = 1;

since x

3

 T satis�es the clause. On the other hand,

Pr[clause satis�ed j x

1

 T; x

2

 F; x

3

 F; x

4

 F] = 1�

�

1

2

�

3

=

7

8

;

since only the \bad" settings of x

5

; x

7

; and x

11

will make the clause unsatis�ed.

Why does this give a

1

2

-approximation algorithm?

E[W jx

1

; x

2

; : : : ; x

i�1

] = Pr[x

i

= TRUE]E[W jx

1

; : : : ; x

i�1

; x

i

 TRUE]

+ Pr[x

i

= FALSE]E[W jx

1

; : : : ; x

i�1

; x

i

 FALSE]:

By construction of the algorithm, after setting x

i

E[W jx

1

; x

2

; : : : ; x

i

] � E[W jx

1

; x

2

; : : : ; x

i�1

]:

Therefore,

E[W jx

1

; : : : ; x

n

] � E[W] �

1

2

OPT:

Notice that E[W j x

1

; : : : ; x

n

] is the value of the solution using the algorithm.

The Method of Conditional Expectations allows us to give deterministic variants

of randomized algorithms for most of the randomized algorithms we discuss. Why

discuss the randomized algorithms, then? It turns out that usually the randomized

algorithm is easier to state and analyze that its corresponding deterministic variant.

5.3 Flipping Bent Coins

As a stepping stone to better approximation algorithms for the maximumsatis�ability

problem, we consider what happens if we bias the probabilities for each boolean

variable. To do this, we restrict our attention for the moment to MAX SAT instances

in which all length 1 clauses are not negated.

Bent Coin

For 1 1 to n

If random(p) = 1

x

i

 TRUE

else

x

i

 FALSE.

We assume p �

1

2

.

34

Lemma 5.3 Pr[clause j is satis�ed] � min(p; 1 � p

2

)

Proof: If l

j

= 1 then

Pr[C

j

is satis�ed] = p;

since every length 1 clause appears positively. If l

j

� 2 then

Pr[C

j

is satis�ed] � 1 � p

2

:

This follows since p �

1

2

� (1� p). For example, for the clause �x

1

_ �x

2

;

Pr[clause is satis�ed] = 1 � p � p = 1� p

2

;

while for �x

1

_ x

2

;

Pr[clause is satis�ed] = 1 � p(1 � p) � 1� p

2

:

�

We set p = 1 � p

2

) p =

1

2

(

p

5 � 1) � 0:618:

Theorem 5.4 (Lieberherr, Specker '81) Bent Coin is a p-approximation algorithm for

MAX SAT when all length 1 clauses are not negated.

Proof:

E[W] =

X

j

w

j

Pr[C

j

is satis�ed] � p

X

j

w

j

� p �OPT:

�

5.4 Randomized Rounding

We now consider what would happen if we tried to give di�erent biases to determine

each x

i

. To do that, we go back to our general technique for deriving approximation

algorithms. Recall that our general technique is:

1. Formulate the problem as an integer program.

2. Relax it to a linear program and solve.

3. Use the solution (somehow) to obtain an integer solution close in value to LP

solution.

We now consider a very general technique introduced by Raghavan and Thompson,

who use randomization in Step 3.

Randomized Rounding (Raghavan, Thomson '87)

35

1. Create an integer program with decision variables x

i

2 f0; 1g.

2. Get an LP solution with 0 � x

�

i

� 1.

3. To get an integer solution:

If random(x

�

i

) = 1

x

i

 1

else

x

i

 0

We now attempt to apply this technique to MAX SAT.

Step 1: Wemodel MAX SAT as the following integer program, in which we introduce

a variable z

j

for every clause and a variable y

i

for each boolean variable x

i

.

Max

X

j

w

j

z

j

subject to:

X

i2I

+

j

y

i

+

X

i2I

�

j

(1 � y

i

) � z

j

8C

j

:

_

i2I

+

j

x

i

_

_

i2I

�

j

�x

i

y

i

2 f0; 1g

0 � z

j

� 1:

Step 2: To obtain an LP, we relax y

i

2 f0; 1g to 0 � y

i

� 1. Note that if z

LP

is the

LP optimum and OPT is the integral optimum, then z

LP

� OPT .

Step 3: Now applying randomized rounding gives the following algorithm:

Random Round

Solve LP, get solution (y

�

; z

�

)

For i 1 to n

If random(y

�

i

) = 1

x

i

 TRUE

else

x

i

 FALSE.

Theorem 5.5 (Goemans, W '94) Random Round is a (1�

1

e

)-approximation algorithm,

where 1 �

1

e

� 0:632:

Proof: We need two facts to prove this theorem.

Fact 5.1

k

p

a

1

a

2

: : : a

k

�

1

k

(a

1

+ a

2

+ � � �+ a

k

)

for nonnegative a

i

.

36

Fact 5.2 If f(x) is concave on [l; u] (that is, f

00

(x) � 0 on [l; u]), and f(l) � al+ b and

f(u) � au+ b; then

f(x) � ax+ b on [l; u]:

Consider �rst a clause C

j

of the form x

1

_ x

2

_ : : : _ x

k

. Notice that the corre-

sponding LP constraint is

P

k

i=1

y

�

i

� z

�

j

.

Pr[clause is satis�ed] = 1 �

k

Y

i=1

(1 � y

�

i

)

� 1 �

k �

P

k

i=1

y

�

i

k

!

k

(5.1)

� 1 �

1 �

z

�

j

k

!

k

(5.2)

�

"

1 �

�

1 �

1

k

�

k

#

z

�

j

;(5.3)

where (5.1) follows from Fact 1, (5.2) follows by the LP constraint, and (5.3) follows

by Fact 2, since

z

�

j

= 0) 1� (1 � z

�

j

=k)

k

= 0

z

�

j

= 1) 1� (1 � z

�

j

=k)

k

= 1 �

�

1 �

1

k

�

k

and 1� (1 � z

�

j

=k)

k

is concave.

We now claim that this inequality holds for any clause, and we prove this by

example. Consider now the clause x

1

_ x

2

_ : : : _ x

k�1

_ �x

k

. Then

Pr[clause is satis�ed] = 1 �

k�1

Y

i=1

(1 � y

�

i

)y

�

k

= 1 �

(k � 1) �

P

k�1

i=1

y

�

i

+ y

�

k

k

!

:

However, since

P

k�1

i=1

y

�

i

+ (1 � y

�

k

) � z

�

j

for this clause, the result is the same.

Therefore,

E[W] =

X

j

w

j

Pr[clause j is satis�ed]

� min

k

"

1�

�

1�

1

k

�

k

#

X

j

w

j

z

�

j

� min

k

"

1�

�

1�

1

k

�

k

#

�OPT �

�

1 �

1

e

�

�OPT;

since (1 �

1

x

)

x

converges to e

�1

from below. �

Observe that this algorithm does well when all clauses are short. If l

j

� k for all

j, then the performance guarantee becomes 1� (1� 1=k)

k

.

37

5.5 A Best-of-Two Algorithm for MAX SAT

In the previous section we used the technique of randomized rounding to improve a

:618-approximation algorithm (for a subclass of MAX SAT) to a :632-approximation

algorithm for MAX SAT. This doesn't seem like much of an improvement.

But notice that Johnson's algorithm and the randomized rounding algorithm have

con
icting bad cases. Johnson's algorithm is bad when clauses are short, whereas

randomized rounding is bad when clauses are long. It turns out we can get an

approximation algorithm that is much better than either algorithm just by taking

the best solution of the two produced by the two algorithms.

Best-of-two

Run DumbRandom, get assign x

1

of weight W

1

Run RandomRound, get assign x

2

of weight W

2

If W

1

�W

2

return x

1

else

return x

2

.

Theorem 5.6 (Goemans, W'94) Best-of-two is a

3

4

-approximation algorithm for MAX

SAT.

Proof:

E[max(W

1

;W

2

)] � E

�

1

2

W

1

+

1

2

W

2

�

=

X

j

w

j

�

1

2

Pr[clause j is satis�ed by DumbRandom]

+

1

2

Pr[clause j is satis�ed by RandomRound]

�

�

X

j

w

j

2

4

1

2

1 �

�

1

2

�

l

j

!

+

1

2

2

4

1 �

1 �

1

l

j

!

l

j

3

5

z

�

j

3

5

�

X

j

w

j

�

3

4

z

�

j

�

(5.4)

=

3

4

X

j

w

j

z

�

j

�

3

4

OPT:

We need to prove inequality (5.4), which follows if

1

2

1�

�

1

2

�

l

j

!

+

1

2

2

4

1�

1�

1

l

j

!

l

j

3

5

z

�

j

�

3

4

z

�

j

:

38

The cases l

j

= 1; 2 are easy:

l

j

= 1)

1

2

�

1

2

+

1

2

z

�

j

�

3

4

z

�

j

l

j

= 2)

1

2

�

3

4

+

1

2

�

3

4

z

�

j

�

3

4

z

�

j

For the case l

j

� 3, we take the minimum possible value of the two terms:

l

j

� 3)

1

2

�

7

8

+

1

2

(1�

1

e

)z

�

j

�

3

4

z

�

j

�

The best known approximation algorithm for MAXSAT so far: � 0:77-approximation

algorithm.

Research question: Can you get a

3

4

-approximation algorithm for MAX SAT with-

out solving an LP?

39

IEOR E6610 Approximation Algorithms February 25, 1998

Lecture 6

Lecturer: David P. Williamson Scribe: Xiangdong Yu

6.1 Randomized Rounding continued

Recall the maximum satis�ability problem (MAX SAT) that we looked at last time.

MAX SAT

� Input:

{ n boolean variables x

1

; x

2

; : : : ; x

n

{ m clauses C

1

; C

2

; : : : ; C

m

(e.g. x

3

_ �x

5

_ �x

7

_ x

11

)

{ weight w

i

� 0 for each clause C

i

� Goal: Find an assignment of TRUE/FALSE for the x

i

that maximizes total

weight of satis�ed clauses. (e.g. x

3

_ �x

5

_ �x

7

_ x

11

is satis�ed if x

3

is set TRUE,

x

5

is set FALSE, x

7

is set FALSE, or x

11

is set TRUE).

Recall that last time we introduced the concept of randomized rounding, and tried

to apply it to MAX SAT. We did this by setting up the following linear programming

relaxation of the MAX SAT problem:

Max

X

j

w

j

z

j

subject to:

X

i2I

+

j

y

i

+

X

i2I

�

j

(1 � y

i

) � z

j

8C

j

:

_

i2I

+

j

x

i

_

_

i2I

�

j

�x

i

0 � y

i

� 1

0 � z

j

� 1

We considered what happened if we set x

i

TRUE with probability y

�

i

, where y

�

is an optimal solution. We showed that this gave a (1�

1

e

)-approximation algorithm

for MAX SAT. We further showed that by taking the better of the solutions given by

this algorithm and Johnson's algorithm led to a

3

4

-approximation algorithm for MAX

SAT.

Today we show that we can obtain a

3

4

-approximation algorithm directly by a

variation of randomized rounding in which we set x

i

TRUE with probability g(y

�

i

),

where g : [0; 1]! [0; 1].

40

Consider the following algorithm:

Nonlinear-Round

Solve LP, get (y

�

; z

�

).

Pick any function g(y) such that 1 � 4

�y

� g(y) � 4

y�1

for y 2 [0; 1].

For i 1 to n

If random(g(y

�

i

)) = 1

x

i

 TRUE

else

x

i

 FALSE.

Theorem 6.1 (Goemans, W '94) Nonlinear-Round is a 3=4-approximation algorithm for

MAX SAT.

Proof: Recall Fact 2 in previous lecture: If f(x) is concave in [l; u], and f(l) �

al+ b; f(u) � au+ b, then f(x) � ax+ b on [l; u].

First consider a clause of form x

1

_ : : : _ x

k

. Then

Pr[C

j

satis�ed] = 1�

k

Y

i=1

(1 � g(y

�

i

))

� 1�

k

Y

i=1

4

�y

�

i

= 1� 4

�

P

k

i=1

y

�

i

� 1� 4

�z

�

j

(6.1)

�

3

4

z

�

j

;(6.2)

where (6.1) follows from the LP constraint

P

k

i=1

y

�

i

� z

�

j

, and (6.2) follows from Fact

2.

To show that this result holds in greater generality, suppose we negate the last

variable, and have a clause of form x

1

_ : : : _ �x

k

. Then

Pr[C

j

satis�ed] = 1�

k�1

Y

i=1

(1 � g(y

�

i

))� g(y

�

k

)

� 1�

k�1

Y

i=1

4

�y

�

i

� 4

�(1�y

�

k

)

� 1� 4

�z

�

j

(6.3)

�

3

4

z

�

j

;(6.4)

where again (6.3) follows from the LP constraint

P

k�1

i=1

y

�

i

+ (1 � y

�

k

) � z

�

j

and (6.4)

follows from Fact 2. Clauses of other forms are similar.

41

Hence,

E[W] =

X

j

w

j

Pr[C

j

satis�ed] �

3

4

X

j

w

j

z

�

j

�

3

4

OPT

�

6.2 MAX CUT in Dense Graphs

To show that the use of randomization can get quite sophisticated, we turn to again

to the maximum cut problem.

MAX CUT

� Input: Undirected Graph G = (V;E), and weights w

ij

� 0;8(i; j) 2 E.

� Goal: Find subset S � V that maximizes w(S) =

P

(i;j)2E;i2S;j 62S or i 62S;j2S

w

ij

This lecture considers the case that the graph is unweighted (i.e. w

ij

= 1 8(i; j) 2

E) and the graph is dense, i.e. jEj � �n

2

for some � > 0, where n = jV j. We give

a result of Arora, Karger, and Karpinski that gives a PTAS for MAX CUT in this

case.

An implication of this case is that OPT �

�

2

n

2

. To see this, recall our Dumb-

Random algorithm for the maximum cut problem that produced a cut with expected

value at least

1

2

P

(i;j)2E

w

ij

. Since the expected value of a random cut is this large,

the value of the maximum cut must also be this large.

Let us consider a particular model of the maximum cut problem. The problem

can be restated as to �nd an assignment x which maps each vertex in V to 0 or 1,

with x

i

= 1 i� i 2 S, and the objective function becomes

max

x

i

2f0;1g

X

i2V

x

i

X

(i;j)2E

(1� x

j

):

To see this, note that

P

(i;j)2E

(1�x

j

) counts the number of edges adjacent to x

i

that

have endpoints of value 0. Since we multiply each such term by x

i

, we only count

these edges when x

i

= 1. So for each vertex x

i

we count all the edges that have an

endpoint on the other side of the cut.

Since we will be using the term

P

(i;j)2E

(1 � x

j

) quite frequently, we de�ne some

notation for it. Let ZN(x; i) as the \Number of Zero Neighbors of i under x", i.e.,

P

(i;j)2E

(1� x

j

).

Let x

�

denote an optimal solution. Suppose there is a Genie that gives us values

Z

i

such that Z

i

� �n � ZN(x

�

; i) � Z

i

+ �n. Can we make use of this information to

obtain a near-optimal solution?

42

The answer is \yes", and we do this by using randomized rounding. Consider the

following linear program:

Max

X

i2V

Z

i

y

i

subject to:

Z

i

� �n �

X

(i;j)2E

(1� y

j

) � Z

i

+ �n 8i

0 � y

i

� 1

Notice by the de�nition of Z

i

, the optimal solution x

�

is feasible for this LP. And

the objective function value for x

�

is close to OPT , as we see below:

X

i2V

Z

i

x

�

i

�

X

i2V

(ZN(x

�

; i)� �n)x

�

i

= OPT � �n

X

i2V

x

�

i

� OPT � �n

2

�

�

1�

2�

�

�

OPT

So the LP optimal Z

LP

� (1�

2�

�

)OPT .

Now consider the following randomized rounding algorithm.

AKK (Arora, Karger and Karpinski '95)

Get Z

i

from genie. Solve LP, get y

�

.

For all i 2 V ,

If random(y

�

i

) = 1

x

0

i

 1

else

x

0

i

 0.

Observe that the value of the cut obtained is

P

i2V

x

0

i

ZN(x

0

; i).

We need the following well-known result in our proof. This theorem is extremely

important, and is used repeatedly in the analysis of randomized algorithms.

Theorem 6.2 (Cherno�) Let X

1

; : : : ;X

n

be n independent 0-1 random variables

(not necessarily from the same distribution). Then for X =

P

n

i=1

X

i

and � = E[X], and

0 � � < 1,

Pr[X � (1 + �)�] > 1� e

���

2

=3

;

and

Pr[X � (1� �)�] > 1 � e

���

2

=2

:

43

Let's �rst calculate the expected value of ZN for the solution x

0

.

E[ZN(x

0

; i)] = E

2

4

X

(i;j)2E

(1 � x

0

j

)

3

5

=

X

(i;j)2E

(1 � E[x

0

j

])

=

X

(i;j)2E

(1 � y

�

j

)

= ZN(y

�

; i)

We now show that with high probability this expected value is close to the

value from the linear programming solution by applying Cherno� bounds. Set �

i

=

q

2c logn

ZN(y

�

;i)

. Then

Pr[ZN(x

0

; i) < (1 � �

i

)ZN(y

�

; i)] � e

���

2

=2

= e

�ZN(y

�

;i)

2c log n

ZN(y

�

;i)

= e

�c logn

= 1=n

c

Then with high probability (w.h.p.) 1� 1=n

c�1

,

X

i

x

0

i

ZN(x

0

; i) �

X

i

x

0

i

(1� �

i

)ZN(y

�

; i)

�

X

i

x

0

i

�

ZN(x

0

; i)�

q

c log nZN(y

�

; i)

�

�

X

i

x

0

i

�

Z

i

� �n�

q

2c log nZN(y

�

; i)

�

�

X

i

x

0

i

Z

i

�

�

�n+

q

2cn log n

�

X

i

x

0

i

Now we stop to bound

P

i

x

0

i

Z

i

. Since

E

"

X

i

x

0

i

Z

i

#

=

X

i

Z

i

E[x

0

i

] =

X

i

Z

i

y

�

i

Using a Cherno� bound

1

with � =

r

2c logn

P

i

y

�

i

Z

i

, we have,

Pr[

X

i

x

0

i

Z

i

< (1� �)

X

i

Z

i

y

�

i

] �

1

n

c

:

1

Note that the variables are not 0-1, so the given theorem does not apply. However, another

Cherno�-style theorem does apply. Thanks to the scribe for pointing this out. { DPW

44

So w.h.p.,

X

i

x

0

i

Z

i

� (1 � �)

X

i

Z

i

y

�

i

=

1 �

s

2c log n

P

i

y

�

i

Z

i

!

X

i

Z

i

y

�

i

=

X

i

Z

i

y

�

i

�

s

2c log n

X

i

y

�

i

Z

i

�

X

i

Z

i

y

�

i

� n

q

2c log n

Use this result to continue,

X

i

x

0

i

ZN(x

0

; i) �

X

i

Z

i

y

�

i

� n

q

2c log n� (�n+

q

2cn log n)

X

i

x

0

i

�

�

1�

2�

�

�

OPT � n

q

2c log n� �n

2

� n

q

2cn log n

�

�

1�

2�

�

�

OPT �

2�

�

OPT � o(1)OPT

�

�

1�

5�

�

�

OPT;

where the last line follows for n large enough to swamp out the o(1) term by

�

�

OPT .

Then if we set �

0

=

5�

�

, Algorithm AKK produces solution of value � (1 � �

0

)OPT

with high probability for su�ciently large n.

6.2.1 Degenie-izing the algorithm

We need to show how the \genie" works, which is based on the theorem below.

Theorem 6.3 Given a

1

; : : : ; a

n

2 f0; 1g, Z =

P

n

i=1

a

i

. If we pick a random set S �

f1; : : : ; ng, with jSj = c log n=�

2

, then, w.h.p.

Z � �n �

n

jSj

X

i2S

a

i

� Z + �n:

Pick random subset S of c log n=�

2

vertices. Set Z

i

=

n

jSj

P

(i;j)2E;j2S

(1 � x

�

). By

the theorem, w.h.p.,

ZN(x

�

; i)� �n � Z

i

� ZN(x

�

; i) + �n

But we still don't know x

�

! In order to get around this problem, we run the

algorithm for all 2

jSj

= n

O(1=�

2

)

possible settings of x

�

j

2 f0; 1g. We don't know which

one gives the optimal solution, but it doesn't matter; we simply return the largest

cut found, and that will be guaranteed to be within a (1 � �

0

) factor of OPT, since

at least one of the cuts will be this large.

45

IEOR E6610 Approximation Algorithms March 4, 1998

Lecture 7

Lecturer: David P. Williamson Scribe: R.N. Uma

7.1 Semide�nite Programming

De�nition 7.1 A matrix X 2 <

n�n

is positive semide�nite (psd) i� 8a 2 <

n

, a

T

Xa �

0.

Sometimes we will write X � 0 to denote that X is psd.

If X 2 <

n�n

is a symmetric matrix, then the following are equivalent:

1. X is psd;

2. X has non-negative eigenvalues;

3. X = V

T

V for some V 2 <

m�n

, where m � n.

A semide�nite program (SDP) can be formulated as

Max or Min

X

c

ij

x

ij

subject to:

X

i;j

a

ijk

x

ij

= b

k

8k

X = (x

ij

) � 0 and X is symmetric

SDP's have the useful property that they can be solved in polynomial time using

� the ellipsoid method

� modi�cations of interior-point methods that are used to solve LP's

to within an additive error of �. The running time depends on �, but in a nice way.

This additive error of � is necessary because sometimes the solutions to SDP's may

be irrational numbers.

46

SDP is equivalent to vector programming (VP) which can be formally stated as

Max or Min

X

c

ij

(~v

i

� ~v

j

)

subject to:

X

i;j

a

ijk

(~v

i

� ~v

j

) = b

k

8k

~v

i

2 <

n

8i

This follows since X is psd and X is symmetric i� X = V

T

V i.e., i� x

ij

= ~v

i

� ~v

j

where

V =

0

B

B

B

@

.

.

.

.

.

.

.

.

.

~v

1

~v

2

� � � ~v

3

.

.

.

.

.

.

.

.

.

1

C

C

C

A

(That is, the ~v

i

are the column vectors of V). So if we have a feasible solution to

SDP, then we have a solution to VP with the same value and vice versa.

7.1.1 MAX CUT using Semide�nite Programming

We now consider applying semide�nite programming to the MAX CUT problem. Let

us consider the following formulation of the MAX CUT problem which we denote by

(A).

Max

1

2

X

i<j

w

ij

(1� y

i

� y

j

)

(A) y

i

2 f�1;+1g 8i

We claim that if we can solve (A), then we can solve the MAX CUT problem.

Claim 7.1 The formulation (A) models MAX CUT.

Proof: Consider the cut given by S = fi 2 V jy

i

= �1g. We have

1

2

X

i<j

w

ij

(1� y

i

� y

j

) =

1

2

X

i<j:y

i

=y

j

w

ij

(1� y

i

� y

j

) +

1

2

X

i<j:y

i

6=y

j

w

ij

(1 � y

i

� y

j

)

This is because y

i

2 f�1;+1g for all i. So for a given i and j, either y

i

= y

j

or

y

i

6= y

j

. If y

i

= y

j

, then 1 � y

i

� y

j

= 0 and if y

i

6= y

j

, then 1 � y

i

� y

j

= 2. So in the

above expression, the �rst term becomes zero. So we have

1

2

X

i<j

w

ij

(1� y

i

� y

j

) =

1

2

X

i<j:y

i

6=y

j

w

ij

(1 � y

i

� y

j

)

=

1

2

X

i<j:y

i

6=y

j

w

ij

� 2

=

X

i<j:i2S;j 62S(or)i 62S;j2S

w

ij

47

�

Let us now consider a vector programming relaxation (denoted (B)) of (A).

Z

SDP

= Max

1

2

X

i<j

w

ij

(1 � ~v

i

� ~v

j

)

(B) ~v

i

� ~v

i

= 1 8i

~v

i

2 <

n

8i:

To see that (B) is indeed a relaxation of (A), we can view the y

i

's in (A) as 1-

dimensional vectors and so anything that is feasible for (A) is feasible for (B). Also

note that this implies Z

SDP

� OPT .

We can solve (B) in polynomial time, but not (A). So how do we convert a

solution of (B) to a solution of (A) ? To do this, we would like to apply randomized

rounding in some way.

Consider the following algorithm:

VectorRound

Solve vector programming problem (B) and get vectors

~

v

�

Choose a random vector ~r uniformly from the unit n-sphere

S ;

for i 1 to n

if

~

v

�

i

� ~r � 0

S S [fig

The vector ~r is a normal to some hyperplane. So everything that has a non-

negative dot product with ~r will be on one side of the hyperplane and everything

that has a negative dot product with ~r will be on the other side (see Figure 7.1).

To get vector ~r, choose ~r = (r

1

; r

2

; � � � ; r

n

), such that r

i

2 N (0; 1) where N is a

normal distribution. (The normal distributionN (0; 1) can be simulated using uniform

distribution on [0; 1].)

Theorem 7.2 VectorRound is a 0:878-approximation algorithm.

To prove this theorem we require a couple of facts and a couple of lemmas which

we give below.

Fact 7.1

~r

k~rk

(i.e., normalization of ~r) is uniformly distributed over a unit sphere.

Fact 7.2 The projection of ~r onto two lines l

1

and l

2

are independent and normally

distributed i� l

1

and l

2

are orthogonal.

48

v_k

r

v_i

v_j

Figure 7.1: A random hyperplane example

r’

r

Figure 7.2: Projection of r to r

0

49

Corollary 7.3 Let

~

r

0

be the projection of ~r onto a plane.

~

r

0

k

~

r

0

k

is uniformly distributed

on a unit circle on the plane (see Figure 7.2).

Lemma 7.4 Pr[i 2 S; j 62 S or i 62 S; j 2 S] =

1

�

arccos(

~

v

�

i

�

~

v

�

j

).

Proof:

r

v_j*

v_i*
r’’

r’

Figure 7.3: Projection of r into plane de�ned by v

�

i

and v

�

j

Let

~

r

0

be the projection of ~r onto the plane de�ned by

~

v

�

i

and

~

v

�

j

.

If ~r =

~

r

0

+

~

r

00

(Figure 7.3), then

~

v

�

i

� ~r =

~

v

�

i

� (

~

r

0

+

~

r

00

)

=

~

v

�

i

�

~

r

0

The second equality follows because

~

r

00

is orthogonal to

~

v

�

i

. Similarly,

~

v

�

j

� ~r =

~

v

�

j

�

~

r

0

.

There are a total of 2� possible orientations of

~

r

0

. If

~

r

0

lies on the semi-circular

plane AFB, see Figure 7.4, then

~

v

�

i

�

~

r

0

� 0 and so i 2 S. If

~

r

0

lies on the semi-

circular plane AEB, then i 62 S. Likewise, if

~

r

0

lies on the semi-circular plane CFD,

then j 2 S and if

~

r

0

lies on the semi-circular plane CED, then j 62 S. Let � be

the angle between the vectors

~

v

�

i

and

~

v

�

j

. So by construction,

[

AOC =

\

BOD = �.

Note that in the sector AOC, i 62 S and j 2 S and in the sector BOD, i 2 S and

j 62 S. Therefore, 2� of the orientations out of a total of 2� orientaions for

~

r

0

cause

i 2 S; j 62 S or i 62 S; j 2 S. Therefore the required probability is

2�

2�

. We have

~

v

�

i

�

~

v

�

j

= k

~

v

�

i

k �k

~

v

�

j

k cos �. Therefore, � = arccos(

~

v

�

i

�

~

v

�

j

), since the

~

v

�

i

's are unit vectors.

Hence the result. �

50

θ

θ

θ

E

B

C

A
v_j*

F

v_i*

D

O

not in

in

not

in

in

i

j

S

S

i

j

S

S

Figure 7.4: Determining the probability

51

Lemma 7.5

min

�1�x�1

1

�

arccos(x)

1

2

(1� x)

� 0:878:

Proof: Using Mathematica!!! �

So now we can prove the theorem.

Theorem 7.6 (Goemans, W '95) VectorRound is a 0:878-approximation algorithm.

Proof: Consider the random variables

X

ij

=

(

1 if i 2 S; j 62 S or i 62 S; j 2 S

0 otherwise

and

W =

X

i<j

w

ij

X

ij

:

Then

E[W] =

X

i<j

w

ij

� Pr[i 2 S; j 62 S or i 62 S; j 2 S]

=

X

i<j

w

ij

1

�

arccos(

~

v

�

i

�

~

v

�

j

)(7.1)

� 0:878 �

1

2

X

i<j

w

ij

(1�

~

v

�

i

�

~

v

�

j

)(7.2)

= 0:878 � Z

SDP

� 0:878 �OPT;

where (7.1) follows by Lemma 7.4 and (7.2) follows by Lemma 7.5. �

Can we do better than this? It turns out that we will have to do something quite

di�erent, as the following theorems attest.

Corollary 7.7 For any graph with non-negative weights,

OPT

Z

SDP

� 0:878:

Theorem 7.8 (Delorme, Poljak '93) For the 5-cycle,

OPT

Z

SDP

=

32

25 + 5

p

5

� 0:884:

52

Theorem 7.9 (Karlo� '95) There exists graphs G such that,

E[W]

OPT

=

E[W]

Z

SDP

! min

�1�x�1

1

�

arccos(x)

1

2

(1� x)

:

This is true even if any valid inequality is added to SDP.

The theorem by Delorme and Poljak implies that we can't do much better than

a performance guarantee of .878 using this SDP. The theorem of Karlo� implies that

we can't do any better at all with this SDP or anything obtained by adding valid

inequalities as long as we obtain the cut by choosing a random hyperplane.

It turns out that there is a limit on how well we can do anyway.

Theorem 7.10 (H�astad '97) If 9 an �-approximation algorithm for MAX CUT, � >

16

17

� 0:941, then P = NP .

Research Question: Can you get a 0.878-approximation algorithm without solv-

ing an SDP?

7.1.2 Quadratic Programming

We now show that we can get an approximation algorithm for some kinds of quadratic

programming by using the same techniques. Consider quadratic programs of the form

Max

X

i;j

a

ij

(x

i

� x

j

)

(C) x

i

2 f�1;+1g 8i;

where we assume that the values in the objective function form a positive semide�nite

matrix: i.e., A � 0.

As before we can relax this to the following vector program:

Max

X

i;j

a

ij

(~v

i

� ~v

j

)

(D) ~v

i

� ~v

j

= 1 8i

~v

i

2 <

n

:

VectorRound2

Solve the vector program and get vectors

~

v

�

Choose a random vector ~r uniformly from the unit n-sphere

for i 1 to n

if

~

v

�

i

� ~r � 0

�x

i

 1

else

�x

i

 �1

53

We will need to do something a little bit di�erent here because some of the entries

of A may be negative.

We will now give two lemmas similar to Lemmas 7.4 and 7.5.

Lemma 7.11 E[�x

i

� �x

j

] =

2

�

arcsin(

~

v

�

i

�

~

v

�

j

)

Proof:

E[�x

i

� �x

j

] = Pr[�x

i

� �x

j

= 1]� Pr[�x

i

� �x

j

= �1]

=

�

1 �

1

�

arccos(

~

v

�

i

�

~

v

�

j

)

�

�

�

1

�

arccos(

~

v

�

i

�

~

v

�

j

)

�

= 1�

2

�

arccos(

~

v

�

i

�

~

v

�

j

)

= 1�

2

�

�

�

2

� arcsin(

~

v

�

i

�

~

v

�

j

)

�

=

2

�

arcsin(

~

v

�

i

�

~

v

�

j

)

The second term in the second equality follows from Lemma 7.4, and the fourth

inequality follows since arcsin(x) + arccos(x) =

�

2

. �

We would like our proof to proceed as follows. We would like to prove an equivalent

of Lemma 7.5.

Lemma 7.12

min

�1�x�1

2

�

arcsin(x)

x

� �:

We would then like the proof to go the same as before:

E[

X

i;j

a

ij

(�x

i

� �x

j

)] =

X

i;j

a

ij

E[�x

i

� �x

j

]

=

X

i;j

a

ij

2

�

arcsin(

~

v

�

i

�

~

v

�

j

)

� �

X

i;j

a

ij

(

~

v

�

i

�

~

v

�

j

)(7.3)

� � �OPT:(7.4)

But we cannot do this because the inequality (7.3) is not correct. This is because

some of the a

ij

's may be negative. That is the inequality

2

�

arcsin(x) � �x will become

2

�

a

ij

arcsin(x) � �xa

ij

if a

ij

< 0.

54

So we will now switch back to matrix notation. So the vector program that we

saw earlier (D) is equivalent to

Max A �X

subject to:

x

ii

= 1 8i

X = (x

ij

) � 0 and X is symmetric.

Note that A�X =

P

i;j

a

ij

x

ij

is sometimes referred to as the outer product as opposed

to inner product. Let X

�

= (x

�

ij

) be the optimal solution. Let f [X] � (f(x

ij

)

ij

) and

let

�

X = ((�x

i

� �x

j

)

ij

).

We can restate Lemma 7.11 by the following corollary.

Corollary 7.13 E[A �X] = A � (

2

�

arcsin[X

�

])

Proof:

E[A �X] = E[

X

i;j

a

ij

(�x

i

�x

j

)] =

X

i;j

a

ij

�

2

�

arcsin(x

�

ij

)

�

= A �

�

2

�

arcsin[X

�

]

�

:

�

Fact 7.3 If A � 0, B � 0, then A �B � 0.

Fact 7.4 If X � 0, jx

ij

j � 1, then arcsin[X]�X � 0.

Theorem 7.14 (Nesterov '97) VectorRound2 is a

2

�

-approximation algorithm.

Proof: We want to show

E[A �

�

X]�

2

�

A �X

�

� 0

because this would imply

E[A �

�

X] �

2

�

A �X

�

�

2

�

�OPT

We know

E[A �

�

X] = A �

�

2

�

arcsin[X

�

]

�

from Corollary 7.13

So we want to show

A �

�

2

�

arcsin[X

�

]

�

�

2

�

(A �X

�

) � 0

Hence we want to show

A �

�

2

�

(arcsin[X

�

]�X

�

)

�

� 0

That is, we want to show

2

�

(A � (arcsin[X

�

]�X

�

)) � 0

But arcsin[X

�

] �X

�

is psd by Fact 7.4 and thus A � (arcsin[X

�

]�X

�

) � 0 by Fact

7.3. Hence the result. �

55

IEOR E6610 Approximation Algorithms March 11, 1998

Lecture 8

Lecturer: David P. Williamson Scribe: J�orn Mei�ner

8.1 Semide�nite Programming: Graph Coloring

In the last lecture we have seen that a semide�nite program (SDP) can be formulated

as

Max or Min

X

c

ij

x

ij

subject to:

X

i;j

a

ijk

x

ij

= b

k

8 k

X = (x

ij

) � 0 and X 2 <

n�n

is symmetric,

and is equivalent to a vector programming (VP) which can be formally stated as

Max or Min

X

c

ij

(~v

i

� ~v

j

)

subject to

X

i;j

a

ijk

(~v

i

� ~v

j

) = b

k

8k

~v

i

2 <

n

8i:

This follows since X is psd and X is symmetric i� X = V

T

V i.e., i� x

ij

= ~v

i

� ~v

j

where

V =

0

B

B

B

@

.

.

.

.

.

.

.

.

.

~v

1

~v

2

� � � ~v

3

.

.

.

.

.

.

.

.

.

1

C

C

C

A

:

Today we will show that semide�nite programming can be applied to the graph

coloring problem. In particular, we will show the following result:

Theorem 8.1 (Karger, Motwani, Sudan '94) There is a polytime algorithm to color a

3-colorable graph with

~

O(n

1=4

) colors.

The previous best algorithm used

~

O(n

3=8

) colors (Blum '94).

De�nition 8.1 A function f(n) =

~

O(g(n)) (sometimes also called O

�

(g(n)) when the

following is valid:

9 n

0

; c

1

; c

2

s.t. 8 n � n

0

f(n) � c

1

g(n) log

c

2

n

56

This doesn't seem very good; we know the graph is 3-colorable but we take more

than n

1=4

colors! But the previously known result is worse still. In terms of the

hardness of this problem, the theorem below is the best thing known so far.

Theorem 8.2 (Khanna, Linial, Safra '93) It is NP-hard to color a 3-colorable graph with

4 colors.

The following facts are known about coloring graphs.

� We can color 2-colorable (aka bipartite) graphs in polytime.

� We can color G with � + 1 colors (� = max degree of G) in polytime.

Proof: Color greedily (color with color not used by neighbors yet). �

The following coloring algorithm for 3-colorable graphs was also previously known.

Color1

While 9v 2 G s.t. deg(v) �

p

n

Color v with color #1

Color neighbors of v in polytime with 2 new colors

Remove v and its neighbors from graph

Color remaining G with

p

n new colors

Theorem 8.3 (Widgerson '83) Color1 colors 3-colorable graphs in polytime with O(

p

n)

colors.

Proof: We can execute the while loop at most

n

p

n

times, since we remove at least

p

n vertices from the graph every time. Hence we use 1 + 2

n

p

n

colors in the while

loop.

The last step takes

p

n colors by the fact above (since the maximum degree is

p

n� 1), so the total numbers of colors needed is 3

p

n + 1. �

We now think about applying semide�nite programming to the problem of coloring

3-colorable graphs. Consider the following vector programm:

Min �

subject to:

v

i

� v

j

� � 8 (i; j) 2 E

v

i

� v

i

= 1 8 i

v

i

2 R

n

57

Claim 8.4 For a 3-colorable graph � � �

1

2

.

Proof: Consider an equilateral triangle, and associate the vectors for the three

di�erent colors with the three di�erent vertices of the triangle. Note that the angle

between any two vectors of the same color is 0, while the angle between any two

vectors of di�erent color is 2�=3. Then for v

i

; v

j

such that (i; j) 2 E

v

i

� v

j

= kv

i

k kv

j

k cos �

= cos

�

2�

3

�

= �

1

2

;

so that this solution is a feasible solution to the vector program with � = �1=2: Thus

in the optimal solution, � � �1=2: �

As before we will consider randomized algorithms. It turns out that it is too much

to expect that we will get an algorithm that colors the whole graph correctly with

high probability. Instead, we will aim for an algorithm that colors mostly correctly. In

particular, we want a semicoloring, which means that at most

n

4

edges have the same

colored endpoints. In such a solution at least

n

2

of the vertices are colored \correctly"

(any edge between these vertices has di�erently colored endpoints).

Note then if we can semicolor a graph with k colors, then we can color the graph

with k log n colors: we obtain a semicoloring of the graph with k colors, and take

the half of the graph colored correctly. We then semicolor the remaining half of the

graph with k new colors, and take the half colored correctly, and so on. This takes

log n iterations, after which the graph is colored correctly with k log n colors.

Consider now the following algorithm.

KMS1

Solve vector program, get v

i

Pick t = 2 + log

3

� random vectors r

1

; : : : ; r

t

Let R

1

= fv

i

: r

1

� v

i

� 0; r

2

� v

i

� 0; : : : ; r

t

� v

i

� 0g

R

2

= fv

i

: r

1

� v

i

< 0; r

2

� v

i

� 0; : : : ; r

t

� v

i

� 0g

.

.

.

R

2

t

= fv

i

: r

1

� v

i

< 0; r

2

� v

i

< 0; : : : ; r

t

� v

i

< 0g

Color vertices of vectors in R

i

with color i

Theorem 8.5 (Karger, Motwani, Sudan) The algorithm KMS1 gives a semicoloring of

O(�

log

3

2

) colors with probability

1

2

.

Proof: Since we used 2

t

colors, this is 2

t

= 4 � 2

log

2

�

= 4�

log

3

2

colors.

58

Now

Pr[i and j get the same color for edge (i; j)]

=

�

1�

1

�

arccos(v

i

� v

j

)

�

t

�

�

1�

1

�

arccos(�)

�

t

�

�

1�

1

�

arccos(�

1

2

)

�

t

=

�

1�

1

�

2�

3

�

t

=

�

1

3

�

t

�

1

9�

:

This follows since for any particular random vector r

k

, we know (from the analysis

for MAX CUT) that the probability that v

i

� r

k

� 0 and v

j

� r

k

� 0 OR that v

i

� r

k

< 0

and v

j

� r

k

< 0 is 1 �

1

�

arccos(v

i

� v

j

). Thus the probability that v

i

and v

j

get the

same color is the probability that this happens for each of the t vectors, which is

(1�

1

�

arccos(v

i

� v

j

))

t

, since each of these events is independent.

Let m denote the number of edges in the graph. Note that m � n�=2. Thus

E[# bad edges] �

m

9�

�

�n

2

9�

�

n

8

;

and therefore

Pr[more than

n

4

bad edges] �

1

2

:

�

If we just plug in n for �, this gives us an algorithm that colors with

~

O(n

log

3

2

) =

~

O(n

:631

), which is worse than Widgerson's algorithm. But we can use Widgerson's

technique to make things better:

Color2

While 9v 2 G s.t. deg(v) � �

Color v with color #1

2-color neighbors of v in polytime with 2 new colors

Remove v & neighbors

Apply KMS1 to color remaining graph with O(�

log

3

2

) colors

Let's analyze this algorithm. The While loop uses O(

n

�

) colors, since we remove

� vertices from the graph each time. The �nal step uses

~

O(�

log

3

2

) colors. If we set

� = n

0:613

(to balance the two terms), we get a coloring with

~

O(n

0:387

) colors.

59

But this algorithm is still worse than Blum (whose algorithm uses

~

O(n

3

8

) colors)!

We consider next the following algorithm:

KMS2

Solve vector program, get vectors v

i

Pick t =

~

O(�

1

3

) random vectors r

1

; : : : ; r

t

Assign vector v

i

to random r

j

that maximizes v

i

� r

j

Color vectors assigned to r

j

with color j

Theorem 8.6 (Karger, Motwani, Sudan)

Pr[i and j get same color for edge (i; j)] =

~

O(t

�3

)

We omit the proof of this theorem. To see that this theorem leads to a better

algorithm, note that if we use t =

~

O(�

1

3

) vectors, for an appropriate choice of the

right constants, we get that

Pr[i and j get same color for edge (i; j)] �

1

9�

;

just as with the previous algorithm, and the previous analysis goes through, except

now our algorithm uses

~

O(�

1

3

) colors. If we now apply Widgerson's technique using

this algorithm, we get an algorithm that colors the graph with

~

O(n

1

4

) colors.

8.2 The Primal-Dual Method

Recall our meta-method for designing approximation algorithms:

1. Formulate problem as an integer program

2. Relax to an LP

3. Use LP to obtain a near optimal solution

We will now look at another way of carrying out the third step, a technique known

as the primal-dual method for approximation algorithms. To illustrate this we look

at the following problem:

Hitting Set

� Input:

{ ground set E = fe

1

; e

2

; : : : ; e

n

g

{ subsets T

1

; T

2

; : : : ; T

p

� E

{ costs c

e

� 0 e 2 E

� Goal: Find min-cost A � E s.t. A \ T

i

6= ; 8i.

60

We now carry out our meta-method for the hitting set problem. First we formulate

the problem as an integer program:

� Step 1

Min

X

e2E

c

e

x

e

subject to:

X

e2T

i

x

e

� 1 8i

x

e

2 f0; 1g:

� Step 2. We then relax it to a linear program:

x

e

2 f0; 1g ! x

e

� 0:

� Step 3. For the third step, we are going to consider the dual of the linear

programming relaxation, which is the following:

Max

X

i

y

i

subject to:

X

i:e2T

i

y

i

� c

e

8e 2 E

y

i

� 0 8i:

We can now state the general primal-dual method for approximation algorithms:

Primal-Dual Method for Approximation Algorithms

y 0

While there does not exist an integral solution obeying primal complementary

slackness conditions (x

e

> 0)

P

i:e2T

i

y

i

= c

e

)

Get direction of increase for dual

Return feasible integral solution x obeying primal complementary slackness.

The primal-dual method for approximation algorithms di�ers from the classical

primal-dual method in that the dual complementary slackness conditions are not

enforced.

We now
esh out the steps of the general method. To check the condition of the

while loop, we simply look at all edges e such that corresponding dual constraint is

tight, put them in our solution, and check whether the solution is feasible. That is,

we consider A = fe 2 E :

P

i:e2T

i

y

i

= c

e

g and see if A \ T

i

6= ; for each i.

The algorithm states that if A is not a feasible solution then there should be some

way to increase the dual objective function. This follows since if A is not a feasible

61

solution, then there exists T

k

s.t. A\T

k

= ;. By the de�nition of A, we know that for

each e 2 T

k

, it must be the case that

P

i:e2T

i

y

i

< c

e

. Thus each inequality involving

y

k

is not tight, so we can increase y

k

by min

e2T

k

fc

e

�

P

i:e2T

k

y

i

g. This increases the

value of the dual objective function.

We can now restate the primal-dual method as follows:

Primal-Dual (Take 2)

y 0

A ;

While A is not feasible

Choose some violated set T

k

(i.e. some set T

k

s.t. A \ T

k

= ;)

Increase y

k

until 9e 2 T

k

:

P

i:e2T

i

y

i

= c

e

A A [feg

Return A

We now consider the value of the solution found by the algorithm. We know that

X

e2A

c

e

=

X

e2A

X

i:e2T

i

y

i

=

X

i

jA \ T

i

jy

i

;

where the �rst equality follows since c

e

=

P

i:e2T

i

y

i

for each e 2 A, and where the

second equality follows from rewriting the double sum.

Thus if we can show that whenever y

i

> 0 then jA \ T

i

j � �, it follows that

X

e2A

c

e

� �

X

i

y

i

� �OPT;

since the value of the dual objective function for any feasible dual solution is a lower

bound on OPT .

As an example, we apply this algorithm to the vertex cover problem. Note that

vertex cover can be translated into a hitting set problem, where V is the ground set

of elements, the costs c

i

of the elements are the weights of the vertices, and we must

hit the sets T

i

= fu; vg for each (u; v) 2 E. Then since jT

i

j = 2 for each set, it follows

that jA \ T

i

j � 2 for all i, and by the reasoning above we have a 2-approximation

algorithm for vertex cover.

Let us consider another example:

Feedback Vertex Set in Undirected Graphs

� Input:

{ Undirected graph G = (V;E)

{ Weights w

i

� 0 8i 2 V

� Goal: Find S � V minimizing

P

i2S

w

i

such that for every cycle C in G,

C\S 6= ;. (Equivalently, �nd a min-weight set of vertices S such that removing

S from the graph causes the remaining graph to be acyclic).

62

We claim that the feedback vertex set problem is just a hitting set problem with:

� Ground set V

� Cost w

i

� Sets to hit: T

i

= C

i

for each cycle C

i

in graph

We now have a hitting set problem with potentially an exponential number of sets

to hit. How do we deal with this problem? The answer is that we do not need to

enumerate or �nd all cycles: the algorithm only needs to �nd a violated set when one

exists.

To apply the primal-dual method to this problem, we �rst need the following

observation: we can reduce the input graph G to an equivalent graph G

0

with no

degree 1 vertices and such that every degree 2 vertex is adjacent to a vertex of higher

degree. To see this suppose we have two vertices of degree two adjacent to each other,

i and j, and WLOG w

i

� w

j

. Note that every cycle which goes through i must also

go through j. Thus there is no reason to include j in any solution: we should always

choose i. We can then shortcut j out of the graph.

To get our algorithm, we need the following lemma:

Lemma 8.7 (Erd�os, Posa) In every non-empty graph in which there are no degree 1

vertices and such that each vertex of degree 2 is adjacent to a vertex of higher degree,

there is a cycle of length no longer than 4 log

2

n.

Thus in our algorithm, we always choose as our violated set any unhit cycle of

length no longer than 4 log

2

n (such a cycle can be found via a breadth-�rst search of

the graph).

Theorem 8.8 (Bar-Yehuda, Geiger, Naor, Roth '94) If we choose a cycle of length no

more than 4 log

2

n as our violated set, we get a 4 log

2

n-approximation algorithm for the

feedback vertex set problem in undirected graphs.

Proof: By construction, whenever y

i

> 0, jT

i

j = jC

i

j � 4 log

2

n. Thus jA \ T

i

j �

4 log

2

n, and by the reasoning above this implies that we have a 4 log

2

n-approximation

algorithm. �

63

IEOR E6610 Approximation Algorithms March 25, 1998

Lecture 9

Lecturer: David P. Williamson Scribe: Mark Zuckerberg

9.1 The Primal-Dual Method

We continue the discussion of the primal-dual method for approximation algorithms

that we started last time. Last time, we started looking at the following:

Hitting Set Problem

� Input:

{ The ground set E=fe

1

; e

2

; : : : ; e

n

g

{ p subsets T

1

; T

2

; : : : ; T

p

� E

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost A � E such that A \ T

i

6= ; 8i

The integer programming formulation of this problem is:

Min

X

e2E

c

e

x

e

subject to:

X

e2T

i

x

e

� 1 8i

x

e

2 f0; 1g:

Here a feasible x satis�es that for every T

i

at least one x

e

= 1; e 2 T

i

. Therefore

if A = fe : x

e

= 1g then A hits every T

i

and has cost

P

e2E

c

e

x

e

.

The LP relaxation of the problem relaxes the x bound to x

e

� 0;8e 2 E. Its dual

is as follows.

Max

p

X

i=1

y

i

subject to:

X

i:e2T

i

x

e

� c

e

8e 2 E

y

i

� 0:

The general primal-dual method for approximation algorithms is:

64

General primal-dual method for approximation algorithms

y 0 (dual feasible)

While there is no feasible integral x obeying primal complementary

slackness (x

e

6= 0)

P

i:e2T

i

y

i

= c

e

)

Get a direction of increase for the dual

Return feasible x obeying primal complementary slackness.

In order to check the while condition, we note that the while condition only

allows x

e

> 0 for e :

P

i:e2T

i

y

i

= c

e

. Thus if setting x

e

= 1 (i.e. e 2 A) for all

e :

P

i:e2T

i

y

i

= c

e

still does not satisfy feasibility (i.e. 9 T

i

such that A\ T

i

= ;) then

there is no feasible integral x obeying primal complementary slackness conditions. So

we need only check if A = fe 2 E :

P

i:e2T

i

y

i

= c

e

g is feasible (i.e. it hits every

subset, A \ T

i

6= ;;8i).

We claimed that if A is not feasible, then there is some direction of increase for the

dual. Note that if A is not feasible then it does not hit every set, so there is some T

k

such that A \ T

k

= ;. By construction of A this means that 8e 2 T

k

;

P

i:e2T

i

y

i

< c

e

.

Now y

k

appears in these constraints and only in these constraints. It thus follows

that every constraint in which y

k

participates is not tight (c

e

�

P

i:e2T

i

y

i

> 0), and

we can therefore increase y

k

by the minimum of these di�erences while keeping all

of these di�erences � 0. Thus none of the constraints containing y

k

are violated -

though the one corresponding to that minimum is now tight. Given this new dual

feasible solution we may now set x

e

for e corresponding to that newly tight constraint

to 1, i.e. we may add e to A and the new A will hit T

k

as well.

Thus we can translate the general primal-dual method for approximation algo-

rithms to the following algorithm:

Primal-Dual1

y 0

A ;

While A is not feasible

Find violated T

k

(i.e. T

k

s.t. A \ T

k

= ;)

Increase y

k

until 9 e 2 T

k

such that

P

i:e2T

i

y

i

= c

e

A A [feg

Return A.

We consider now the performance guarantee of this algorithm. Note that by the

construction of A,

X

e2A

c

e

=

X

e2A

X

i:e2T

i

y

i

=

X

i

jA \ T

i

jy

i

;

since each y

i

is counted once for each e 2 A that is also in T

i

. If we could �nd an �

such that whenever y

i

> 0 then jA \ T

i

j � � then it would follow that

X

e2A

c

e

� �

X

i

y

i

� �OPT;

65

(since OPT � OPT

primal

�

P

i

y

i

for any dual feasible solution y) and the above

algorithm would be an �-approximation algorithm.

The above algorithm has the shortcoming that though at any particular iteration

the edge added to A was needed for feasibility, by the time the algorithm terminates it

may no longer be necessary. These unnecessary edges increase the cost of A. Consider

the following re�nement to remove the unnecessary edges in A:

Primal-Dual2

y 0

A ;

l 0 (l is a counter)

While A is not feasible

l l + 1

Find violated T

k

Increase y

k

until 9 e

l

2 T

k

such that

P

i:e

l

2T

i

y

i

= c

e

l

A A [fe

l

g

For j l down to 1

If A� fe

j

g is still feasible

A A� fe

j

g

Return A.

Let A

f

denote the solution returned by the algorithm. The algorithm performs

a total of l iterations (where l refers to the value of the counter at termination).

Iteration j �nds the violated set T

k

j

, increases the dual variable y

k

j

, and adds the

edge e

j

to A. It follows then that T

k

j

\ fe

1

; e

2

; : : : ; e

j�1

g = ; by construction.

To analyze more carefully the performance guarantee of this algorithm, we need

the following de�nition.

De�nition 9.1 A set Z � E is a minimal augmentation of a set X � E if:

1. X [Z is feasible, and

2. for any e 2 Z; X [Z � feg is not feasible.

We claim thatA

f

�fe

1

; e

2

; : : : ; e

j�1

g is a minimal augmentation of fe

1

; e

2

; : : : ; e

j�1

g.

By de�nition the union is feasible, satisfying condition (1). Now note that A

f

�

fe

1

; e

2

; : : : ; e

l

g implies that A

f

� fe

1

; e

2

; : : : ; e

j�1

g � fe

j

; e

j+1

; : : : ; e

l

g. For any

e

t

2 fe

j

; e

j+1

; : : : ; e

l

g such that e

t

2 A

f

as well, letting A

t

be the version of A

considered by the algorithm in the iteration of its for-loop which attempted (unsuc-

cessfully) to remove e

t

we know that A

t

�e

t

is not feasible (or else e

t

would have been

removed), but since A

f

� A

t

then A

f

� e

t

is certainly infeasible and condition (2) is

satis�ed as well.

It follows then that jA

f

\ T

k

j

j � max jB \ T

k

j

j where the maximum is taken over

all B such that B is a minimum augmentation of fe

1

; e

2

; : : : ; e

j�1

g.

66

Theorem 9.1 Let T (A) be the violated set the algorithm chooses given an infeasible

A. If

� = max

infeasible A�E

max

minimal augmentations B of A

jB \ T (A)j;

then

X

e2A

f

c

e

=

X

i

jA

f

\ T

i

jy

i

� �

X

i

y

i

� �OPT:

Proof: This follows from jA

f

\ T

k

j

j � max jB \ T

k

j

j � �. �

We see that if we can �nd a bound � (the maximum number of elements of

any violated set chosen by the algorithm that could possibly be introduced under

a minimal augmentation) then the above algorithm is a �-approximation algorithm.

We now consider two problems in which the above procedure can be implemented.

9.1.1 Finding the shortest s-t path

Here we consider the problem of �nding the shortest s-t path in an undirected graph.

This problem can be seen as a hitting set problem as follows:

Ground Set : the set of edges E

Costs : c

e

� 0; 8e 2 E

Sets to Hit : T

i

= �(S

i

), s 2 S

i

, t =2 S

i

where �(S) = f(u; v) 2 E : u 2 S and v =2 S

i

g. That is, the sets S

i

are the s-t cuts

and the sets T

i

= �(S

i

) are the edges crossing the s-t cuts.

To see that this hitting set problem captures the shortest s-t path problem, we

need that a set of edges contains an s-t path if and only if it hits every s-t cut

1

. First,

if a set of edges A does not cross some s-t cut S

i

then A must consist exclusively of

edges joining two vertices of S

i

or joining two vertices of the complement of S

i

. Thus

any path starting from s 2 S

i

consisting of such edges can only bring us to vertices

that are also in S

i

, but t =2 S

i

. Conversely, if a set of edges does not contain an s-t

path then let S

i

be the largest connected component (corresponding to those edges)

containing s. By assumption t =2 S

i

and the set of edges could not contain any edge

from �(S

i

) or else we could have found a larger connected component containing s

by including the other vertex incident on that edge. Thus the absence of an s-t path

implies that some s-t cut was not hit. We �nd then that a set of edges contains an

s-t path if and only if it hits every s-t cut.

We now wish to apply the algorithm Primal-Dual2 to this problem. Suppose

that whenever A is infeasible, the algorithm chooses the violated set T

k

= �(S

k

),

where S

k

is the connected component of (V;A) containing s. As is shown above,

A \ T

k

= ;. We can then prove the following theorem.

1

This follows directly from the max-
ow/min-cut theorem, but for completeness we prove it here.

67

Theorem 9.2 Given the choice of T

k

in each iteration, Primal-Dual2 is a 1-approximation

(optimal) algorithm for the shortest s-t path problem.

Proof: We need only show that � = 1 for the � de�ned in Theorem 9.1. Let

A be an infeasible solution, and let B be a minimal augmentation of A. Now let

s; v

1

; v

2

; : : : ; v

l

; t be an s-t path in (V;A [B). Choose i such that v

i

2 S

k

; v

i+1

=2 S

k

where i is as large as possible. Since S

k

is a connected component there must be

a s-v

i

path exclusively in S

k

of the form s;w

1

; w

2

; : : : ; w

j

; v

i

, where w

`

2 S

k

. Thus

s;w

1

; w

2

; : : : ; w

j

; v

i

; v

i+1

; : : : ; v

l

; t is an s-t path, and if we letB

0

= f(v

i

; v

i+1

); (v

i+1

; v

i+2

); : : : ; (v

l

; t)g,

then B

0

is an augmentation. Since all the edges in B

0

have at least one endpoint not

in S

k

then (as above) none of these edges is from A which implies that they are all

from B, i.e. B

0

� B. But minimality of B then implies that B

0

= B. So

jB \ �(S

k

)j = jB

0

\ �(S

k

)j = jf(v

i

; v

i+1

)gj = 1;

since the �rst edge is the only one to have an endpoint in S

k

. Therefore, � = 1. �

9.1.2 Generalized Steiner Trees

We now consider another problem for which the primal-dual method gives a good

approximation algorithm, the Generalized Steiner Tree problem.

Generalized Steiner Tree Problem

� Input:

{ An undirected graph G = (V;E)

{ l pairs of vertices (s

i

; t

i

); i = 1 : : : l

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

the same connected component of (V; F).

This can be modelled as a hitting set problem:

Ground Set : the set of edges E

Costs : c

e

� 0;8e 2 E

Sets to Hit : T

i

= �(S

i

) where jS

i

\ fs

j

; t

j

gj = 1 for some j (the s

j

-t

j

cuts).

Note that by the logic we used for the shortest s-t path problem that a set of edges

will be feasible for this hitting set problem if and only if it contains a path between

s

i

and t

i

for each i.

Let us consider how to apply the algorithm Primal-Dual2 to this problem. Sup-

pose we do more or less the same thing here we did for the shortest s-t path problem.

68

We know that if A is not feasible then there must be some connected component S

k

containing s

j

but not t

j

for some j. Suppose the algorithm picks T

k

= �(S

k

) as the

violated set. The di�culty is that the reasoning used above in the s-t path problem

will not yield a good bound here since a minimal augmentation may cross the cut

many times. Consider the problem for which s = s

1

= s

2

= � � � = s

l

and for which

there are edges (s; t

j

);8j and say that A = ;. Then f(s; t

j

)g; j = 1 : : : n is a minimum

augmentation that crosses the cut �(fsg) l times, which (using Theorem 9.1) would

imply a �-approximation algorithm, for � � l. This is not very good.

Notice, however, that even though a bound of l hardly tells us anything at all,

those l times that the violated set is hit by the augmentation correspond to hits on

l di�erent violated sets as well (each �(ft

i

g) is hit by (s; t

i

)), each of which is hit

only once. So on the average the number of hits per violated set (among the group

f�(fsg); �(ft

i

g);8ig) is only

l+l

l+1

< 2. This observation leads to the following variation

of the primal-dual method:

Primal-Dual3

y 0

A ;

l 0 (l is a counter)

While A is not feasible

l l + 1

V Violated(A) (a subroutine returning several violated sets)

Increase y

k

uniformly for all T

k

2 V until 9 e

l

=2 A such that

P

i:e

l

2T

i

y

i

= c

e

l

A A [feg

For j l down to 1

If A� fe

j

g is still feasible

A A� fe

j

g

Return A.

The following theorem can be shown about the algorithm Primal-Dual3.

Theorem 9.3 If for any infeasible A and any minimal augmentation B of A,

X

T

i

2Violated(A)

jT

i

\Bj � �jViolated(A)j:

Then

X

e2A

f

c

e

� �

X

i

y

i

� �OPT:

Proof: Homework problem, problem set 4. �

For the Generalized Steiner Tree Problem, we let Violated(A) return fT

k

= �(S

k

) :

S

k

is a connected component of (V;A);9j s.t. jS

k

\ fs

j

; t

j

gj = 1g:

Theorem 9.4 (Agrawal, Klein, Ravi `95, Goemans, W `95) For this subroutine

Violated, Primal-Dual3 is a 2-approximation algorithm for the Generalized Steiner Tree

Problem.

69

IEOR E6610 Approximation Algorithms April 3, 1998

Lecture 10

Lecturer: David P. Williamson Scribe: M. Tolga Cezik

10.1 The Primal-DualMethod: Generalized Steiner

Trees cont.

In this lecture, we �nish our discussion of the primal-dual method. Recall that we

were considering the following:

Hitting Set Problem

� Input:

{ The ground set E=fe

1

; e

2

; : : : ; e

n

g

{ p subsets T

1

; T

2

; : : : ; T

p

� E

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum cost A � E such that A \ T

i

6= ; 8i.

At the end of last time, we considered another problem for which the primal-dual

method gives a good approximation algorithm, the Generalized Steiner Tree problem.

Generalized Steiner Tree Problem

� Input:

{ An undirected graph G = (V;E)

{ l pairs of vertices (s

i

; t

i

); i = 1 : : : l

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

the same connected component of (V; F).

We showed that this problem can be modelled as a hitting set problem:

Ground Set : the set of edges E

Costs : c

e

� 0;8e 2 E

Sets to Hit : T

i

= �(S

i

) where jS

i

\ fs

j

; t

j

gj = 1 for some j (the s

j

-t

j

cuts).

70

Recall that the integer programming formulation of the hitting set problem is:

Min

X

e2E

c

e

x

e

subject to:

X

e2T

i

x

e

� 1 8i

x

e

2 f0; 1g:

and the dual of the LP relaxation can be written as:

Max

p

X

i=1

y

i

subject to:

X

i:e2T

i

y

i

� c

e

8e 2 E

y

i

� 0:

From last time, our analysis of the hitting set problem and the generalized Steiner

tree problem led to the following variation of the primal-dual method:

Primal-Dual3

y 0

A ;

l 0 (l is a counter)

While A is not feasible

l l + 1

V Violated(A) (a subroutine returning several violated sets)

Increase y

k

uniformly for all T

k

2 V until 9 e

l

=2 A such that

P

i:e

l

2T

i

y

i

= c

e

l

A A [feg

For j l down to 1

If A� fe

j

g is still feasible

A A� fe

j

g

Return A.

We claimed that the following theorem can be shown about the algorithm,Primal-

Dual3.

Theorem 10.1 If for any infeasible A and any minimal augmentation B of A,

X

T

i

2Violated(A)

jT

i

\Bj � �jViolated(A)j:

71

Then

X

e2A

f

c

e

� �

X

i

y

i

� �OPT:

For the GSTP, we let Violated(A) return fT

k

= �(S

k

) : S

k

is a connected compo-

nent of (V;A); 9j s.t. jS

k

\ fs

j

; t

j

gj = 1g:

We now prove the following theorem.

Theorem 10.2 (Agrawal, Klein, Ravi `95, Goemans, W `95) For this subroutine

Violated, Primal-Dual3 is a 2-approximation algorithm for the GSTP.

Proof: Given infeasible A, let C(A) = fS : S is a connected component of (V;A)

s.t. jS \ fs

j

; t

j

gj = 1 for some jg

All we need to show is, for any minimal augmentation B,

X

S2C(A)

jB \ �(S)j � 2jC(A)j

Suppose we contract every connected component of (V;A) where A is an infeasible

set of edges. In this contracted graph, call the nodes corresponding to the connected

components in C(A) red and the rest blue. Now consider the graph G

0

= (V

0

; B) where

V

0

is the vertex set. We note that G

0

must be a forest, since if it had a cycle we could

remove an edge of the cycle and maintain feasibility, contradicting the minimality of

B.

How does the inequality we wish to prove translate to the graph G

0

? Note that

jB \ �(S)j in G for a connected component S is equal to deg(v) in G

0

for the vertex

v corresponding to S. Similarly, jC(A)j in G is simply the number of red vertices in

G

0

. We let Red and Blue represent the sets of red and blue vertices in G

0

, so that we

can rewrite the above inequality as

X

v2Red

deg(v) � 2jRedj:

We will need the following claim.

Claim 10.3 If v 2 Blue then deg(v) 6= 1.

Proof: If deg(v) = 1 then we claim B � e is feasible for e 2 B and adjacent to v.

If true, this contradicts the minimality of B. Let S be the connected component in

G that corresponds to the vertex v in G

0

. If B� e is not feasible, then there must be

some s

i

-t

i

pair that is connected in (V;A[B) but not in (V;A[B � e). Thus either

s

i

or t

i

is in S, and the other vertex is in V �S. But then it must have been the case

that S 2 C(A) and v 2 Red, which is a contradiction. �

72

To complete the proof, we �rst discard all blue nodes with deg(v) = 0. Then

X

v2Red

deg(v) =

X

v2Red[Blue

deg(v)�

X

v2Blue

deg(v)

� 2(jRedj + jBluej)� 2jBluej

= 2jRedj

The inequality follows since the sum of the degrees of nodes in a forest is at most

twice the number of nodes, and since every blue node has degree at least two. �

This 2-approximation algorithm for the generalized Steiner tree is just an example

of the kind of graph problem for which the primal-dual method can obtain a good

approximation algorithm. A generalization of the proof above gives 2-approximation

algorithms for many other graph problems.

10.2 Metric Methods: Minimum Multicuts

We now turn from the primal-dual method to yet another technique for obtaining

approximation algorithms for a wide range of problems. To illustrate this technique,

we look at the MinimumMulticut Problem:

Minimum Multicut Problem

� Input:

{ An undirected graph G = (V;E)

{ k pairs of vertices (s

i

; t

i

); i = 1 : : : k

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

di�erent connected components of G

0

= (V;E � F).

Note that this problem is NP-hard even if G is a tree.

For a given G, let P

i

denote the set of all paths P from s

i

to t

i

. As usual, we

begin by modelling this problem as an integer program. One integer programming

formulation of the problem is:

Min

X

e2E

c

e

x

e

subject to:

X

e2P

x

e

� 1 8P 2 P

i

; 8i

x

e

2 f0; 1g:

73

We then relax the integer program to a linear program by replacing the constraints

x

e

2 f0; 1g by x

e

� 0. The LP relaxation of the above formulation can be solved

in polynomial time by the ellipsoid method, given a separation oracle that runs in

polynomial time. A separation oracle is a subroutine which, given some infeasible

solution to the LP, returns a violated constraint of the LP. In this case, suppose we

have a solution x to the LP. Let x

e

denote the length of edge e. Then the LP says

that every path from s

i

to t

i

has length at least 1; in particular, the shortest path

from s

i

to t

i

must have length at least 1. Furthermore, if the shortest path has length

at least 1, then every path has length at least 1. Hence a separation oracle for this

LP checks if the shortest path from s

i

to t

i

is at least length 1 for each s

i

-t

i

pair; if

not, a violated constraint is found and returned.

To get some intuition about the LP, we suppose that the LP formulation de�nes

a pipe system, where

� e = (i; j) is a pipe from i to j

� x

e

= length of pipe

� c

e

= cross section area of pipe

s1

t1

s2

t2

1/2

1/2

1/2

1/4

1/4

1/4

1/2

1/2

Figure 10.1: LP solution as a pipe system.

For an example of this, see Figure 10.1. Observe that the LP �nds the minimum

total volume pipe system s.t. s

i

 t

i

length � 1 for all i.

Given an LP solution x, let dist

x

(u; v) be the distance from u to v given edge

lengths x. We de�ne B

x

(u; r) = fv 2 V : dist

x

(u; v) � rg. This is a ball of radius r

around vertex u. See Figure 10.2 for an example.

We use the interpretation of the LP in the following algorithm:

74

1/4

1/2

r = 3/8

1/4

1/4

s

Figure 10.2: Example of a ball of radius 3/8.

GVY

F ;

Solve LP and get optimal solution x

While 9 some connected s

i

; t

i

pair in current graph

S = B

x

(s

i

; r) for an appropriate choice of r s.t. r < 1=2

Add �(S) to F

Remove S and edges incident to S from current graph

Return F .

Lemma 10.4 The algorithm terminates.

Proof: Trivial, since each time through the while loop some s

i

-t

i

pair is discon-

nected, and there are at most k of them. �

Lemma 10.5 The solution F is a multicut.

Proof: The only possible problem is that when we remove a set S from the

graph, it might contain some s

j

-t

j

pair. But 9no s

j

 t

j

path inside the ball around

s

i

; 8i 6= j, since

dist

x

(s

j

; t

j

) � dist

x

(s

j

; s

i

) + dist

x

(s

i

; t

j

)

< 1=2 + 1=2 = 1

which contradicts the feasibility of the LP solution, since dist

x

(s

j

; t

j

) � 1. Thus every

(s

i

; t

i

) pair will be separated at the end of algorithm. �

75

To analyze the algorithm, we will need some notation. We let V

�

=

P

e

c

e

x

e

�

OPT . Fix some iteration of algorithm where (s

i

; t

i

) pair is chosen. We de�ne

V

x

(s

i

; r) =

V

�

k

+

X

e=(u;v):u;v2B

x

(s

i

;r)

c

e

x

e

+

X

e=(u;v)2�(B

x

(s

i

;r))

c

e

(r � dist

x

(s

i

; u));

C

x

(s

i

; r) =

X

e2�(B

x

(s

i

;r))

c

e

:

That is, V

x

(s

i

; r) is the total volume of pipe in the ball of radius r around s

i

plus

an extra term V

�

=k. Also, C

x

(s

i

; r) is the cost of the cut de�ned by the vertices in

the ball of radius r around s

i

. The terms V

x

and C

x

are related, as shown by the

following observation.

Observation 10.1 If 9 no v 2 V s.t. dist

x

(s

i

; v) = r then

d

dr

V

x

(s

i

; r) exists and

d

dr

V

x

(s

i

; r) = C

x

(s

i

; r):

The reason for the condition on the observation is that V

x

(s

i

; �) is possibly dis-

continuous at values of r such that dist

x

(s

i

; v) = r. Indeed, suppose that there exist

u; v and an edge (u; v) such that dist

x

(s

i

; v) = dist

x

(s

i

; u) = r. Then V

x

(s

i

; �) is

discontinuous at r since at r it has the extra volume of the pipe (u; v) that it does

not have for r � �, for any � > 0.

To prove thatGVY is a good approximation algorithm, we �rst need the following

theorem.

Theorem 10.6

9 r < 1=2 s.t.

C

x

(s

i

; r)

V

x

(s

i

; r)

� 2 ln 2k:

Proof: We prove this by contradiction. First, sort vertices of G according to

their distance from s

i

. That is, consider vertices v

1

; v

2

; : : : ; v

n

such that s

i

= v

1

, and

r

j

= dist

x

(s

i

; v

j

) for r

1

= 0 � r

2

� : : : � r

l

= 1=2.

Then, for r 2 (r

j

; r

j+1

) we know that

d

dr

V

x

(s

i

; r)

V

x

(s

i

; r)

> 2 ln 2k:

Integrating both sides, we obtain

Z

r

j+1

r

j

d

dr

V

x

(s

i

; r)

V

x

(s

i

; r)

dr >

Z

r

j+1

r

j

2 ln 2k dr;

which is equivalent to

Z

r

j+1

r

j

d

dr

(lnV

x

(s

i

; r)) dr >

Z

r

j+1

r

j

2 ln 2k dr:

76

Therefore,

lnV

x

(s

i

; r

j+1

)� lnV

x

(s

i

; r

j

) > (r

j+1

� r

j

)(2 ln 2k).

If V

x

(s

i

; �) is continuous on [0; 1=2), then by summing over j = 0; 1; : : : ; l � 1 we

obtain

lnV

x

(s

i

; 1=2) � lnV

x

(s

i

; 0) >

1

2

(2 ln 2k) so that,

V

x

(s

i

; 1=2) > 2kV

x

(s

i

; 0) = 2k

V

�

k

= 2V

�

which is a contradiction, and proves the theorem. Note that if V

x

(s

i

; �) is not contin-

uous, then the left-hand side of the inequality can only be greater, and the theorem

still follows. �

77

IEOR E6610 Approximation Algorithms April 8, 1998

Lecture 11

Lecturer: David P. Williamson Scribe: David de la Nuez

11.1 Metric Methods

In today's lecture, we continue our discussion of metric methods. We will consider ap-

plications to the minimummulticut, balanced cut, and minimum linear arrangement

problems.

11.1.1 Minimum Multicut

Recall the minimum multicut problem:

Minimum Multicut Problem

� Input:

{ An undirected graph G = (V;E)

{ k pairs of vertices (s

i

; t

i

); i = 1 : : : k

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a minimum-cost set of edges F such that for all i, s

i

and t

i

are in

di�erent connected components of G

0

= (V;E � F).

Last time we considered the following LP relaxation of the problem:

Min

X

e2E

c

e

x

e

subject to:

X

e2P

x

e

� 1 8P 2 P

i

; 8i

x

e

� 0;

where P

i

denotes the set of all paths P from s

i

to t

i

. We viewed the solution to the

LP as a \pipe system", where

� e = (i; j) is a pipe from i to j

� x

e

= length of pipe

78

� c

e

= cross section area of pipe

We de�ned dist

x

(u; v) be the distance from u to v given edge lengths x, B

x

(u; r) =

fv 2 V : dist

x

(u; v) � rg, and V

�

=

P

e2E

c

e

x

e

for an optimal LP solution x. We

then gave the following algorithm:

GVY

F ;

Solve LP and get optimal solution x

While 9 some connected s

i

; t

i

pair in current graph

S = B

x

(s

i

; r) for an appropriate choice of r s.t. r < 1=2

Add �(S) to F

Remove S and edges incident to S from current graph

Return F .

We argued that the algorithm did indeed return a multicut. To prove the perfor-

mance guarantee of the algorithm, we de�ned

V

x

(s

i

; r) =

V

�

k

+

X

e=(u;v):u;v2B

x

(s

i

;r)

c

e

x

e

+

X

e=(u;v)2�(B

x

(s

i

;r))

c

e

(r � dist

x

(s

i

; u));

C

x

(s

i

; r) =

X

e2�(B

x

(s

i

;r))

c

e

:

That is, V

x

(s

i

; r) is the total volume of pipe in the ball of radius r around s

i

plus an

extra term V

�

=k. Also, C

x

(s

i

; r) is the cost of the cut de�ned by the vertices in the

ball of radius r around s

i

.

We then proved the following theorem:

Theorem 11.1

9 r < 1=2 s.t.

C

x

(s

i

; r)

V

x

(s

i

; r)

� 2 ln 2k:

In algorithm GVY, for our choice of an appropriate r < 1=2 , we choose an r < 1=2

such that the theorem is true. How can we �nd such an r? First, sort vertices of G

according to their distance from s

i

. That is, consider vertices v

1

; v

2

; : : : ; v

n

such that

s

i

= v

1

, and r

j

= dist

x

(s

i

; v

j

) for r

1

= 0 � r

2

� : : : � r

l

= 1=2. Notice that in any

interval (r

j

; r

j+1

) the value of V

x

(s

i

; r) is increasing, while the value of C

x

(s

i

; r) stays

the same. Thus in any interval (r

j

; r

j+1

) the ratio is largest at the very end of the

interval. Thus, given that we know that the theorem is true, we only need check the

ratio at r

j+1

� � for some tiny value of � > 0, for each j.

We can now prove the �nal theorem.

Theorem 11.2 (Garg, Vazirani, Yannakakis '96) GVY is a (4 ln 2k)-approximation al-

gorithm for the minimummulticut problem.

79

Proof: To prove the bound, we charge the cost of the edges in each cut �(B

x

(s

i

; r))

added to F in each iteration against the volume removed from the graph plus V

�

=k;

that is, against V

x

(s

i

; r). We know that C

x

(s

i

; r) � (2 ln 2k)V

x

(s

i

; r). Since the edges

in B

x

(s

i

; r) and �(B

x

(s

i

; r)) are removed from the graph, we can only charge against

these edges once. Thus the total cost of edges in the graph can be no more than

2 ln 2k times the total volume of the graph plus k � V

�

=k. That is,

X

e2F

c

e

� 2 ln 2k(V

�

+ V

�

)

� (4 ln 2k)V

�

� (4 ln 2k)OPT;

since V

�

is the value of a linear programming relaxation of the problem. �

11.1.2 Balanced Cut

The method we used to approximate solutions to the minimum multicut problem,

namely interpreting an LP solution as a \length" or metric or some clever way, extends

nicely to other problems. We consider now one of these, the balanced cut problem:

Balanced Cut Problem

� Input:

{ G = (V;E)

{ Costs c

e

� 0 for each edge e 2 E

{ A number, b 2 (0;

1

2

]

� Goal: Find a set S � V such that we minimize

P

e2�(S)

c

e

and satis�es bn �

jSj � (1� b)n:

Note that b =

1

2

gives graph bisections, in which half the nodes of the graph are

on each side of the cut. Another typical value is b =

1

3

. But why do we care about

balanced cuts? As it turns out (and shall see later today), balanced cuts are useful

as subroutines in some divide and conquer strategies. Because each side of the cut

contains some constant fraction of the nodes, if we apply this recursively, we can only

do this O(log n) times. Furthermore, the minimization of the edges in the cut makes

the \merge" step of such strategies easier or in some way cheaper.

De�nition 11.1 By OPT (b), we mean the optimal value of a b-balanced cut.

Innocent as the balanced cut problem sounds and important as it is, there is very

little currently know about it. The best result to date is due to Leighton and Rao

(1988):

80

Theorem 11.3 There exists a polynomial-time algorithm for �nding a b-balanced cut

with b �

1

3

of value O(log n)OPT (b

0

) for b

0

> b+ �, for any �xed � > 0.

There is a small \cheat" above, in the sense that we don't get an algorithm truly

in the spirit of those we have considered in this course: OPT (b

0

) could be quite

large compared to OPT (b). Unfortunately, we know no better result. However, we

do know of a simpli�ed version of the above result, due to Even, Naor, Rao, and

Schieber (1995):

Theorem 11.4 There exists a polynomial time algorithm for �nding a

1

3

-balanced cut

of value O(log n)OPT (

1

2

).

As illustration of the fact that we know almost nothing about the balanced cut

problem, consider that our current stage of knowledge does not even allow us to

disprove the existence of a polynomial-time approximation scheme. So, let us now

study the simpli�ed approach, to learn what we can!

De�nition 11.2 By P

uv

we mean the set of all paths from u 2 V to v 2 V .

Now, consider the following linear program, whose optimal value we can use as a

bound:

Z

LP

:= Min

X

e2E

c

e

x

e

subject to:

X

v2S

X

e2P

uv

x

e

�

�

2

3

�

1

2

�

n 8 S s:t: jSj �

2

3

n; u 2 S; P

uv

2 P

uv

x

e

� 0:

The quanti�cation is intended to read that for any S such that jSj �

2

3

n, we pick any

u 2 S, and for each v 2 S, sum the x

e

over some u-v path. The total sum over all

v 2 S should be at least (

2

3

�

1

2

)n.

We show that this LP is a relaxation of the minimum bisection problem.

Lemma 11.5 Z

LP

� OPT (

1

2

).

Proof: Given an optimal bisection S, construct a solution �x for the LP by setting

�x

e

= 1 if e 2 �(S), and �x

e

= 0 otherwise. We show that this is a feasible solution,

which is enough to prove the lemma.

Consider any S

0

such that jS

0

j �

2

3

n, and any u 2 S

0

. Note that there must be

at least (

2

3

�

1

2

)n verticies in S

0

�S, because in the worst case, S � S

0

(do the math).

Suppose u 2 S. As \proof-by-picture", consider Figure 11.1. By our observation

about jS

0

� Sj, it is easy to see that

P

v2V

P

e2P

uv

�x

e

� (

2

3

�

1

2

) n.

81

S S’

u

v

Figure 11.1: Dark lines represent edges whose variable is set to one.

When u =2 S, the argument is essentially the same. So, the solution given by �x is

in fact feasible and so Z

LP

� OPT (

1

2

). �

There is a problem we have ignored in all this { the LP could be quite large. How-

ever, there are ways around this; in particular, if we can �nd a so-called \polynomial-

time separation oracle", we can apply the ellipsoid method and not worry about the

LP being too large. We can get our oracle as follows: given a solution x to check

for feasibility, �x a node u 2 V , run Dijkstra's algotithm (with x

e

as edge lengths)

to get an ordering of the nodes fu = v

1

; v

2

; : : : ; v

n

g from closest to farthest from u.

Now consider the sets S

0

=

n

v

1

; v

2

; : : : ; v
2

3

n

o

; S

1

=

n

v

1

; v

2

; : : : ; v
2

3

n+1

o

; : : : ; S
1

3

n

=

fv

1

; v

2

; : : : ; v

n

g. If some constraint is violated for this choice of u, then certainly it

must be violated for one of these sets S

i

since these are the sets of vertices closest to

u; that is, the sum of the path lengths can be no smaller for any other S such that

jSj �

2

3

n.

We are now in position to state an algorithm, and begin its analysis.

82

ENRS

Solve the LP for optimal x.

S ;

F ;

While jSj <

n

3

Choose some u; v pair in the current graph such that

dist

x

(u; v) �

1

6

C B

x

(u; r), for an appropriate r <

1

12

C

0

 B

x

(v; r

0

), for an appropriate r

0

<

1

12

Add C or C

0

to S, whichever gives minfjCj; jC

0

jg

and �(C) (or �(C

0

)) to F

Remove C (or C

0

) from the graph.

Lemma 11.6 If jSj <

n

3

, there exists a u; v pair in the current graph such that dist

x

(u; v) �

1

6

.

Proof: Consider

�

S = V � S. Then j

�

Sj >

2n

3

. This implies that

P

v2

�

S

P

e2P

uv

x

e

�

(

2

3

�

1

2

)n =

n

6

;8 u 2 S; P

uv

2 P

uv

. But then the average path length from u to a

v 2

�

S is at least

1

6

n

j

�

Sj

�

1

6

. Thus by the pigeon-hole principle, there exists some v 2

�

S

such that dist

x

(u; v) �

1

6

. �

Lemma 11.7 ENRS outputs a

1

3

-balanced cut.

Proof: jSj �

n

3

at termination, by design. So, we only need to show that jSj �

2n

3

.

Choose any iteration of the while loop. At the begining of the iteration, we certainly

have jSj <

n

3

, by design, and at the end of the iteration, jSj jSj+minfjCj; jC

0

jg.

Note that because dist

x

(u; v) �

1

6

but C = B

x

(u; r) and C

0

= B

x

(v; r

0

) for r; r

0

<

1

12

,

it must be the case that C and C

0

are disjoint. This implies that minfjCj; jC

0

jg �

1

2

(n � jSj), i.e. the smaller of C and C

0

can be no more than half the remaining

vertices. So,

jSj+minfjCj; jC

0

jg � jSj+

1

2

(n� jSj)

=

1

2

n +

1

2

jSj

�

2n

3

�

We have reached the point where the analysis will begin to look very familiar, i.e.

we follow closely the model of the minimum multicut analysis. So, we present the

following de�nitions, analagous to those we have seen before:

83

De�nition 11.3

V

x

(u; r) :=

Z

LP

n

+

X

e=(u;v) : v;w 2 B

x

(u;r)

c

e

+

X

e=(v;w) 2 �(B

x

(u;r))

c

e

(r � dist

x

(u;w))

De�nition 11.4

C

x

(u; r) =

X

e=(v;w) 2 �(B

x

(u;r))

c

e

And now we prove a familiar looking theorem, whose bound is somewhat di�erent,

but whose proof is practically identical (and so we omit it):

Theorem 11.8 There exists r <

1

12

such that

C

x

(u;r)

V

x

(u;r)

� 12 ln 2n

We �nd the \appropriate choice" of r as before (i.e., one that achieves the bound

in the theorem). Now we may state the �nal theorem, due to Even, Naor, Rao, and

Schieber (1995):

Theorem 11.9 There exists a polynomial time algorithm for �nding a

1

3

-balanced cut

S such that

X

e 2 �(S)

c

e

� (24 ln 2n)Z

LP

= (24 ln 2n)OPT

�

1

2

�

:

We omit the proof due to its similarity to the analagous proof in the analysis of

the minimum multicut problem.

11.1.3 Minimum Linear Arrangement

We promised earlier to look at an example of an application of balanced cuts. One

application is in solving the minimum linear arrangement problem:

Minimum Linear Arrangement Problem

� Input:

{ G = (V;E), undirected.

{ Costs c

e

� 0 for each edge e 2 E

� Goal: Find a bijection f : V f1; 2; : : : ; ng which minimizes

max

i

X

(u;v)2E:f(u)�i;f(v)>i

c

e

:

84

1

3

6

42

5

1 2 3 4 5 6

Cost = 1 on all edges

Dark lines represent edges

Goal: minimize the max of these2 2 3 22

Figure 11.2: A graph and a representation of a corresponding linear arrangement.

85

As an example, consider Figure 11.2. The curly lines represent \f(u) � i; f(v) >

i". The goal is to minimize the maximum number of edges crossing a curly line.

In the past we've used optimal value of a linear programs to bound in some

intelligent manner the value of something we're interested in. Balanced cuts will

allow us to do a similar trick for the linear arrangement problem.

Lemma 11.10 OPT (

1

2

) � OPT

LA

, where OPT

LA

is the optimal value of the linear

arrangement problem.

Proof: The proof here is quite simple: any linear arrangment gives us a bisection

by splitting the arrangement at

n

2

. See Figure 11.3 for a \proof-by-picture".

Edges

1 n/2 1+ n/2 n

Figure 11.3: Getting a bisection from a linear arrangment

So then OPT (

1

2

) � LA, where LA is the value of the linear arrangement. In

particular, this is true of the optimal arrangment, so we are done. �

This motivates the following algorithm:

LAYOUT(V;E; fi

1

; i

2

; : : : ; i

jV j

g)

if V = fvg (i.e. singleton set)

f(v) i

1

;

else

Find a

1

3

-balanced cut S

LAYOUT(S;E

S

; fi

1

; i

2

; : : : ; i

jSj

g)

LAYOUT(

�

S;E

�

S

; fi

1

; i

2

; : : : ; i

j

�

Sj

g)

Note that we initially call LAYOUT (V;E; f1; 2; : : : ; ng).

Theorem 11.11 LAYOUT is an O(log

2

n)-approximation algorithm for the linear ar-

rangment problem.

86

Proof:

Let L(V;E) := value of LAYOUT(V;E).

Let B(V;E) := value of

1

3

�balanced cut S of (V;E).

Observe that because in the worst case, all the edges of the balanced cut appear

in all the divisions of the layout,

L(V;E) � max

n

L(S;E

S

); L(

�

S;E

�

S

)

o

+B(V;E)

� max

n

L(S;E

S

); L(

�

S;E

�

S

)

o

+O(log n)OPT

�

1

2

�

� max

n

L(S;E

S

); L(

�

S;E

�

S

)

o

+O(log n)OPT

LA

:

But applying the inequality above recursively, combined with the fact that our recur-

sion tree is O(log n) deep, we get that

L(V;E) � max

n

L(S;E

S

); L(

�

S;E

�

S

)

o

+O(log n)OPT

LA

� O(log n)O(log n)OPT

LA

= O(log

2

n)OPT

LA

:

�

87

IEOR E6610 Approximation Algorithms April 15, 1998

Lecture 12

Lecturer: David P. Williamson Scribe: Olga Raskina

12.1 Scheduling problems and LP

12.1.1 Some deterministic scheduling notation

We turn to discussion of some recent work on approximation algorithms for determin-

istic scheduling problems. Before we get to that, we will need to review some sched-

uling notation due to Graham, Lawler, Lenstra, and Rinnooy Kan. In their notation,

scheduling problems are represented as Machine environmentjConstraintsjObjective

function. We give some examples of the possibities. Two possible elements in the

environment �eld are 1 (for single machine problems) and P (for identical parallel

machine problems). Two possible elements in the constraint �eld are r

j

(when each

job j has a \release date". Then job j is not available before time r

j

) and prec (e.g.

j � k. This implies that we cannot start processing job k before job j is �nished).

Assume C

j

is the completion time of job j. Then two possible elements in the objec-

tive �eld are C

max

(meaning minmax

j

C

j

, the maximum completion time of all jobs)

and

P

j

w

j

C

j

(meaning min

P

j

w

j

C

j

, where w

j

is weight of job j).

As an example, the scheduling problem we looked at earlier in the semester,

scheduling identical parallel machines to minimize the maximum completion time, is

denoted P jjC

max

.

12.1.2 1jj

P

j

w

j

C

j

We now turn to the problem 1jj

P

j

w

j

C

j

.

1jj

P

j

w

j

C

j

� Input: n jobs J

1

:::J

n

with weights w

1

:::w

n

and processing times p

1

:::p

n

.

� Goal: Find a schedule on 1 machine that minimizes

P

j

w

j

C

j

.

To think about a scheduling algorithm for this problem, suppose we have a sched-

ule on 1 machine and jobs j and k are adjacent. What happens if we swap them?

Nothing changes for any job before or after j and k. If C

0

denotes the new completion

times after the job swap, then C

0

j

= C

j

+ p

k

, C

0

k

= C

k

� p

j

, and C

0

l

= C

l

for all other

jobs l.

88

When is this swap an improvement? Obviously, when

P

j

w

j

C

0

j

�

P

j

w

j

C

j

< 0,

which in this case is when w

j

p

k

� w

k

p

j

< 0, which implies w

j

p

k

< w

k

p

j

or

w

j

p

j

<

w

k

p

k

. Therefore no improvement is possible if and only if the jobs are scheduled in

nonincreasing order of

w

j

p

j

. This observation is called Smith's Rule and is the basis of

the following theorem.

Theorem 12.1 (Smith '56) The optimal schedule for 1jj

P

j

w

j

C

j

can be found by

scheduling jobs in order of non-decreasing

w

j

p

j

(and thus can be found in O(n log n) time).

But even minor twists make the problem hard: 1jr

j

j

P

j

w

j

C

j

and 1jprecj

P

j

w

j

C

j

are NP-hard.

Corollary 12.2 If p

j

= w

j

8j then any schedule without idle time is optimal; i.e.

P

j

w

j

C

j

is the same for any such schedule.

Using this corollary, we will develop linear constraints on variables C

j

that are

valid for all schedules. From this, we will be able to develop a linear programming

relaxation for 1jj

P

j

w

j

C

j

and its various variants. Thus if we schedule jobs in the

order of their indices we have that

X

j

w

j

C

j

=

X

j

p

j

C

j

=

X

j

X

1�k�j

p

k

=

X

j;k:k�j

p

j

p

k

:

Then for any schedule (including those with idle time)

X

j

p

j

C

j

�

X

j;k:k�j

p

j

p

k

;

since adding idle time can only increase the left-hand side.

Now, suppose jobs in S � f1; 2; : : : ; ng are all scheduled �rst. As before, when

w

j

= p

j

the order of the jobs is immaterial, since

P

j2S

w

j

C

j

will be the same no

matter what order the jobs are scheduled in. Then

X

j2S

w

j

C

j

=

X

j2S

p

j

C

j

=

X

j2S

p

j

0

@

X

k2S:k�j

p

k

1

A

=

X

j;k2S:k�j

p

j

p

k

:

Notice then that if we consider any schedule (ones including idle time, or ones in

which jobs not in S �nish before those in S), the sum

P

j2S

p

j

C

j

can only increase.

Thus we have that

X

j2S

p

j

C

j

�

X

j;k2S:k�j

p

j

p

k

is valid for any schedule.

We introduce the following notation: p(S) =

P

j2S

p

j

, p(S)

2

= (

P

j2S

p

j

)

2

, p

2

(S) =

P

j2S

p

2

j

. Then we can rewrite the inequality as

X

j2S

p

j

C

j

�

X

j;k2S:k�j

p

j

p

k

=

1

2

(p(S)

2

+ p

2

(S)):

89

We can now write a linear programming relaxation of the scheduling problem

1jj

P

j

w

j

C

j

.

Z

LP

= Min

X

j

w

j

C

j

subject to:

X

j

p

j

C

j

�

1

2

(p(S)

2

+ p

2

(S)) 8S � f1; : : : ; ng:

Claim 12.3 There is a polynomial-time separation oracle for these inequalities.

Thus we can solve the LP in polynomial-time using the ellipsoid method.

Although we won't need this fact, it is interesting to note that the LP relaxation

completely captures the problem 1jj

P

j

w

j

C

j

.

Theorem 12.4 (Wolsey '85, Queyranne '93) Z

LP

gives the optimal value for 1jj

P

j

w

j

C

j

.

Proof: We will show that the completion times C

j

from the schedule given by

Smith's rule give an optimal LP solution. Assume

w

1

p

1

� � � � �

w

n

p

n

, so that the optimal

schedule is C

j

=

P

1�k�j

p

k

. By previous arguments, the LP constraints will be tight

for the sets S = f1g; f1; 2g; : : : ; f1; 2; : : : ; ng.

Now, consider the dual LP:

Z

LP

= Max

1

2

X

S

(p(S)

2

+ p

2

(S))y

S

subject to:

X

S:j2S

y

S

=

w

j

p

j

8j

y

S

� 0 8S � f1; : : : ; ng:

To prove that the schedule is optimal, we will construct a dual feasible solution that

obeys complementary slackness with respect to the C

j

. This implies that the C

j

give

the optimal LP solution.

Set

y

f1g

=

w

1

p

1

�

w

2

p

2

y

f1;2g

=

w

2

p

2

�

w

3

p

3

.

.

.

y

f1;:::;n�1g

=

w

n�1

p

n�1

�

w

n

p

n

y

f1;:::;ng

=

w

n

p

n

;

90

and set y

S

= 0 otherwise. Then note that y

S

� 0 for all S. Also note that for any

job j

X

S:j2S

y

S

=

n�1

X

k=j

w

k

p

k

�

w

k+1

p

k+1

!

+

w

n

p

n

=

w

j

p

j

for all jobs j. Thus these y

S

are feasible for the dual LP and obey complementary

slackness, since whenever y

S

> 0 the corresponding primal inequality is tight. �

12.1.3 1jprecj

P

j

w

j

C

j

We now turn to the problem 1jprecj

P

j

w

j

C

j

. To add precedence constraints to the

LP, just add the the inequalities C

k

� C

j

+ p

k

for j � k. Now consider the following

algorithm:

Schedule-by-

�

C

j

Solve LP; Obtain opt solution

�

C. (Assume

�

C

1

�

�

C

2

� ::: �

�

C

n

).

Schedule jobs in order 1; 2; :::; n, i.e.

~

C

j

=

P

1�k�j

p

k

Note that the solution will obey the precedence constraints since

�

C

j

<

�

C

k

by the

LP constraints whenever j � k (assuming p

k

6= 0).

We can prove the following lemma about the LP solution.

Lemma 12.5

�

C

j

�

1

2

(

P

1�k�j

p

j

)

Proof: We know for S = f1; 2; : : : ; jg

X

1�k�j

p

k

�

C

k

�

1

2

(p(S)

2

+ p

2

(S)) �

1

2

p(S)

2

=

1

2

0

@

X

1�k�j

p

k

1

A

2

:

Since

�

C

j

�

�

C

k

for k � j then

�

C

j

X

1�k�j

p

k

�

X

1�k�j

p

k

�

C

k

�

1

2

0

@

X

1�k�j

p

k

1

A

2

:

Dividing both sides by

P

1�k�j

p

k

gives the lemma statement. �

The lemma leads to the following theorem.

Theorem 12.6 (Hall, Schulz, Shmoys, Wein '97) Schedule-by-

�

C

j

is a 2-approximation

algorithm.

91

Proof:

X

1�j�n

w

j

~

C

j

=

X

1�j�n

w

j

0

@

X

1�k�j

p

k

1

A

� 2

X

1�j�n

w

j

�

C

j

= 2Z

LP

� 2OPT:

�

12.1.4 1jr

j

j

P

j

w

j

C

j

We �nally turn to the problem 1jr

j

j

P

j

w

j

C

j

. In order to get an approximation

algorithm for this problem, we consider a di�erent linear programming relaxation of

the problem. We introduce variables y

jt

where

y

jt

=

(

1 if job j processed in time (t� 1; t]

0 otherwise

Let T denote max

j

r

j

+

P

1�j�n

p

j

, which is the latest possible completion time for

any job. We now formulate a series of constraints for the LP. First note that

X

1�j�n

y

jt

� 1 for t = 1; : : : ; T;

since at most one job can be processed at any point in time. Also,

X

1�t�T

y

jt

= p

j

8j;

since the total amount of processing for job j must be p

j

. In order to impose that no

job is processed before its release date, we have

y

jt

= 0 8t = 1; : : : ; r

j

8j;

but

y

jt

� 0 8t > r

j

8j:

Finally, because we wish to minimize

P

j

w

j

C

j

, we need to express C

j

in terms of

the variables y

jt

. Note that in valid schedule y

j;C

j

�p

j

+1

= y

j;C

j

�p

j

+2

= ::: = y

j;C

j

= 1.

Thus we can express

C

j

�

p

j

2

=

1

p

j

X

r

j

+1�t�T

y

jt

(t�

1

2

):

That is, the midpoint of the execution of the job, C

j

�

p

j

2

, is the average over all

midpoints of the time intervals that job j is processed.

92

Thus we have the following linear programming relaxation of the problem 1jr

j

j

P

j

w

j

C

j

:

Min

X

j

w

j

C

j

subject to:

X

1�j�n

y

jt

� 1 t = 1; : : : ; T

X

1�t�T

y

jt

= p

j

8j

y

jt

= 0 8t = 1; : : : ; r

j

;8j

y

jt

� 0 8t > r

j

;8j

C

j

=

1

p

j

X

r

j

+1�t�T

y

jt

(t�

1

2

) +

p

j

2

8j

Thus if Z

LP

is the value of this LP relaxation, then Z

LP

� OPT .

This seems very bad because we have an exponential number of variables (in the

size of the input) and an exponential number of constraints. But it turns out it is

not so bad.

Claim 12.7 (Goemans '96) The LP can be solved in O(n log n) time.

To get an approximation algorithm given an LP solution, we invoke our old friend,

randomized rounding.

RandomRound

Solve LP, get optimal solution (

�

C

j

; �y

jt

).

Set T

j

= t�

1

2

with probability

�y

jt

p

j

8j.

Schedule jobs as early as possible in same order as T

j

(because of r

j

there can be idle time in the resulting schedule).

Suppose that T

1

� T

2

� � � � � T

n

. Let

~

C

j

be random variable giving the com-

pletion time of job j. We begin the analysis by considering the expected value of

~

C

j

given a �xed value of T

j

.

Lemma 12.8 E[

~

C

j

jT

j

] � p

j

+ 2T

j

Proof: Let I be a random variable giving the total idle time before job j is

processed, and let P be a random variable giving the total amount of time spent

processing jobs before j starts. Then obviously

~

C

j

= I + P + p

j

.

Since idle time before job j can only result from the release dates of jobs to be

scheduled before job j, the idle time is at worst

max

k:T

k

�T

j

r

k

� max

k:T

k

�T

j

T

k

� T

j

;

93

so that I � T

j

.

Furthermore,

E[P jT

j

] =

X

k 6=j

p

k

Pr[job k is processed before jjT

j

]

=

X

k 6=j

p

k

Pr[T

k

� T

j

jT

j

]

=

X

k 6=j

p

k

0

@

X

1�t�T

j

y

kt

p

k

1

A

=

X

k 6=j

X

1�t�T

j

y

kt

=

X

1�t�T

j

X

k 6=j

y

kt

� T

j

;

since

P

k 6=j

y

kt

� 1 by the linear program.

Therefore

E[

~

C

j

jT

j

] = p

j

+ E[IjT

j

] + E[P jT

j

] � p

j

+ 2T

j

:

�

We can now prove the following theorem.

Theorem 12.9 (Schulz, Skutella '96) RandomRound is a 2-approximation algorithm for

1jr

j

j

P

j

w

j

C

j

Proof: Notice that

E[

~

C

j

] � p

j

+ 2

X

1�t�T

�

t�

1

2

�

Pr

�

T

j

= t�

1

2

�

= p

j

+ 2

X

1�t�T

�

t�

1

2

�

y

jt

p

j

= 2

0

@

p

j

2

+

1

p

j

X

1�t�T

�

t�

1

2

�

y

jt

1

A

= 2

�

C

j

;

where the last equality follows from the LP formulation. Thus

E[

X

j

w

j

~

C

j

] =

X

j

w

j

E[

~

C

j

] � 2

X

j

w

j

�

C

j

� 2OPT:

�

The �rst 2-approximation algorithm for this problem was due to Goemans.

94

Here's an alternate perspective on what the algorithm is doing: the LP solution is a

preemptive schedule (one in which the processing of any job j need not be continuous).

Pick �

j

2 [0; 1] uniformly for each j. Let T

j

be �

j

-point of job j: that is, the time

when �

j

p

j

units of job j have been processed in the preemptive schedule. Then

schedule jobs according to T

j

as before. The O(n log n)-time algorithm of Goemans

to �nd the LP solution actually �nds this preemptive schedule.

The best known approximation algorithm for 1jr

j

j

P

j

w

j

C

j

, due to Goemans,

Queyranne, Schulz, Skutella, and Wang (1998) has a performance guarantee of 1:6853,

and is the same as above, except �

j

is picked non-uniformly from [0,1]. It is conjec-

tured that there is an

e

e�1

� 1:58-approximation algorithm. This is known to be true

for 1jr

j

j

P

j

C

j

.

95

IEOR E6610 Approximation Algorithms April 22, 1998

Lecture 13

Lecturer: David P. Williamson Scribe: Yiqing Lin

13.1 A PTAS for Euclidean TSP

Today, we give a polynomial-time approximation scheme for Euclidean TSP due

to Arora (1996, 1997) which �nds a tour with cost no more than (1 + �)OPT in

O(n log

O(

1

�

)

n) time. Recall that Euclidean TSP is a special case of TSP in which

vertices correspond to points in the plane, and the cost of an edge (i; j) is the Euclid-

ean distance between the corresponding points. It turns out that this technique for

Euclidean TSP also works for Euclidean Steiner trees, perfect matchings, problems

called k-MST and k-TSP (in which one must �nd the min-cost MST and TSP on k

out of the n points), problems in <

d

, and more.

First, some interesting history behind this result. Mitchell (1996) independently

discovered a similar PTAS soon after Arora had made a preliminary announcement of

his result. Also, Arora is better known for his work showing that for many problems,

no PTAS can exist unless P = NP . He was trying to prove the same for Euclidean

TSP, when he realized it wouldn't work, and �gured out a PTAS.

The basic strategy for obtaining the PTAS is (as it has been for most of the

PTAS's we've seen) to apply dynamic programming. The main di�culty is getting

the problem to a point where we can apply dynamic programming. Our overall

strategy for doing so is the following:

1. We perturb the instance to get nice properties, increasing OPT by at most

�OPT .

2. We subdivide the plane randomly, in a way to be de�ned later.

3. We show that with probability at least

1

2

, a highly structured tour of cost no

more than (1 + �)OPT exists for the perturbed instance with respect to the

random subdivision.

4. We use dynamic programming to �nd cheapest tour with the structure of part

3.

13.1.1 Perturbing the Problem Instance

We want to perturb the problem instance so that the following properties hold:

96

L

L

bounding box

Lε
8n

Figure 13.1: Illustration of bounding box and grid.

1. All points have integer coordinates.

2. The minimum nonzero distance is at least 8.

3. The maximum distance is O(n).

Let L denote the length of the \bounding box" around the points in the instance

(see Figure 13.1). Observe that L � OPT . To get a perturbed instance with the

properties we want, we �rst put down a grid of spacing

�L

8n

(see Figure 13.1), and

move the points to nearest grid points. How does this a�ect the length of the optimal

tour? Well, each edge increases by at most

2�L

8n

, which implies that the total increase

is at most n

2�L

8n

=

�L

4

�

�

4

OPT . Thus an optimal tour in this instance has length at

most (1 +

�

4

)OPT .

We now blow up the grid spacing by a factor of

64n

�L

. This implies that every point

is now at some multiple of

�L

8n

(

64n

�L

) = 8, which gives us desired properties 1 and 2.

Furthermore, the maximum distance is now O(L)

64n

�L

= O(

64n

�

) = O(n), assuming �

is �xed. Clearly if we �nd a near-optimal tour in the \blown up" instance, the same

tour will also be near optimal in the non-blown-up instance.

13.1.2 Subdividing the Plane

To apply dynamic programming, we need some structure on the problem whereby we

can build up a solution from the solution to smaller problems. To do this, we are

going to subdivide the plane in a random way. First we will consider the subdivision

without randomness, and then we will introduce the randomization.

To create the subdivision, we divide the bounding box into four equally-sized

boxes, and then recursively divide the boxes into four boxes, and so on (See Figure

97

13.2). We will consider two di�erent types of subdivisions, which di�er only in when

we stop the recursion. For a quadtree, we stop when there is at most 1 node per

square. For a dissection, we stop when each box has side length 1. The subdivision

in Figure 13.2 is a quadtree.

Figure 13.2: Example of a quadtree.

We will need to talk about the di�erent levels of recursion in subdividing the

instance. We will say that the bounding box has level 0, and the boxes in the subdi-

vision of a level i box are at level i+ 1. Since the maximum distance between points

is O(n) and points at non-zero distance are at least distance 8 apart, the level of

smallest box is O(log n). Thus it is not di�cult to see that the total number of boxes

in quadtree is O(n log n).

We introduce randomness into the subdivision by \shifting" the center of dissec-

tion. If the side length of the bounding box is L, the original center of the dissection is

(

L

2

;

L

2

). To shift the dissection, we pick a; b from [0; L) randomly, and start dissection

at center (

L

2

+ a(mod L);

L

2

+ b(mod L)). We call dissections and quadtrees created

in this way (a; b)-dissections and (a; b)-quadtrees. See Figure 13.3 for an example.

13.1.3 The Structure Theorem

Given the subdivisions of the plane, we can now begin discussing how to use them

to �nd a tour that is near optimal. To do this, for each box in the (a; b)-quadtree,

we put m regularly spaced points on each side and one at each corner. We call these

points portals. The main idea that enables us to carry out dynamic programming is

that we will look for tours that cross the sides of boxes only through portals.

Let's de�ne such a tour. We say we have a salesman path if we have a connected

set of edges such that degree at portals is even (possibly 0), and degree at nodes is 2.

We know from previous discussion of the TSP that if we �nd a short salesman path,

then by shortcutting the portals we can �nd a tour of cost no greater. We de�ne an

98

(0,0)

(a,b)

B

C

A
1

A
2

A
3

A
4

C

DD

D DA
1

A
4

Figure 13.3: Example of the beginning of an (a; b)-dissection. Areas labelled with the

same letter are conceptually the same box.

(m; r)-light salesman path to be a salesman path that crosses each side of each box

at most r times, and crosses the the sides of boxes only at portals.

We then have the following theorem about (m; r)-light salesman paths. We defer

the proof for the time being.

Theorem 13.1 [Structure Theorem, Arora '97] Pick a; b 2 [0; L) at random. Then with

probability at least

1

2

, the (a; b)-dissection has an (m; r)-light salesman path of cost no

more than (1 + �)OPT , where m = O(

1

�

logL) and r = O(

1

�

):

13.1.4 Applying Dynamic Programming

Since we know by the Structure Theorem that there is an (m; r)-light salesman path

of cost no more than (1+�)OPT with probability at least 1=2, we now apply dynamic

programming to �nd the least cost (m; r)-light salesman path, then convert this into

a tour of no greater cost. Then with probability at least 1=2 we will have found a

tour of cost at most (1 + �)OPT .

Now to de�ne the dynamic program. By the de�nition of an (m; r)-light salesman

path, we know for every box that the path crosses each side of it at most r times.

Given some Eulerian tour of the salesman path, we can think of the tour entering

the box, visiting some of the nodes inside it, then exiting, visiting points elsewhere,

re-entering, and so on. Thus for each square, we know that the salesman path

� Uses some even number of portals (possibly repeated), no more than 4r.

� These portals are paired into entry/exit pairs.

99

Inside each box, given the portals used and the entry/exit pairing, the cheapest

(m; r)-light salesman path uses cheapest paths in the box to visit all nodes in that

box.

Thus our dynamic program is as follows: for each box in the (a; b)-quadtree, for

each choice of up to r portals per side, for each pairing of these portals into entry/exit

pairs, we �nd the cheapest way to visit all the nodes in the box. We build up a table

containing an entry for each box, choice of portals, and pairing of portals, and use

some of the entries to help us �nd the solutions for other entries.

First we calculate the size of the table we will need. There are O(n log n) boxes

in the quadree, (4m + 4 + 1)

4r

choices of up to r portals on each side of the box

(including not choosing any portals) for each box, and (4r)! possible pairings of the

portals into entry/exit pairs. So the table has

O(n log n)� (4m+ 4 + 1)

4r

� (4r)! = O(n log

O(

1

�

)

n) entries:

Now we discuss how to build up the table. Our base case considers the boxes at

the \lowest" level of the quadtree (i.e. boxes that do not contain any boxes inside of

them). This case is fairly simple: for each choice of portals and pairing of portals,

we �nd the shortest paths that enter/exit the box in the designated way and visit

the 1 node inside the box. The inductive case builds up a solution for a box B from

the solutions for the four boxes b

1

; : : : ; b

4

it contains. Note that the paths visiting

the nodes in B may use portals on the four boundaries of the b

i

that are not also a

boundary of B. Call these boundaries the \internal" sides of the b

i

. To combine the

solutions from the b

i

to get a solution for box B, we enumerate over all the portals on

the internal sides that the paths might have used, and the order in which these portals

were visited by the paths, and pick the best solution we �nd. Notice that specifying

a set of portals used on the internal sides and an order in which they are used implies

for each b

i

a set of portals which are used, in addition to an entry/exit pairing on the

portals. Thus we can simply look up the best solution for this subproblem for each b

i

from our table and combine them to get a solution for B. We can pick up to r portals

from each of the four internal sides (which is no more than (m + 5)

4r

possibilities)

specify which of the 2r paths for B on which these portals lie (which is no more than

(2r)

4r

possibilities), and the ordering of these portals on the paths (no more than

(4r)! possibilities). Thus it takes at most O((m+5)

4r

(2r)

4r

(4r)!) = O(log

O(

1

�

)

n) time

to compute the answer for each entry in the table. Therefore, the overall time taken

is O(n log

O(

1

�

)

n).

The overall solution to our problem is found in the table entry corresponding to

the bounding box with no portals chosen.

13.1.5 Proving the Structure Theorem

We now turn to the proof of Theorem 13.1. The basic idea is to modify the optimal

tour to be (m; r)-light salesman path. We will show that modi�cations don't cost

100

much. To prove this, we �rst need to show that if the tour crosses a line too much, we

can change it at a small increase in cost so that it doesn't cross the line very much.

Lemma 13.2 [Patching Lemma] Given a line segment S of length `, if a tour crosses

S three or more times, we can add line segments on S of length no more than 6l to get

Eulerian tour that contains the previous tour, and crosses S at most twice.

Proof: We take the tour, and break it at the points at which it crosses line S.

We put new points just to the \left" and \right" of S where the tour crossed S; see

Figure 13.4.

We now add a tour and a matching to the points on the left side of the line, and

a tour and matching to the points on the right side of the line, plus edges connecting

the last one or two pairs of points. See Figure 13.5 for an example. This gives an

Eulerian graph which contains the previous tour and crosses S at most twice. Each

tour added has cost at most 2l and each matching has cost l, for an overall cost of 6l.

�

We now apply the patching lemma to the various \grid lines" in the dissection

(i.e. the lines parallel with the sides of the bounding box) in order to make the tour

into an (m; r)-light salesman path. We need to do this in a particular order, which

we give in the following lemma.

Lemma 13.3 Given line ` from random (a; b)-dissection, the expected cost of making

tour (m; r)-light on line ` is

13t(`)

r

, where t(`) is number of times that the optimal tour

crosses line `.

Proof: De�ne the level of line ` to be the minimum level over all boxes such

that ` contains a side of the box. Then observe that since we chose the center of the

dissection uniformly at random that this implies that

Pr[level of ` is i] =

2

i

L

;

that is, the probability it has level 0 is 1=L, etc.

The �rst thing we need to do is to move all the points at which the optimal tour

crosses ` to a portal. A box at level i has portals at distance

L

2

i

m

, so that the expected

increase in the tour for moving the crossings to the nearest portal is

X

i�i

Pr[level of ` is i] � t(`) �

L

2

i

m

=

X

i�1

2

i

L

� t(`) �

L

2

i

m

=

t(`) logL

m

�

t(`)

r � 1

;

101

for m = O(r logL).

We now invoke the patching lemma to make sure that for every side of every box

which ` contains, it is not crossed more than r times. We consider a vertical line `

(the horizontal case is similar), and apply the following procedure to modify `, given

that it has level i and we have an (a; b)-dissection:

Modify(`; i; b)

For j log L downto i

For p 0 to 2

j

� 1

If segment of ` from b+ p �

L

2

j

mod L to b+ (p + 1) �

L

2

j

mod L

is crossed more than r times

Apply patching lemma to cross segment twice

Let c

j

denote the number of times the patching lemma is applied in iteration

j. Then

P

j�1

c

j

� t(`)=(r � 1), since each time the patching lemma is invoked, it

replaces at least r + 1 crossings with at most 2. Then the total expected increase in

the cost of the tour due to the patching of ` is

X

i�1

Pr[level of ` is i] � Increase in cost due to Modify(`; i; b)

�

X

i�1

2

i

L

X

j�i

c

j

� 6 �

L

2

j

= 6

X

j�1

c

j

2

j

X

i�j

2

i

= 6

X

j�1

2c

j

=

12t(`)

r � 1

:

Thus the total expected increase in cost for making the tour (m; r)-light on line `

is

t(`)

r � 1

+

12t(`)

r � 1

�

13t(`)

r

:

�

Let T be the sum of t(`) over all horizontal and vertical grid lines `. The above

lemma tells us that the overall expected increase caused by transforming the optimal

tour to an (m; r)-light salesman path is at most

13

r

T . If we set r �

52

�

, then with

probability at least 1=2, the cost is at most

�

2

T . The �nal lemma shows that T �

2OPT , which completes the proof of the Structure Theorem.

Lemma 13.4 T � 2OPT:

102

Proof: Consider an edge e in the optimal tour from point (x

1

; y

1

) to (x

2

; y

2

).

The edge contributes at most jx

1

� x

2

j + jy

1

� y

2

j + 2 to T , and has length s =

q

(x

1

� x

2

)

2

+ (y

1

� y

2

)

2

. But

jx

1

� x

2

j+ jy

1

� y

2

j+ 2 �

q

2[(x

1

� x

2

)

2

+ (y

1

� y

2

)

2

] + 2

�

p

2s

2

+ 2

� 2s;

since (by our perturbation of the instance) s � 4. Thus, summing over all edges in

the optimal tour, T � 2OPT . �

103

Figure 13.4: Breaking the tour where it crosses the line.

104

Figure 13.5: Adding tours and matchings to obtain Eulerian tour.

105

IEOR E6610 Approximation Algorithms April 29, 1998

Lecture 14

Lecturer: David P. Williamson Scribe: Xiangdong Yu

14.1 Uncapacitated Facility Location

For our last lecture, we will consider the uncapacitated facility location problem.

Uncapacitated Facility Location Problem (UFL)

� Input:

{ Set V of locations.

{ Facilities F � V , cost f

i

; 8i 2 F .

{ Clients D = V � F , cost c

ij

for assigning client j to facility i.

{ Costs c

ij

obey the trangle inequality.

� Goal: Find F

0

� F and assignment of clients to facilities in F

0

that minimizes

the total cost.

We will use our standard technique, and �rst formulate the problem as an integer

program. To do that, we �rst introduce some variables. Let

y

i

=

(

1 if facility i is opened

0 otherwise

and

x

ij

=

(

1 if client j is assigned to facility i

0 otherwise.

We can then get the following integer programming formulation for the UFL:

Min

X

i2F

f

i

y

i

+

X

i2F;j2D

c

ij

x

ij

subject to:

X

i2F

x

ij

= 1 8j 2 D

x

ij

� y

i

8i 2 F; j 2 D

x

ij

2 f0; 1g 8i 2 F; j 2 D

y

i

2 f0; 1g 8i 2 F:

106

The �rst set of equalities enforce that each client is assigned to some facility. The

inequalities x

ij

� y

i

enforce that if client j is assigned to facility i, then facility i

should be open. We relax this IP to an LP by replacing x

ij

2 f0; 1g with x

ij

� 0 and

y

i

2 f0; 1g with y

i

� 0.

In order to get an approximation algorithm for the problem, we �rst need the

following de�nition.

De�nition 14.1 Let g 2 <

jDj

, (~x; ~y) be a feasible solution for the LP. Then (~x; ~y) is

g-close if ~x

ij

> 0 implies that c

ij

� g

j

; 8i 2 F; j 2 D.

Basically the de�nition says that for any client j, for any facility i that has a non-zero

assignment variable x

ij

, the facility should be \close"; i.e. within cost g

j

.

To get a vector g such that an LP solution is g-close, we look at the dual of our

LP. The dual is

Max

X

j2D

v

j

subject to:

X

j2D

w

ij

� f

i

8i 2 F

v

j

� w

ij

� c

ij

8i 2 F; j 2 D

w

ij

� 0 8i 2 F; j 2 D:

The following lemma relates the optimal LP and dual solutions via closeness.

Lemma 14.1 If (x

�

; y

�

) is an optimal solution to LP and (v

�

; w

�

) is an optimal solution

to its dual, then (x

�

; y

�

) is v

�

-close.

Proof: We observe that

x

�

ij

> 0) v

�

j

�w

�

ij

= c

ij

(14.1)

) c

ij

� v

�

j

:(14.2)

(14.1) follows via complementary slackness, and (14.2) follows since w

ij

� 0. �

Shmoys, Tardos, and Aardal proved the following useful theorem. We defer the

proof of the theorem until after we show how it implies an approximation algorithm

for UFL.

Theorem 14.2 (Shmoys, Tardos, Aardal '97) Given a LP solution (~x; ~y) that is g-close,

one can �nd in polynomial time a feasible IP solution (�x; �y) which is 3g-close such that

P

i2F

f

i

�y

i

�

P

i2F

f

i

~y

i

.

107

Theorem 14.3 (Chudak '98) Applying the theorem above to an optimal LP solution

(x

�

; y

�

) with g = v

�

, where v

�

is an optimal dual solution, gives a 4-approximation

algorithm for UFL.

Proof: The cost of the integral solution produced by the algorithm is

P

i2F

f

i

�y

i

+

P

i2F;j2D

c

ij

�x

ij

: We see then that

X

i2F

f

i

�y

i

+

X

i2F;j2D

c

ij

�x

ij

�

X

i2F

f

i

y

�

i

+

X

j2D

(3v

�

j

)(14.3)

� Z

LP

+ 3Z

D

(14.4)

= 4Z

LP

(14.5)

� 4OPT:

The inequality (14.3) follows for several reasons. First, we know that

P

i2F

f

i

�y

i

�

P

i2F

f

i

y

�

i

. Second, we know that

P

i2F

�x

ij

= 1 for any j, so that there must be

exactly one i 2 F such that �x

ij

= 1 for any j. Third, we know that (�x; �y) is

v

�

-close, which means that when �x

ij

= 1 then c

ij

� 3v

�

j

. Thus this implies that

P

i2F;j2D

c

ij

�x

ij

�

P

j2D

(3v

�

j

).

Inequality (14.4) follows since

P

i2F

f

i

y

�

i

is less than the LP objection function,

and

P

j2D

v

�

j

is the dual objective function, and inequality (14.5) follows since at

optimality Z

LP

= Z

D

. �

We now turn to the proof of Theorem 14.2.

Proof of Theorem 14.2: Given a feasible LP solution (~x; ~y) which is g-close,

we obtain the IP solution via the following algorithm:

UFL-Round

S D

while S 6= ;

Choose client k 2 S with smallest g

k

.

Let N(k) be all facilities i such that ~x

ik

> 0.

Choose facility l 2 N(k) of cheapest cost, open l.

Assign client k to facility l, S S � k.

For any a 2 S such that ~x

ba

> 0 and b 2 N(k),

Assign a to l, S S � a.

We will say that a client j neighbors a facility i (or vice versa) if x

ij

> 0. Thus,

for instance, N(k) is the set of all facilities that neighbor client k. Note that the

N(k)'s in di�erent iterations are disjoint: this follows since any unassigned client

which neighbors a facility in N(k) is assigned in that iteration and removed from S.

Thus we cannot pick some client k

0

in a later iteration that neighbors some facility

in N(k).

108

We now bound the cost of the integer programming solution created. Fix an

iteration in which k 2 S is chosen. Then for the facility l opened in that iteration,

we have

f

l

= f

l

X

i2N(k)

~x

ik

(14.6)

�

X

i2N(k)

f

i

~x

ik

(14.7)

�

X

i2N(k)

f

i

~y

i

:(14.8)

Equality (14.6) follows since from the LP solution we know that

P

i2N(k)

~x

ik

= 1.

Inequality (14.7) follows since we chose l to minimize f

l

over all i 2 N(k). Inequality

(14.8) follows since from the LP we know that ~x

ik

� ~y

i

. Then by the disjointness of

the N(k) we have overall that

X

i2F

f

i

�y

i

�

X

i2F

f

i

~y

i

;

as promised.

We now turn to the assignment costs. Again, �x an iteration in which client k 2 S

is chosen, and facility l 2 N(k) is opened. The cost of assigning k to l is c

lk

, which by

hypothesis is no more than g

k

, since k neighbors l and (~x; ~y) is g-close. Now consider

a client a 2 S assigned to l since it neighbors a facility b 2 N(k). By the triangle

inequality, and by closeness we have that

c

la

� c

lk

+ c

bk

+ c

ba

� g

k

+ g

k

+ g

a

:

However, since we chose k to minimize g

k

among all k 2 S, this implies that c

la

� 3g

a

.

Thus this proves that the integer assignment �x is 3g-close. �

Further progress exists for this problem. In particular, it is not too much more

di�cult to prove that if we modify the algorithm above to pick k from S to mini-

mize g

k

+

P

i2F

x

ik

and then choose the facility l from N(k) randomly according to

the probability distribution ~x

ik

, we obtain a 3-approximation algorithm. Currently

the best result known is due to Chudak (1998), who gives a (1 +

2

e

)-approximation

algorithm for UFL. There is also a lower bound for the problem.

Theorem 14.4 (Guha, Khuller '97) There is no 1.427-approximation algorithm for UFL

unless P=NP.

109

