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Abstract

Many problems in combinatorial optimization are known to be NP-hard, and thus it is
unlikely that there exist any polynomial-time algorithms to solve them. Because a number of
these problems are of practical interest, researchers have turned to devising polynomial-time
approzimalion algorithms to solve them. An a-approximation algorithm runs in polynomial
time and is guaranteed to produce a solution of cost within a times the optimal cost.

One difficulty in the field of approximation algorithm design is that until quite recently
most algorithms were designed in an ad hoc manner, using the structure of the particular
problem under consideration. In this thesis, we present a single technique for approximating
a large class of graph problems. The technique is based on the standard primal-dual method,
and shows the importance of this method in designing approximation algorithms.

The class of problems we consider involves selecting a minimum-cost set of edges such
that at least f(.9) edges have exactly one endpoint in each subset of vertices 5, for cer-
tain easily characterized functions f. We show that our technique leads to 2H( fyax)-
approximation algorithms for problems in this class, where f,.x = maxg f(5) and H(k)
is the harmonic function 1 + % + .4 % The class captures a wide variety of classical and
complex problems in combinatorial optimization, including the minimum-cost spanning tree,
Steiner tree, generalized Steiner tree, survivable network design, T-join, minimum-weight
perfect matching (under triangle inequality), two-matching (under triangle inequality), and
location-design problems. Our algorithm runs in O(n*m’ foa.. + nzwf fmax) time on a graph
of n vertices and m edges, where m’ = min(n fi.x, m) and w; is the time to compute the
function f. We obtain faster time bounds for specific problems of interest.

The algorithms produced by the technique are interesting for several reasons. First, they
generalize classical algorithms for minimum-cost spanning trees and shortest paths. Second,
they provide approximation algorithms for problems in P (such as the minimum-weight per-
fect matching problem under triangle inequality) that run asymptotically faster than the
best-known algorithms that solve these problems exactly. Third, they provide approxima-
tion algorithms for problems which had no previously known approximation algorithm. For
instance, the technique gives the first approximation algorithm for the survivable network



design problem, which is the problem of finding a minimum-cost set of edges such that there
are r;; edge-disjoint paths between each pair of vertices 7 and j. Fourth, the algorithms
given by the technique improve on the running time and/or the approximation factor of
several known approximation algorithms.

Extensions of the main technique of this thesis lead to approximation algorithms for
problems which do not fall in the class of problems mentioned above. For example, we give a
2-approximation algorithm for the prize-collecting traveling salesman problem and a 2H(k)-
approximation algorithm for the minimum-cost k-vertex-connected subgraph problem.

Finally, we conduct an experimental study of our 2-approximation algorithm for minimum-
weight perfect matching on Euclidean instances. We present computational results for both
random and real-world instances having between 1,000 and 131,072 vertices. The results
indicate that our algorithm generates a matching within 2% of optimality in most cases. In
over 1,400 experiments, the algorithm was never more than 4% from optimal.

Keywords: Combinatorial Optimization, Approximation Algorithms, Primal-Dual Al-
gorithms, Graph Algorithms, Integer Programming, Steiner Trees, Matching, T-joins, Trav-
eling Salesman Problem, Connectivity

Thesis Supervisor: Michel X. Goemans
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CHAPTER 1

Introduction

The methods used for designing such [approximation] algorithms tend to be
rather problem specific, although a few guiding principles have been identified
and can provide a useful starting point.

— M.R. Garey and D.S. Johnson (1979), Computers and Intractability, p. 122

One of our hopes for this thesis has failed to be realized. This was thal
the proofs of our results, and the ideas involved in them, might be of use to
researchers investigating other problems. Unfortunately, the best proofs we could
find have turned out to be quite domain dependent, and even worse, the major
proofs are exceedingly long.

- D.S. Johnson (1973), Near-Optimal Bin Packing Algorithms,
Ph.D. Thesis, p. 13

1.1 General Introduction

The fields of computer science and combinatorial optimization have been closely related
since their modern-day beginnings in the middle of this century. The desire to solve op-
timization problems was in part responsible for the construction of some early computers
[62]; likewise, the existence of computational power encouraged the development of algo-

rithms for optimization problems that had previously been too large to solve by hand. In
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14 Introduction

the 1960’s, researchers began to notice that there were several optimization problems that
seemed to require searching through all of the possible solutions, then picking the solution
of maximum (or minimum) value. Since the number of possibilities was usually exponential
or superexponential in the size of the description of a problem instance, these optimization
problems seemed effectively resistant to solution by computer except for small instances.
The existence of these problems was partially responsible for the interest within computer
science in studying the kinds of problems computers could solve using bounded amounts of
resources (such as time). In the mid 60s, this study led to the characterization of “good”
algorithms as polynomial-time algorithms, by Edmonds [32] and a few others. The formal-
ization of “intractable” problems as NP-complete or NP-hard came a few years later in the
independent works of Cook [20] and Levin [83]. These two papers both effectively showed
that finding a complete subgraph (or clique) of maximum size in a graph is NP-hard; this
insight led to a groundbreaking paper of Karp [68], which showed that many of the optimiza-
tion problems that had puzzled researchers in the 60s are NP-complete.! Whether there
exist any polynomial-time algorithms for the NP-complete or NP-hard problems continues
to be a major open question, although it is generally believed that no such algorithms exist.

Whether or not such algorithms exist, there are still many NP-hard optimization prob-
lems that people would like to solve without waiting for the P vs. NP problem to be settled.
Many approaches to these problems have been developed within the past twenty to thirty
years. The approaches can be divided into roughly two classes. One class attempts to find
the optimal solution to the problem, without guaranteeing that the algorithm runs in poly-
nomial time. One approach of this type formulates the optimization problem as an integer
program, solves the associated linear programming relaxation of the integer program, then
attempts to find violated constraints (called cutting planes) to add to the linear program
so as to force the solution to be integral. These cutting plane algorithms are sometimes
embedded within enumerative algorithms that cut off some of the branches of the search

based on the values of solutions found in other branches; this technique is called branch

!See Sipser [112] for a nice overview of the history of the P vs. NP problem, including a version posed in
a letter from Godel to Von Neumann in 1956. Both Cook and Levin showed that the subgraph isomorphism
problem is NP-complete. Additionally, Levin showed that a decision version of the set cover problem is
NP-complete.
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and bound. The other class of approach attempts to find a solution in a reasonable amount
of time without guaranteeing that the solution found is optimal. Approaches within this
class include local search techniques that start with some feasible solution and make local
improvements until a local optimal solution is reached. Some approaches (such as sim-
ulated annealing) allow non-improvement steps to be made with a certain probability in
order to avoid being trapped in local optima. Both classes of approaches have been ap-
plied successfully in practice to certain optimization problems, including, for instance, the
well-known Traveling Salesman Problem (TSP). Applegate, Bixby, Chvétal, and Cook have
used a variation on branch and bound to solve a 4461-city TSP instance to optimality [4],
while Johnson [40] has used a local search algorithm due to Lin and Kernighan [85] to solve
million city instances to within two percent of the cost of the optimal solution.

This thesis is concerned with an approach within the second class, known as approzi-
mation algorithms. Approximation algorithms attempt to have the best of both classes by
running in polynomial time and guaranteeing that the solution produced has a value that
is within a factor of a of the value of an optimal solution. The factor a is sometimes called
the performance guarantee or the approzimation bound of the algorithm; an approximation
algorithm with a performance guarantee of «a is often called an a-approximation algorithm.
Under our definition, any algorithm called an approximation algorithm or a-approximation
algorithm must run in polynomial time, while algorithms with specified performance guar-
antees may use either polynomial or superpolynomial time. We contrast approximation
algorithms with ezact algorithms for optimization problems. An exact algorithm finds an
optimal solution to an optimization problem in polynomial time. Obviously, no exact algo-
rithms are known for any NP-hard optimization problem.

The first known approximation algorithm solved the problem of minimizing the makespan
of schedules for identical parallel machines, and was due to Graham [55]. Graham’s paper
appeared in 1966, five years in advance of Cook’s paper on NP-completeness; notice that
nothing in the definition of an approximation algorithm depends on the intractability of
the problem being approximated. Nevertheless, the paper that established approximation
algorithms in the field of algorithm design was Johnson’s 1974 paper [66], which contained

approximation algorithms for a half-dozen problems. These problems, which included max-
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imum satisfiability, set covering, and maximum clique, are still considered central to the
field today. Since 1974, hundreds of papers have appeared establishing new approximation
algorithms for various problems, or improving the running times or performance guarantees
of known approximation algorithms. In the past few years, interest in approximation algo-
rithms has expanded from combinatorial optimization and algorithm design into complexity
theory, as complexity theorists have realized that the ability to approximate a solution is
fundamentally related to certain types of computation [37, 7, 6].

As the quotes at the beginning of this chapter attest, one difficulty in the field of
approximation algorithm design is that, until quite recently, the design of approximation
algorithms had tended to be ad hoc; no unifying principles or techniques were known or
enunciated. Instead, designers confined themselves to using the specific structure of the
problem at hand. In the past two or three years, however, researchers have shown that one
central technique can often be used to design approximation algorithms for many related
problems (see, for example, Leighton and Rao [80], Klein, Rao, Agrawal, and Ravi [76, 73],
and Plotkin, Shmoys, and Tardos [102]). The purpose of this thesis is to propose a new
technique and to show its usefulness in designing approximation algorithms for a large
number of problems, from classical problems in combinatorial optimization to complex
problems that had no previously known approximation algorithms. It is also a goal of this
thesis to do what could not be done twenty years ago; that is, to provide a tool for algorithm

designers to create approximation algorithms for new problems.

1.2 The Problems and Results

The class of optimization problems considered in this thesis primarily take the following
form. Given an undirected graph G = (V, F), a function f : 2" — Z, and a non-negative
cost function on the edges, ¢ : £ — Q, the problems can be modelled by the following

integer program:

Min Z Co Ly

eeFE
subject to:



1.2 The Problems and Results 17

(IP) z(6(9)) > f(9) ScV

z. €4{0,1} e€E,

where ¢, is the cost of edge e, x(F) = >, pz. and 8(5) denotes the coboundary of S;
that is, the set of edges of E having exactly one endpoint in 5. The integer program (I P)
can be interpreted as a very special type of covering problem in which we need to find a
minimum-cost set of edges that cover each coboundary §(.5) with at least f(.9) edges. For
this reason, we will refer to problems defined by the integer program (I P) as edge-covering
problems. This definition generalizes the classical edge-covering problem in which one must
find a minimum-cost set of edges such that each vertex is incident to at least one edge.
The classical problem can be modelled by (/F) with the function f(5) = 1if |S| =1 and
J(5) = 0 otherwise.

Notice that since the edge costs are non-negative, any feasible solution to an edge-
covering problem has an edge-minimal solution of no greater cost. Thus we will generally
restrict our attention to edge-minimal solutions to (I P).

For the most part, we will consider edge-covering problems corresponding to functions

f which we call proper functions.

Definition 1.2.1 A function f :2Y — N is proper if it obeys the following properties:
o [Symmetry] f(5)= f(V —5) forall S CV; and

e [Maximality] If A and B are disjoint, then f(AU B) < max{f(A), f(B)}.

We will also require that f(V') = 0 for every proper function f. Any edge-covering problem
defined by a proper function f will be referred to as a proper edge-covering problem.
Many interesting problems can be modelled by proper edge-covering problems. In Table
1.1, we have indicated some examples of proper functions along with corresponding set of
edge-minimal subgraphs induced by the integer program (/P). For example, the Steiner
tree problem is a proper edge-covering problem. The Steiner tree problem is the problem

of finding a minimum-cost set of edges spanning a set T" C V of terminals. As indicated in
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‘ Input ‘ f(9) ‘ Edge-minimal subgraph
f(S)=1 VS#£V Spanning trees
1 |5n{s,t} =1
s,teV | f(5)= { | {q7 } s-1 paths
0 otherwise
1 SNT #T
TCcvVv | f(§5)= 07 . ? Steiner trees with terminals T’
0 otherwise
1 19NT|odd
TCV | f(S)= SNl o T-joins
0 otherwise
f(S)y=k VS#£V k-edge-connected subgraphs

Table 1.1: Various classical proper edge-covering problems.

the table, the problem is a proper edge-covering problem corresponding to

1 #0#£S5SNT#T

0 otherwise.

Any set of edges feasible for (I P) with the given function f must connect all terminals, and
any Steiner tree is feasible for (I P) with function f. Moreover, we claim that f is proper.
It is easy to see that f is symmetric. To see that it obeys the maximality property, suppose
that it does not, and there exist disjoint sets A and B such that f(A) = f(B) = 0 while
f(AUB)=1.1If f(AUB) = 1 then by the definition of f, the set AU B must separate two
terminals, say s and ¢; that is, s,t € T, s € AU B, and t ¢ AU B. But then either A or B
must separate s and ¢, contradicting f(A) = f(B) = 0. Therefore, f is proper.

Many more complex combinatorial optimization problems, such as the non-fixed point-
to-point connection problem and the survivable network design problem can also be mod-
elled by proper edge-covering problems. In Chapter 6, we discuss all the various proper
edge-covering problems of interest that we know.

Finding optimal solutions to proper edge-covering problems is well-known to be NP-
hard, even under many restrictions. For example, the Steiner tree problem is NP-hard even

when the cost function satisfies the Euclidean metric [48], and the minimum-cost 2-edge
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connected subgraph problem is NP-hard even if all edge weights are 1 [36]. Approximation
algorithms for proper edge-covering problems were previously known only for special cases.

This thesis will present the first approximation algorithm for proper edge-covering prob-
lems. This result is summed up in the following theorem. First we define some notation,
which we will continue to use throughout the thesis. Given an undirected graph G = (V, F),
we define n = |V| and m = |E|. Given a function f :2V — Z, define f,., = maxs f(.9).
We assume that the function f is given to the approximation algorithm as an oracle which
on input S C V returns f(.5). Let w; be the maximum amount of time taken by an oracle
to compute the function f on a set S. Define m’ = min(nfyax, m). Finally, define the

harmonic function H as H(k) =1+ % 4+ 4 %

Theorem 1.2.2 For any proper edge-covering problem, there exists a 2H( f,ax )-approximation
algorithm, APPROX-PROPER, that runs in O(n?m/ finax + n%w; finax) time on an undirected

graph G = (V, ') and a proper function f.

The theorem immediately extends to augmentation versions of proper edge-covering prob-
lems, in which one must augment a given graph so as to satisfy a proper function f at min-
imum cost. The augmentation algorithm also runs in polynomial time and has a 2H( fiax)
performance guarantee.

For most practical problems, we expect that w; = O(n) and fy.x = O(1), so that
the running time is O(n®). For particular problems of interest, the running time can be
significantly improved. For example, when f, ., = 1, the running time can be improved to
O(n(n + v/mloglogn)). As can be seen in Table 1.1 above, even such a restricted function
[ captures many interesting problems.

We list several problems to which our techniques can be applied in Tables 1.2 and 1.3.
In Table 1.2 we list problems for which previously known approximation or exact algorithms
exist. In most cases we improve either the performance guarantee a or the running time of
the algorithm; in some cases we improve both. In Table 1.3 we list problems which had no
previously known approximation algorithm.

In practice, we expect that the quality of the solutions produced will be better than

the theoretical bounds established in the theorem. In Chapter 8, we discuss an implemen-
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Problem | Known o | Time Due to | Our o | Our time
Steiner tree 2 O(n?) Mehlhorn [91] 2 O(n® + n\/m loglogn)
11/6 O(mn + n? logn) Zelikovsky [130, 131]
16/9 O(n™/2) Berman and Ramaiyer [14]
Generalized Steiner tree 2 O(n?logn) Agrawal, Klein, Ravi [2] 2 O(n? + n\/m loglogn)
2 O(ny/mlogn) Klein [75]
k-edge connected subgraph 2 O(kn®logn) Khuller, Vishkin [71] 2H(k) | O(kn(kn + \/m loglogn))
Generalized Steiner 3 O(n?logn) Klein, Ravi [74] 3 O(n? + n\/m loglogn))
2-edge connected subgraph
Survivable network design 2L O(Ln? logn) Agrawal, Klein, Ravi [2] 2L O(L(n? + n\/m loglogn))
(with edge duplication)
Prize-collecting traveling salesman | 2.5 poly(n) Bienstock, Goemans, 2 O(n? + n\/m loglogn)
(with triangle inequality) Simchi-Levi, Williamson [16]
Prize-collecting Steiner tree 3 poly(n) Bienstock, Goemans, 2 O(n? + n\/m loglogn)
Simchi-Levi, Williamson [16]
Min-weight perfect matching 1 O(n(m + nlogn)) Gabow [44] 2 O(n? + n\/m loglogn)
(with triangle inequality) 1 O(m+/na(m,n)lognlognC) | Gabow and Tarjan [47]
34 2¢ O(n?log?® nlog(1/e)) Vaidya [121]
2-matching 1 O(n(m + nlogn)) Gabow [44] 2 O(n® + n\/m loglogn)
(with triangle inequality) 1 O(m+/na(m,n)lognlognC) | Gabow and Tarjan [47]
T-join 1 O(n(m + nlogn)) Gabow [44] 2 O(n? + n\/m loglogn)
1 O(m+y/na(m,n)lognlognC) | Gabow and Tarjan [47]

uornjonpodajuy 0%
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‘ Problem ‘ Our a ‘ Our time ‘
Survivable network design [58] | 2H( fumax) | O(7 fmax (7 fmax + v/mloglog n))
(with no edge replication)

Triangle-free 2-matching 2 O(m + nlogn)

(with triangle inequality)

Non-fixed point-to-point 2 O(n? 4+ ny/mloglog n)
connection [84]

Exact k-tree partition 41— 1) | O(n* + ny/mloglogn)
(with triangle inequality)

Exact k-path partition 41— 1) | O(n* + ny/mloglogn)
(with triangle inequality)

Exact k-cycle partition 41— 1) | O(n® + nymloglogn)
(with triangle inequality)

At least k-tree partition O(m + nlogn)

At least k-path partition O(m + nlogn)

(with triangle inequality)

At least k-cycle partition 2 O(m + nlogn)

(with triangle inequality)

Location-design problems 2 O(m + nlogn)
k-vertex-connected subgraph | 2H(k) O(k*n?)

Fixed-charge network design 2 finax O( fax(n frnax + n*m’ + n’wy))

Table 1.3: New approximation algorithms for previously unapproximated problems.
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tation of the algorithm for the problem of minimum-weight perfect matching on Fuclidean
instances, which can be solved approximately using the proper edge-covering algorithm as
a subroutine. Qur theoretical results imply a 2-approximation algorithm for matching, but
in over 1,400 experiments on instances ranging in size from 1,000 to 131,072 vertices, the
algorithm was never more than 4% away from optimal and was usually within 2%.

Almost all edge-covering problems of interest are proper edge-covering problems. How-
ever, our approximation algorithm for solving proper edge-covering problems is based on
algorithms for approximating (/P) with two other types of functions, which we call weakly
supermodular functions and uncrossable functions. We will use a convention in which all

weakly supermodular and proper functions are denoted by f, and uncrossable functions are

denoted by h.

Definition 1.2.3 A function f : 2V — Z is weakly supermodular if f(V) = 0 and for any

two sets A, B C V,

J(A) + f(B) < max{f(AU B) + [(A B), [(A— B)+ [(B — A)}.

Definition 1.2.4 A function h : 2V — {0,1} is uncrossable if h(V) = 0 and for any two
sets A, B C V such that h(A) = h(B) = 1, then either A(AN B) = h(AU B) = 1 or
h(A-B)=hB-A)=1

Notice that the uncrossable functions contain the weakly supermodular functions with range
{0,1}. The names for these two classes of functions derive from terminology in optimization

theory. A function f on 2V is called supermodular if

J(A)+ f(B) < J(AU B) + (AN B);

if fis symmetric, then supermodularity implies f(A)+ f(B) < f(A— B)+ f(B— A) as
well. Two sets A and B are said to cross (or are crossing) if ANB # 0, AZ B,and B € A.
We will often need to replace or “uncross” two crossing sets A and B with either A — B and

B—Aor AUB and AN B; hence the function name. These concepts, as well as the concept
of a submodular function (f(A) + f(B) > f(AU B)+ f(AN B)) have deep implications in
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network flow theory and other areas (c.f. Lovasz and Plummer [88], Lovasz [87]). We will
explore some of the properties of these functions in Chapter 2.

We call problems modelled by the integer program (IP) with weakly supermodular
functions and with uncrossable functions weakly supermodular edge-covering problems and
uncrossable edge-covering problems, respectively. Examples of uncrossable edge-covering
problem include the shortest s-t path problem, which can be modelled by the function
h(S)y=1iff s € S and t ¢ 9, and the classical edge-covering problem, which corresponds
to the function A(S) = 1iff |5| = 1.

Unfortunately, it is not possible to provide approximation algorithms for the classes of
weakly supermodular and uncrossable edge-covering problems as a whole given the oracle
model we have used so far. To see this, notice that a function in which f(5) = 1 for
some arbitrary set S C V and f(5’) = 0 for S’ # S is both weakly supermodular and
uncrossable. For such a function it would take an exponential number of calls to the
oracle merely to find a violated constraint of the integer program (I P). However, we can
implement approximation algorithms if we have a strong oracle, which when given a function
f and a non-feasible solution z to the integer program (/P) finds all maximally violated
constraints that are minimal with respect to inclusion; that is, the oracle finds a collection
of all minimal sets S such that f(.5)—z(6(5)) = maxy(f(T)—2z(6(T))) > 0. We will denote
this oracle by MaX-VIOLATED(f,z). Given an edge set F', we will also use the notation
MAX-VIOLATED( f, F') as shorthand for MaX-VIOLATED( f, ) with z the incidence vector
of F. An incidence vector of an edge set Fis a solution z, = 1if e € F and z, = 0 otherwise.
Define 6p(5) to be the set of edges F'Né(5). Then Max-VIOLATED( f, F) finds a collection
of minimal sets S such that f(5) — [6p(5)| = maxy(f(T) — |6p(T)]) > 0. Chapter 2 will
show that such a collection consists of disjoint sets.

Let o4 (o) be the maximum amount of time taken by the strong oracle for a weakly
supermodular function f (an uncrossable function h). We can then prove the following two

results.

Theorem 1.2.5 For any weakly supermodular edge-covering problem, there is a 2H( fiax)-
approximation algorithm, APPROX-WEAKLY-SUPERMODULAR, which runs in O(fpax(n® +

ny/mloglog n 4+ nw; +noy)) time on an undirected graph G = (V, I) and a weakly supermod-
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ular function f.

Theorem 1.2.6 For any uncrossable edge-covering problem, there is a 2-approximation algo-
rithm, APPROX-UNCROSSABLE, which runs in O(n? + ny/mloglogn + nwy, + noy) time on

an undirected graph G = (V, £') and an uncrossable function h.

We will show in Chapter 3 that the algorithm APPROX-WEAKLY-SUPERMODULAR can
be implemented simply as fu., calls to the algorithm APPROX-UNCROSSABLE. To obtain
our approximation algorithm for proper edge-covering problems, we show in Chapter 2 that
all proper functions are weakly supermodular functions, and we show in Chapter 5 that for
proper functions f the strong oracle can be implemented in terms of the weak oracle in oy =
O(nm' 4+ n*w;) time for all calls to the strong oracle generated by the algorithm APpPROX-
WEAKLY-SUPERMODULAR. Thus the time bound of APPROX-WEAKLY-SUPERMODULAR
implies the time bound of APPROX-PROPER in Theorem 1.2.2; an implementation trick will

lead to the reduced number of calls to the weak oracle given in the theorem.

1.3 The Primal-Dual Method

The basis of the technique used to derive these algorithms is none other than the primal-
dual method, applied to the domain of approximation algorithms. The primal-dual approach
has been used extensively in exact algorithms for optimization problems. The best-known
algorithms for several of the most basic problems in combinatorial optimization, including
matching, network flows, and shortest paths, are based on this approach [98]. Some of these
algorithms (Dijkstra’s shortest path algorithm [29], for example) can be described without
referring to the primal-dual framework. In other cases, such as Edmonds’ algorithm for the
minimum-weight non-bipartite matching problem [31], the primal-dual approach appears
to be crucial.

The standard primal-dual method relies on elementary linear programming theory; we
refer the reader unfamiliar with the basic theorems and terminology to introductions in
Chvétal [19] or Strang [118, Ch. 8]. The standard method requires a primal linear program

that models the optimization problem to be solved, and works as follows. It begins with a
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feasible solution to the dual linear program and an infeasible solution to the primal such that
the complementary slackness conditions hold. The method then alternately improves the
feasibility of the primal solution and the value of the dual solution, while maintaining the
complementary slackness conditions. The algorithm terminates when the primal solution
becomes feasible: a well-known fact of linear programming is that primal and dual feasible
solutions are optimal if they obey the complementary slackness conditions. The combinato-
rial structure of the problem at hand is used for designing the improvement steps. Thus, for
optimization problems solvable in polynomial-time, the primal-dual method simply gives
an efficient combinatorial algorithm for solving the associated linear program.

It is part of the purpose of this thesis to state a corresponding primal-dual method
for approximation algorithms, using our algorithm for approximating uncrossable edge-
covering problems as an example. Many approximation algorithms have used duality or
linear programming-based duality arguments (see, for example, Wolsey [129], Leighton and
Rao [80], Lenstra, Shmoys, and Tardos [81]). A few of these fit within the framework we
are about to describe, notably the algorithms of Chvatal [18] and Bar-Yehuda and Even
[10] for the set-covering problem. Also, several heuristics for various optimization problems
use primal-dual type algorithms, although they do not fit in the framework given here, and
have no performance guarantees (see Nemhauser and Wolsey [94], §11.5.3).

Suppose we wish to solve an uncrossable edge-covering problem for an uncrossable func-
tion h. Because hy,, = 1, the problem can be modelled by the following integer program

(IP,) in which the constraints z, € {0, 1} have been relaxed:

Min E Coy

=
subject to:
(I1P) z(6(9)) > h(9) ScVv
Te Z 0 €& E7

x. integer.
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Consider the linear programming relaxation of (1)

Min E Cole

eeFE
subject to:
(LPy) z(6(5)) > h(9) ScVv
Te 2 O €c E7

and its dual,

Max Y h(S)ys
S

subject to:
(D) Y ys<e cel
S:e€8(S5)
ys 20 ScV.

The dual linear program is a packing problem in which we pack an amount ys on to each
cut 5 so that no edge is “overpacked” and so as to maximize the amount packed on to cuts
for which A(S5) = 1.

Since (L P) is not guaranteed to have integral optimal solutions, we will not always be
able to find an integral solution to (LF,) and a solution to (Dj) that obey all the com-
plementary slackness conditions. For these linear programs, the complementary slackness

conditions are of two types:

(a) Primal complementary slackness conditions, which correspond to the primal variables;
i.e.,

z, > 0= Z Ys = Ce.
S:e€d(S)

(b) Dual complementary slackness conditions, which correspond to the dual variables; i.e.,

ys > 0= > . =h(S).

e€s(S)

The primal-dual method for approximation algorithms maintains one set of comple-
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mentary slackness conditions while relaxing the other set. The algorithms of Chvatal and
Bar-Yehuda and Even applied to this special class of set-covering problems effectively ensure

the primal conditions and relax the dual conditions to

(v)
ys > 0= h(S) < D . < ah(5).

e€b(S)

For this relaxation of the complementary slackness conditions, a performance guarantee of «
for the algorithm follows easily, as we will now show. Let Z} ,_, be the value of the optimal
solution to (LPy) (and thus (Dy)), and let Z;,_, be the value of the optimal solution to
(IP,). Then given a primal integral solution z and a dual feasible solution y generated by

the primal-dual algorithm, we have

Yocre = Y xe D, Ys

c€E c€E  S:e€s(S)
= Zys Z Te
5 c€8(S)
< Y us(ah(s))
< O‘SZEP—h
< aZip_,.

Our algorithm for approximating uncrossable edge-covering problems will relax the dual
constraints (b) in a somewhat different manner. Instead of enforcing (b') for the final
primal and dual solutions, we will only ensure that (') holds in an average sense dur-
ing any given dual improvement step. It turns out that this is sufficient to prove that
YooCee <23 5 h(9)ys, which (as above) implies performance guarantee of 2. We describe
the relaxation of the dual complementary slackness conditions at more length in Section
4.1.

Notice that a proof that the algorithm constructs solutions z and y such that >, c.z, <
235 h(9)ys also implies a bound on the maximum ratio of the value of an optimal solution
to (I Py) to the value of an optimal solution to (D). This ratio is called the relative duality

gap. The proof of the performance guarantee shows that the relative duality gap is at most
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2 for all non-negative cost functions ¢ and all uncrossable functions h. In Chapter 4, our
theorem about the performance guarantee of APPROX-WEAKLY-SUPERMODULAR will have

the following consequence.

Theorem 1.3.1 For all non-negative cost functions ¢ and all weakly supermodular f, the

relative duality gap of (I P) is at most 2H( fiax )-

The use of the primal-dual method also gives an instance-by-instance estimate on the
nearness to optimality of the algorithm. If the algorithm constructs solutions z and y, then
the value of the solution z can be no more than a factor (3, c.z.)/(3-s h(.5)ys) away from
the value of the optimal solution.

Our use of the primal-dual method for approximating various classes of edge-covering
problems is derived from a paper of Agrawal, Klein, and Ravi [2] on a 2-approximation
algorithm for the generalized Steiner tree problem. Given sets of terminals 7; C V for
t = 1,...,p, the generalized Steiner tree problem is to find a minimum-cost set of edges
such that all the vertices are connected in each set of terminals 7;. As we will discuss
in Chapter 6, this problem is a proper edge-covering problem. The algorithm of Agrawal
et al. implicitly uses the entire framework we have described above, including the average
enforcement of the relaxed constraint (b'). Our central algorithm, APPROX-UNCROSSABLE,
generalizes their use of the primal-dual method to uncrossable edge-covering problems, and
makes their use of linear programming duality explicit.

The primal-dual method may be more important for designing approximation algorithms
than for designing exact algorithms. As we observed above, optimization problems solvable
in polynomial time via the primal-dual method can also be solved using linear programming.
As far as we know, the same cannot be said of the NP-hard problems to which we apply

the primal-dual method for approximation algorithms.

1.4 Previous Results

The proper, weakly supermodular, and uncrossable edge-covering problems are defined

for the first time in this thesis. Hence there has been no previous work done on these
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problems as classes of problems. Nevertheless, a good deal of work has been done on
specific problems within the classes, and on generalizations of the class of edge-covering
problems. We discuss here the previous results on generalizations, and defer discussion of
results of specific problems until Chapters 6 and 7, in which we describe the particular
problems that can be solved using our algorithms.

As was mentioned in a previous section, the integer program (/P) can be viewed as a
special type of covering problem. Many people have investigated approximation algorithms

for general covering problems. These covering problems can be expressed as the integer

program (COV),

(cov) A-z>b

x integer,

where ¢ and z are p X 1 vectors, b is a ¢ X 1 vector, and A is a p X ¢ 0-1 matrix. Thus
the uncrossable edge-covering problems are contained within the class of covering problems
in which ¢ > 0, bis 0-1, p = m, and ¢ = 2" — 2, while proper and weakly supermodular
edge-covering problems are contained in the class in which b € N.

Essentially two approaches to this problem have been developed, both of which run in
time polynomial in the size of A. Johnson [66] and Lovész [86] started the first approach
by giving greedy algorithms for approximating the case in which b = ¢ = 1, where 1 is
the vector of all 1s (note that inequalities corresponding to entries for which b; = 0 can be
deleted). If @’ is the sum of the entries of the jth column of A, the performance guarantee of
their algorithms is H(max; a/). By using a linear programming duality argument, Chvétal
[18] extended their algorithms to handle non-negative cost vectors. His algorithm has the
same performance guarantee, and can be interpreted as a primal-dual algorithm. Dobson
[30] generalized Chvétal’s algorithm to handle general non-negative integral vectors b, also

with the same performance guarantee.

The second approach to approximating (COV') began with Hochbaum [61]. Hochbaum
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showed how to use the optimal dual solution to the linear programming relaxation of (COV')
to obtain an approximate integer solution in polynomial time, given that b = 1. If a; is the
sum of the entries of the ¢th row of A, the performance guarantee of her algorithm is max; a;.
Bar-Yehuda and Even [10] showed how Hochbaum’s algorithm could be carried out without
solving the linear program by giving a primal-dual (max; a;)-approximation algorithm. Hall
and Hochbaum [60] then extended their algorithm to handle general non-negative integral

vectors b.

Although the number of constraints of the integer program (/P) is exponential in n, the
algorithm of Hall and Hochbaum can be applied to approximate (/P)in time polynomial in n
and m if there exists a polynomial-time subroutine to find a violated constraint. The strong
oracle MAX-VIOLATED can find such violated constraints, and we show how to implement
the strong oracle in polynomial time in Section 5.1, proving that their algorithm is an
m-approximation algorithm for any proper edge-covering problem. It is not clear how to
apply the Chvatal/Dobson approach to approximate edge-covering problems in polynomial
time, however. A straightforward implementation of their algorithms involves counting the
number of constraints -, 55y Tc > f(5) that would be satisfied by adding a given edge,
and it is unclear how this can be done efficiently.

As mentioned in the previous section, the work in this thesis began not as a specialization
of these covering algorithms but as a generalization and simplification of an algorithm due
to Agrawal, Klein, and Ravi [2] for the generalized Steiner tree problem. In response to
an early part of this thesis describing how to approximate (/P) for all proper functions
with fiax = 1 [53], Klein and Ravi [74] showed how to approximate (IP) for all proper
functions with range {0,2}. This work was subsequently generalized to handle all proper
functions [127], after which both the efficiency [46] and the performance guarantee [50] of

the algorithm was improved.

1.5 Overview of Contents

Given this broad overview of the problems we will consider and previous approaches to

them, we now turn to our technique for approximating edge-covering problems. We be-
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gin in Chapter 2 with a few preliminary lemmas about proper, uncrossable, and weakly
supermodular functions. In Chapter 3, we introduce our basic algorithmic technique with
an algorithm, APPROX-PROPER-0-1, for approximating proper edge-covering problems for
proper functions with range {0,1}. We then show how this algorithm generalizes to an
algorithm for uncrossable edge-covering problems (APPROX-UNCROSSABLE). The chapter
concludes with an algorithm that reduces weakly supermodular edge-covering problems to a
sequence of uncrossable edge-covering problems. Chapter 4 proves the performance guaran-
tees of the algorithms. In Chapter 5, we fill in the details of the algorithms, and show how
each step can be implemented in polynomial time. In Chapter 6, we show how the algo-
rithms can be applied to many graph problems in combinatorial optimization, and Chapter
7 describes how the technique can be extended to several interesting problems that are not

modelled by the integer program (I P).

Chapter 8 turns to one particular problem that can be approximated using the algorithm:
the Fuclidean perfect matching problem. We describe an actual implementation of our
algorithm and compare it to exact matching algorithms and various matching heuristics. We
investigate the quality and structure of solutions produced on both random and structured

instances.

Finally, Chapter 9 contains some concluding thoughts about the technique given in this
thesis, and lists some problems that remain unresolved.

Although this thesis has been written so as to cover all of the results we have derived in
this area, we have also attempted to make the basic ideas accessible to the casual reader. We
suggest that those only interested in a central, self-contained idea from the thesis read about
the algorithm for proper functions with range {0, 1} (Section 3.1), its proof of performance
guarantee (Chapter 4 up to Section 4.1.1), and its applications (most of Chapter 6). These
results are also found in an early paper from the thesis [53]. With this background, the
reader will also be able to understand the experimental study in Chapter 8 and several of the
extensions given in Chapter 7. It is also possible to survey all of the main algorithmic and
analytic ideas without grappling with some of the more complicated ideas needed to make
the algorithms efficient. To do this, one may skip or delay reading the eflicient version

of ApPROX-UNCROSSABLE given in Section 3.2.2, its proof of performance guarantee in
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Section 4.1.3, and the implementation details of Chapter 5. The remainder of the thesis
can be understood without reading these sections.

In addition to some basic knowledge of linear programming, we will assume some back-
ground in network flows and data structures, particularly in Chapter 5. We refer the reader

unfamiliar with these topics to a basic text in algorithms, such as Cormen, Leiserson, and

Rivest [21].



CHAPTER 2

Preliminaries

In this chapter, we briefly establish a few facts about weakly supermodular, proper, and un-
crossable functions that will be important in the following pages. We restate the definitions

here for convenience.

e A function f : 2 — Z is weakly supermodular if f(V) = 0 and for any two sets
A BCV,

J(A) + f(B) < max{f(A - B) + [(B— A), f(AN B) + f(AU B)}.

o A function f:2" — Nis proper if f(V) = 0 and it obeys the following two properties:

— [Symmetry] f(5)= f(V —5) forall § C V; and

— [Maximality] If A and B are disjoint, then f(AU B) < max{f(A), f(B)}.

e A function A : 2" — {0, 1} is uncrossable if A(V) = 0 and for any two sets A, B C V
such that h(A) = h(B) = 1, then either h(AN B) = h(AUB) =1 or h(A—- B) =
h(B-A)=1.

We have already noted that all weakly supermodular functions with range {0, 1} are

uncrossable functions. This is a special case of the following observation.

33
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Observation 2.0.1 Let f be a weakly supermodular function. Then

h(s) = Lt f(5) = finax

0 otherwise
is an uncrossable function.
We now relate proper functions and weakly supermodular functions.
Theorem 2.0.2 If f is a proper function, then f is weakly supermodular.
Proof: By the properties of proper functions, we have the following four inequalities:
o max{[(A— B), (AN B)} > f(A).
e max{f(B —A),f(AUB)} > f(A).
o max{f(B —A), [(ANB)} > f(B).
o max{f(A— B), f(AUB)} > [(B).

Summing the two inequalities involving the minimum of f(A - B), f(B—A), f(AUB),
J(AN B) shows that f(A)+ f(B) <max{f(A—-B)+ f(B—A), f(ANB)+ f(AU B)}, as
desired. B

We will also need the following observation about proper functions.

Observation 2.0.3 If f is proper, and A,B, and C form a partition of V, then the maximum
of f(A),f(B), and f(C) is not uniquely attained.

Proof: Let C attain the maximum. The observation follows from the symmetry of f applied

to V — (', and the maximality property applied to A,B, and AUB =V —(C. R

Corollary 2.0.4 If f is proper, then for disjoint sets A and B, the maximum of f(A), f(B),
and f(AU B) is not uniquely attained.

It turns out a slight variation on a weakly supermodular function is also weakly super-

modular.
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Lemma 2.0.5 If f is weakly supermodular and = € NIZI, then f(.5) — 2(6(9)) is also weakly

supermodular.

Proof: First, observe that f(V)—a(6(V)) = 0 since (V) = (. It is well-known that z(6(.5))
is both symmetric (z(6(5)) = z(6(V — 9))) and submodular: that is, given z € NI, for

any two sets of vertices A and B,

2(8(A)) + 2(8(B)) > 2(8(AU B)) + 2(8(AN B)).

Given symmetry, this also implies

2(6(A)) +2(8(B)) > z(6(A = B)) + 2(6(B — A)).

The second property also implies the first. The lemma statement follows straightforwardly
from these two inequalities.

A similar lemma holds for uncrossable functions.

Lemma 2.0.6 If i is uncrossable and z € NIF|, then A/(S) = max{h(S)— z(6(5)),0} is also

uncrossable.

Proof: Pick any A and B such that A'(A) = A'(B) = 1. Then h(A) = h(B) = 1 and
z(6(A)) = z(6(B)) = 0. By the submodularity of z(6(5)), z(6(A — B)) = z(6(B — A)) =
z(6(AN B)) = z(6(AU B)) = 0. Since h is uncrossable, either h(A — B) = h(B — A) =

or (AU B) = h(AN B) =1, and thus the same statement holds true of 2'. B

Lemmas 2.0.5 and 2.0.6 lead to the following theorems, which are central to the de-
sign and analysis of the approximation algorithms. Recall that the strong oracle MAX-
VIOLATED( f,z) returns a collection of maximally violated sets that are minimal with re-
spect to inclusion; that is, it returns minimal sets S such that f(.5)—z(6(.5)) = max,(f(T)—
z(6(T))) > 0.

lEl. Then the collection of sets

Theorem 2.0.7 Let i be an uncrossable function, and z € N
returned by MAX-VIOLATED(h, ) are disjoint. Furthermore, no maximally violated set crosses

any set in MAX-VIOLATED(h, z).
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Proof: By Lemma 2.0.6, the function A’'(.S) = max{h(S5)—z(6(5)),0} is uncrossable. Since
hmax = 1, if there exist any violated sets then A’(S) = 1 exactly when S is a maximally
violated set. Suppose MAX-VIOLATED returns two maximally violated sets A and B that
are not disjoint. By the properties of h’, either A — B and B — A, or AUB and AN B
must also be maximally violated, which contradicts the minimality of A and B. Similarly,
il MAX-VIOLATED returns A, then no maximally violated set B crosses A; otherwise, the

minimality of A is contradicted. B

Corollary 2.0.8 Let f be a weakly supermodular function, and z € NIZl. Then the collection
of sets returned by MAX-VIOLATED( f, z) are disjoint. Furthermore, no maximally violated set

crosses any set in MAX-VIOLATED( f, z).

Proof: By Lemma 2.0.5, f'(5) = f(5)—x(6(5)) is weakly supermodular, and by Observa-

tion 2.0.1, the function

1 if f1(8) = Jl. = max{f(S) — (8(5))}

0 otherwise

B(S) =

is uncrossable. The rest of the proof follows as above. l

We conclude with a few further properties of uncrossable and proper functions.
Lemma 2.0.9 If & is uncrossable, then A'(.S) = max{h(5),h(V — 5)} is also uncrossable.

Proof: Suppose h/(A) = 11is implied by h(A) = 1 and h/(B) = 1 is implied by h(V — B) =
1. Other cases will be similar. Since h is uncrossable then either A((V — B) — A) =
hMA—-(V-B))=1or (AU (V — B)) = h(AN(V — B)) = 1. The first case implies
MV —(AUB)) = h(AN B) =1 and hence /(AU B) = k(AN B) = 1. The second case
implies h(V — (B — A)) = h(A— B) =1 and hence A'(B - A)=h(A-B)=1. 1

In the lemma above, i’ represents a symmetric version of h. Notice that the optimal
solutions for the integer program (IP) are the same for both h and h'. Forcing h to
be symmetric, however, may destroy other properties of h. For example, if & obeys the

maximality property, then it may not be the case that 2’ does also.
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Observation 2.0.10 Let f be a proper function, and let ¢ be a positive integer. Then the

following functions are also proper:

e min{ f(.5),c},

o max{f(5)—c,0}.
Lemma 2.0.11 Let f be a proper function. Then f,.x = max{f(v)lv e V}.

Proof: Let S be a set such that f(5) = foax. The lemma statement follows from the

maximality property applied to the vertices v € 5. H
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CHAPTER 3

The High-Level Algorithms

In this chapter, we give high-level descriptions of the algorithms to approximate weakly su-
permodular edge-covering problems (APPROX-WEAKLY-SUPERMODULAR) and uncrossable
edge-covering problems (APPROX-UNCROSSABLE). We begin in Section 3.1 with a simpli-
fied version of APPROX-UNCROSSABLE for uncrossable functions h that are also proper. We
then show how this algorithm generalizes to APPROX-UNCROSSABLE in Section 3.2. Fi-
nally, Section 3.3 shows how to reduce the problem of approximating weakly supermodular

edge-covering problems to that of uncrossable edge-covering problems.

3.1 The Algorithm for Proper 0-1 Functions

We begin the chapter by giving an algorithm for a subclass of proper edge-covering problems,
in which the proper function h has range {0, 1}. Notice that Theorem 2.0.2 and Observation
2.0.1 imply that any proper function with range {0, 1} must also be uncrossable. Recall from
Table 1.1 in the introduction that many interesting problems fall into this class, including
Steiner trees and T-joins.

The algorithm consists of two stages. In the edge addition stage, the algorithm starts
with an empty forest F and iteratively adds edges until the resulting forest F is a feasible

solution for the integer program (/ P) with the function h. Feasibility implies that there are

39
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no violated sets with respect to h and F, where a violated setis a set S with A(.S) =1 and
0r(9) = 0. In the edge deletion stage, the algorithm deletes redundant edges.

The algorithm is given as APPROX-PROPER-0-1 in Figure 3-1. It takes as input a
vertex set V., an edge set F., non-negative costs ¢, on each edge e € F, and a proper
function A : 2V — {0,1}.

The algorithm uses the primal-dual method for approximation algorithms as it was

outlined in the introduction. The primal integer program is (I Py),

Min E CoXy

=
subject to:
(I1P) z(6(9)) > h(9) ScVv
Te 2 0 €& E7

z. integer.
and the associated dual of the linear programming relaxation is (Dj,),

Max Y h(S)ys
s

subject to:
(D) Y ys<e cek
S:e€6(S5)
ys 20 ScV.

In the edge addition stage, the algorithm begins with the primal infeasible solution F = ()
and the dual feasible solution ys = 0 for all 5. As long as there exists a connected component
C such that h(C') = 1, there exists a violated set C' with respect to h (since 6(C') = ) and
the primal solution is infeasible. In this case, the algorithm iteratively performs a primal-
dual improvement step. Let C denote the collection of connected components C' for which
h(C) = 1. We will call these sets C' active sets. In each iteration, the algorithm increases

the value of the dual solution by uniformly raising the variables yc corresponding to the
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active sets C' € C until the dual constraint for some edge e € F becomes tight, i.e.,

Ce = Z Ys-

S:e€6(S5)

Notice that a constraint must become tight for some edge e joining two different components,
one of which is an active set. Such an edge e is then added to F, improving primal feasibility.
If (C') = 0 for all connected components C' of F', then the algorithm goes on to the edge
deletion stage, otherwise it iterates the primal-dual improvement step. We will show below
that such a set of edges F must be a primal feasible solution. Thus at the end of the first
stage, the algorithm has both a primal and a dual feasible solution for (I P,) such that the

primal complementary slackness conditions hold (that is, c. = 3 5..¢s5)ys for all e € F).

The edge deletion stage of the algorithm removes redundant edges from F. This stage
is necessary to obtain a good performance guarantee for the algorithm. When edge e is
considered, it is removed from the current set F if A(C') = 0 for all connected components
of F'—e. At the end of the edge deletion stage, the remaining set of edges, F’, is still primal
feasible and the primal complementary slackness conditions still hold. In addition, the dual
complementary slackness conditions will now hold in an average sense. Proving this fact
will result in the proof of the performance guarantee of the algorithm (i.e., Theorem 1.2.6),
as will be shown in Chapter 4.

The algorithm is formally described in Figure 3-1. We now need to show that the
algorithm given in the figure behaves as we have described. We keep track of the connected
components of the edge set F' in the sets C and Z. A component N isin C if A(N) =1, and
is in Z otherwise. To see that the dual solution generated in steps 2 and 11 is feasible for
(Dy), note first that initially -,y ys = 0 < ¢, for all e € E. We show by induction that
these constraints continue to hold. Notice that it can be shown by induction that d(v) =
Y swes Ys for each vertex v; thus as long as vertices u and v are in different components,
>ees(s) Ys = d(u) + d(v) for any edge e = (u,v). Define a(u) = 1 if v is in an active set

in the current iteration. It follows that in this iteration yc can be increased by € for each
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APPROX-PROPER-0-1 (V, FE ¢, h)

1 F<9
2 Comment: Implicitly set ys — 0 for all S C V
3 C—{{v}:veV,h({v}) =1}
4 I —{{v}:veV,h({v})=0}
5 a(v) < h({v}) forall v e V
6 For each v € V do d(v) < 0
7 while |C| >0
8 Find edge e = (u,v) with w € C, € C, v € C, € CUZ, C, # C, that minimizes
_ co—d(u)—d(v)
€T Talu)ta(v)
9 F— Ful{e}
10 Forall v € C, € C do d(v) «— d(v)+ ¢
11 Comment: Implicitly set yc — yc + € for allC € C

12 Delete €, and C; from C and 7
13 if h(C,uC,) =1

14 C—Cu{C,uC,}

15 a(v) — 1lforall ve C,UC,
16 else

17 T—7TU{C,UuC,}

18 a(v) — 0 forall ve C,UC,

19  Comment: FEdge deletion stage: PROPER-0-1-EDGE-DELETE
20 F' <« {e € F: For some connected component N of (V, F' — {e}),h(N) =1}
21  return F”

Figure 3-1: The algorithm for proper functions h with range {0,1}.

active set C' without violating the dual constraints as long as
du)+d(v)+e-a(u)+€-a(v) < e,

for all e = (u,v) such that w and v are in different components. Thus the largest feasible
increase in € for a particular iteration is given by the formula in step 8. Once the endpoints
u and v of an edge e = (u,v) are both contained in the same active set C, then 3 g c5:s) Ys
does not increase. Hence when the algorithm terminates, the dual solution y constructed

by the algorithm will be feasible for (D).



3.1 The Algorithm for Proper 0-1 Functions 43

We have not discussed how various parts of this algorithm can be implemented efficiently.
In particular, we have not said how to find the edge minimizing € in step 8, nor how the
edge deletion step can be carried out. We return to these questions in Chapter 5.

We now show that a set of edges A is a primal feasible solution if A(N) = 0 for all
connected components N of A. This shows that the edge set F' obtained at the end of the
edge addition stage is feasible. We then show that A(XN) = 0 for all connected components

N of F' proving that the final set of edges produced by the algorithm is also primal feasible.

Observation 3.1.1 If & is a proper function, and 2(.5) = 0 and h(B) = 0 for some B C 5,
then A(S5 — B) = 0.

Proof: By Corollary 2.0.4. If h(S — B) = 1, then the maximum of S — B, B, and 5 is

uniquely attained. H

Theorem 3.1.2 Let A be a set of edges such that 2(/N) = 0 for all connected components
N of A. Then the edge set A is a feasible solution to (I FP).

Proof: Suppose that S is violated given the edge set A; that is, 64(5) = 0 and A(S5) = 1.
Let Ny,..., N, be the components of A. In order for 6,(5) = 0, it must be the case that
for all ¢, either SN N; =@ or SNN; = N;. Thus § = N;, U...N,, for some iy,...,i,. By
assumption, h(N;) = 0 for all ¢, so ~(S) = 0 by the maximality of h. This contradicts our
assumption that ~(5)=1. W

Theorem 3.1.3 For each connected component N of F’, h(N) = 0.

Proof: By the construction of F’, N C C for some component C' of F.. Note that at the
end of the edge addition stage, h(C') = 0 for any such C'. Now, let e, ..., e, be edges of F
such that e; € §(N) (possibly £ = 0). Let N; and C' — N; be the two components created by
removing e; from the edges of component C', with N C C' — N, (see Figure 3-2). Note that
since e; ¢ F', it must be the case that A(N;) = 0. Note also that the sets N, Ny, No, ..., N
form a partition of C'. So then h(C' — N) = h(Uf_, N;) = 0 by maximality. Since h(C') =0,
Observation 3.1.1 implies that A(N)=0. R
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*-----9 F-F

Figure 3-2: Illustration of Theorem 3.1.3.

We show an example of the algorithm at work in Figures 3-3 through 3-11. The instance
is given by points in the Fuclidean plane: each point represents a vertex, and the cost of
edge (1, 7) is given by the Euclidean distance between points ¢ and j. The proper function
being used is A(S) = |9|(mod 2). This function is symmetric as long as |V is even. The
function also obeys the maximality property since whenever |A| and |B| are both even for
disjoint sets A and B, then |AU B| is also even. In this geometric instance, the variable d(v)
for vertex v can be represented by a circle of radius d(v) around the point v. Connected
components in C are surrounded by thick-lined circles, while components in 7 are given
by thin-lined circles. Increasing the dual variables for each active component uniformly
reduces to increasing the circles around the vertices in each active component uniformly.
When two circles around vertices v and » from different components touch each other, then
the packing constraint for edge (u,v) is tight, and we add edge (u,v) to F. The region
of the plane defined by these circles correspond to the “moats” of Jinger and Pulleyblank
[67].

We can now show that APPROX-PROPER-0-1 is a generalization of some classical graph
algorithms. The shortest s-¢ path problem corresponds to the proper function h(S5) = 1 if
and only if SN {s,¢}| = 1. The algorithm adds minimum-cost edges extending paths from
both s and ¢ in a manner reminiscent of Nicholson’s bidirectional shortest path algorithm
[95]. The main loop terminates when s and ¢ are in the same component, and the edge
deletion stage removes all edges not on the path from s to t. Thus for this problem, whenever
ys > 0, [F'Né(5)| = 1, and whenever e € F', > 5. c505) Us = Ce. In other words, the primal

and dual feasible solutions F” and y obey the complementary slackness conditions; hence the
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Figure 3-3: Initial instance of example of APPROX-PROPER-0-1.

Figure 3-4: Iteration 1 in example of APPROX-PROPER-0-1.
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Figure 3-5: Iterations 2 and 3 in example of APPROX-PROPER-0-1.

Figure 3-6: Iteration 4 in example of APPROX-PROPER-0-1.
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Figure 3-7: Iteration 5 in example of APPROX-PROPER-0-1.
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Figure 3-8: Iteration 6 in example of APPROX-PROPER-0-1.
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5

Figure 3-9: Iteration 7 in example of APPROX-PROPER-0-1.

[N

Figure 3-10: The set of edges F in example of APPROX-PROPER-0-1.
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Figure 3-11: The final set of edges F’ in example of ApPROX-PROPER-0-1.

solutions are optimal. The minimum-cost spanning tree problem corresponds to a proper
function h(S) =1 for § C 5 C V. For this function h, our algorithm reduces to Kruskal’s
algorithm [77]: all connected components will always be active, and thus in each iteration
the minimum-cost edge joining two components will be selected. Since Kruskal’s algorithm
produces the optimal minimum-cost spanning tree, our algorithm will also. The solutions
produced do not obey the complementary slackness conditions, but induce optimal solutions
for a stronger linear programming formulation of the spanning tree problem introduced by
Jinger and Pulleyblank [67].

We conclude the section by observing that in any iteration of the algorithm, the set
of connected components in C are exactly those sets that would be returned by the strong
oracle MAX-VIOLATED(h, F'). Recall that the strong oracle returns the minimal sets ' such
that A(S) — [6p(5)| = maxp(h(T) — |6p(T)|) > 0. By a “minimal” violated set, we mean
that none of its proper subsets are violated. For an uncrossable function A, these sets are
the minimal sets S such that h(S5) = 1 and 6p(5) = 0; that is, the sets returned by the

strong oracle are the minimal violated sets.
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Theorem 3.1.4 Given a proper function h with range {0, 1}, the sets C € C correspond

exactly to the minimally violated sets in any iteration of the algorithm.

Proof: First, it is not too hard to see that any set €' € C must be active: since each set C
represents a connected component of F in this iteration, no subset of C' is violated. Thus
each C' € C is a minimally violated set since 2(C') = 1. Now we must show that no other
minimally violated sets exist. Any such set cannot contain any C' € C (otherwise it would
not be minimal), nor can it intersect any connected component of F' (otherwise it would not
be violated). Hence any such set .S must be the union of some subset of the sets in Z. Each
set I € Z has h(I) = 0, and so by the maximality property of proper functions h(5) = 0.

Thus S is not a violated set. W

3.2 The Algorithm for Uncrossable Edge-Covering Problems

3.2.1 The Main Algorithm

In this section, we generalize the algorithm of the previous section to handle all uncrossable
edge-covering problems. The algorithm, APPROX-UNCROSSABLE, is given in Figure 3-12.
The basic structure of the algorithm is exactly the same as before. There is an edge
addition stage, which adds edges to F’ until there are no violated sets left. Thus F is a
primal feasible solution for the integer program (IP,). The edges in each iteration of the
algorithm are chosen using the primal-dual method. The edge addition stage is followed
by an edge deletion stage in which redundant edges in F’ are removed, in order to ensure a
good performance guarantee.

There are two central ways in which APPROX-UNCROSSABLE differs from ApPPROX-
PROPER-0-1, the first in the edge addition stage and the second in the edge deletion stage.
In the edge addition stage of the APPROX-PROPER-0-1 algorithm, we focused our attention
on the connected components of the graph. In particular, in each iteration of the algorithm,
we increased the dual variables yc of each connected component C' such that A(C) = 1.
The sets C' were called active sets. In each iteration of APPROX-UNCROSSABLE, the active
sets will be the minimal violated sets, as given by the strong oracle MAX-VIOLATED(h, F).

Theorem 3.1.4 shows that this notion of active sets is a generalization of the active sets
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of the previous algorithm. Let C denote the collection of active sets in an iteration of the
algorithm. Then the primal-dual improvement step for APPROX-UNCROSSABLE increases
the dual variables yo uniformly for all C' € C until the dual constraint for some edge e €

becomes tight, i.e.,

Ce = Z Ys-

S:e€8(S)
A constraint must become tight for some edge e € §(C') of an active set C'. As before, the
edge e is then added to F, improving primal feasibility. The edge addition stage terminates
when there are no minimally violated sets, and hence no violated sets, implying that the
edge set I is feasible for (I P,). As before, we will also have a dual feasible solution y such
that the primal complementary slackness conditions hold; that is, c. = > g..c5(5) ys for all
ec F.

The edge deletion stage of APPROX-UNCROSSABLE differs from that of APPROX-PROPER-
0-1 in that the edges are considered for deletion in the reverse of the order in which they
were added to F. When edge e is considered, it is removed from the current set F if F' — e
is still a primal feasible solution. At the end of the edge deletion stage, the remaining set of
edges, F’, is still primal feasible, the primal complementary slackness conditions still hold,
and the dual complementary slackness conditions will hold in an average sense, implying
a good performance guarantee. It turns out that other edge deletion routines are possible
which still have a good performance guarantee; we will provide one in the next section which
leads to a more eflicient algorithm.

The algorithm APPROX-UNCROSSABLE is formally described in Figure 3-12. It takes
as input a vertex set V', an edge set F., non-negative costs ¢, on each edge e € F, and
an uncrossable function h. It returns a feasible set of edges F’ for the integer program
(IP,). Before we can prove that the algorithm works as we have described above, we need
to establish a few lemmas about the behavior of active sets. A central fact that is used
both by the algorithm and in its analysis is that the minimal violated sets with respect to h
are disjoint. This fact is a consequence of Theorem 2.0.7. We restate a part of the theorem

here that will be useful.

Lemma 3.2.1 Let i be an uncrossable function and let " C E. If A and B are violated sets
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APPROX-UNCROSSABLE (V, Fy, ¢, h)

1

2
3
4
5

(@)

O 00 I

11
12
13
14
15
16
17
18
19
20
21

22

F 10

Comment: Implicitly set ys — 0 for all S C V
10

d(v) —0forallveV

C — MAX-VIOLATED(h, ()

1 ifveCelC
a(v)%{ Huete forall v e V.

0 otherwise
while |C| > 0
1 —14+1
Commenl: Begin ileralion i.

Find edge e¢; = (u,v) with e; € §(C') for some C € C that minimizes ¢ = %ﬁ%ﬂ

For all v € V do d(v) <« d(v) + € - a(v)
Comment: Implicitly set yc — yc + € for allC € C
F— FU{e}
C «— MaX-VIOLATED(h, I)
Update a(v)
Comment: Fnd ileration t.
Comment: Fdge deletion stage: REGULAR-EDGE-DELETE
P — F
for j «— ¢ downto 1

If #” — {e;} is a feasible solution
Fr— F' —{e;}

return /'

Figure 3-12: The algorithm for uncrossable functions h.
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with respect to i and F), then either A — B and B — A are violated, or AN B and AU B are

violated.

Proof: Define 1'(S) = max{h(5)— |0p(5)],0}. Then A'(S) =1 if and only if S is violated.
The lemma statement follows from Lemma 2.0.6, which shows that A’ is uncrossable. H
Let UC denote the family of sets formed by taking all active sets over all iterations of

the algorithm. We say a family of sets is laminar if no two sets in the family are crossing.

Recall that two sets A and B cross if AN B # () and neither A C B nor B C A.
Lemma 3.2.2 The family of sets UC is laminar.

Proof: Suppose there exist two sets C,C’ € UC that cross, such that C' was an active set
in iteration ¢ and C" in iteration 7, with ¢ < j. But then C’ must have been a violated set
in iteration ¢, and by Lemma 3.2.1 this would contradict the minimality of C'. B

Thus if in some iteration we select edge e in the coboundary of a currently active set
C, then the new active set that is formed in the next iteration (if any) must contain C'. At
most one other active set C' in the current iteration might contain e in its coboundary, and
by the lemma any active set that contains C' in some future iteration must contain C’ as
well.

We now show that the algorithm given in the figure behaves as we have described. As
with ApPROX-PROPER-0-1, we prove by induction on the iterations of the algorithm that
the dual solution generated in steps 2 and 12 is feasible for (D,). The base case of the
induction is trivial. As in APPROX-PROPER-0-1, define a(u) = 1 if u is in an active set in
the current iteration. Then one can show again by induction that d(v) = 3., ¢ ¥s for each
vertex v, since we increase d(v) by a(v) - € in each iteration, and the active sets are always
disjoint. Lemma 3.2.2 implies that for any edge e = (u,v) € §(C') for some active set C, the
vertices uw and v have not been contained in the same active set in any previous iteration.
Thus 3,505 ys = d(u) + d(v) for any such edge e = (u,v). It follows that in this iteration
yc can be increased by € for each active set C' without violating the dual constraints as long

as

du)+d(v)+e-a(u)+€-a(v) < e,
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for all e = (u,v) € 6(C") of some active set C’. Thus the largest feasible increase in ¢ for
a particular iteration is given by the formula in step 10. Once the endpoints « and v of
an edge e = (u,v) are both contained in the same active set C, then 3 5. 55 ys does not
increase. To see this, note that in any future iteration any set with e in its coboundary will
not be violated. Hence when the algorithm terminates, the dual solution y constructed by
the algorithm will be feasible for (Dp).

We have still not explained how to select the edge minimizing € in step 10. We also
have not explained how MAX-VIOLATED can be implemented. We again defer these issues
to Chapter 5. We use the MAX-VIOLATED oracle to implement the edge deletion stage in
step 20. Suppose we wish to check whether F” — {e;} is a feasible solution given that F”
is a feasible solution. We can simply call MAX-VIOLATED(h, F” — ¢;) and see whether it
returns a violated set.

To conclude the section, we would like to point out that, for a given edge-covering
problem, the behavior of APPROX-UNCROSSABLE depends on the choice of the uncrossable
function h used to model the problem. For example, we have seen in Chapter 2 that
if one “symmetrizes” an uncrossable function h, then the resulting function b’ (defined
by A'(S) = max{h(S5),(V — 5)}) is uncrossable, symmetric, and defines the same edge-
covering problem. However, APPROX-UNCROSSABLE behaves differently on A and A’ since
the minimal violated sets may differ. The minimal violated sets are closely related, however,

as is shown in the following lemma.

Lemma 3.2.3 Let h be an uncrossable function, and A’ = max{h(S5),h(V — 5)}. Either
MAX-VIOLATED(R', F') = MAX-VIOLATED(h, F') or there exists a set S such that MaXx-

VIOLATED(R', F') = MAX-VIOLATED (h, F') U{S}.

Proof: We first show that MAX-VIOLATED(A', ') O MAX-VIOLATED(h, F). If A € MaX-
VIOLATED (R, F') but A ¢ MAX-VIOLATED(R/, F'), then there must exist a set B C A in
MAX-VIOLATED(R', F'). Furthermore, it must be the case that B is violated with respect
to b, h(B) = 0 and A(V — B) = 1. But then A crosses V — B, which contradicts the

minimality of A with respect to h by Lemma 3.2.1.

Assume that there exists twosets A, B € MAX-VIOLATED (h/, F') — MAX-VIOLATED (h, ).
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This implies that A(A) = h(B) = 0, but A(V — A) = h(V — B) = 1. Since A and B must
be disjoint, then A((V — A)U(V — B)) = h(V) = 0. Thus the fact that A is uncrossable
implies that A((V —A)— (V= B))=h(B)=1and h((V - B)—(V-A4))=h(A) =1, a
contradiction. W

In order to apply APPROX-UNCROSSABLE to a symmetrized function A’, we must have
access to an oracle MAX-VIOLATED for A'. In general, one can simulate a call to MAX-
V1oLATED(R', F') by O(n) calls to the oracle MAX-VIOLATED for h. For some problems of
interest, however, we can implement an oracle MAX-VIOLATED for b’ directly; we will see
an example of this in Section 7.1.

As an example of the difference between a symmetric and a non-symmetric function h,
we again consider the shortest s-{ path problem. In the previous section, it was observed
that this problem could be modelled by the proper function »'(S5) = 1if [SN{s,¢}| = 1 and
h'(S) = 0 otherwise. We can also model the problem by the uncrossable function A(.S) =1
iff s € 5,t¢ 5. Note that A is a symmetrization of h. By the same complementary slackness
argument as given in the previous section, APPROX-UNCROSSABLE will produce an optimal
solution to this problem. The two functions behave differently in that APPROX-PROPER-
0-1 behaves like Nicholson’s algorithm for the shortest s-¢ path problem given the function
h'; with the function h, APPROX-UNCROSSABLE will emulate Dijkstra’s algorithm [29]. To
see this, one can show by induction that when APPROX-UNCROSSABLE is run on function
h, the edge set F at any iteration will form a single connected component C' containing
the vertex s, and C' will be the sole active set. The edge addition stage terminates when C
contains ¢. For any vertex u € C, the value d(s) — d(u) will give the length of the shortest
path from s to u. In each iteration, the algorithm selects the edge e = (u,v),u € C, v ¢ C,
that minimizes ¢, — d(u) (as d(v) = 0 for v ¢ C'). Since this is equivalent to minimizing
¢. + d(s) — d(u), the algorithm effectively selects the vertex v ¢ C adjacent to a vertex
w € C that minimizes the shortest path from s to v; that is, the algorithm exactly mimics
the behavior of Dijkstra’s algorithm. Then d(s) is increased by ¢, — d(w), so that d(s)—d(v)
is the length of the shortest path from s to v. The variables d(¢) for ¢ € C are also increased
by this amount, maintaining the values d(s) — d(¢). Finally, (u,v)is added to F, effectively
adding » to C.
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In the next section, we turn to a more efficient variation of APPROX-UNCROSSABLE.
The ideas required to make APPROX-UNCROSSABLE efficient are somewhat involved, and
so the first-time reader may wish to advance to Section 3.3, which gives the algorithm
for weakly supermodular edge-covering problems, and return to the efficient version of

APPROX-UNCROSSABLE at a later point.

3.2.2 A More Efficient Variation

As was stated in the introduction, the edge-covering problems of interest are primarily
proper edge-covering problems. Although the edge addition and the edge deletion stages
given above both use O(n) calls to MAX-VIOLATED, we will show in Chapter 5 that the
sequence of calls of the edge addition stage can be implemented rather efliciently when
APPROX-UNCROSSABLE is called as a subroutine of our algorithm for proper edge-covering
problems. The bottleneck of the approximation algorithm for proper edge-covering prob-
lems becomes implementing the O(n) calls to MAX-VIOLATED by the edge deletion stage,
REGULAR-EDGE-DELETE.

We can, however, give another edge deletion stage, EFrICIENT-EDGE-DELETE, which
runs in O(n) time, makes no calls to MAX-VIOLATED, and still yields a feasible solution
with the same performance guarantee. In a sense, this edge deletion stage removes as few
edges as possible while still giving a good performance guarantee. This contrasts with
REGULAR-EDGE-DELETE, which removes as many edges as possible while still giving a
feasible solution. We will return to this intuitive characterization of EFFICIENT-EDGE-
DELETE when we prove the performance guarantee in Chapter 4, and give only its formal
description here.

One of the consequences of this kind of edge deletion stage is that it does not neces-
sarily return edge-minimal solutions. As far as we know, this fact has no negative impli-
cations other than that on average we would expect that an algorithm using EFFICIENT-
EDGE-DELETE would give solutions with somewhat greater cost than an algorithm using
REGULAR-EDGE-DELETE.

Before we define the new edge deletion stage, we define some notation and we try

to provide an intuitive feel for the concepts involved. Suppose for a moment that the
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uncrossable function h under consideration is such that no new active sets are ever created:
we have some initial collection C of active sets, and in each iteration we select some edge in
the coboundary of at least one, and at most two, active sets from C. If the edge is in the
coboundary of exactly one active set, we call it a 1-edge, otherwise it is a 2-edge. Once an
edge in the coboundary of an active C' is selected, then C' is no longer violated, and hence
no longer active. Thus in this case, there will be at most |C| iterations of the edge addition
step. Let F be the set of edges added during these iterations.

Still assuming that no new active sets are created, we can consider F as defining a forest
on the initial collection of active sets (see Figure 3-13). Consider also how each tree of this
forest “grows” as edges of F' are added. Each component adds a “node” by adding 1-edges
which have one endpoint in a currently active set (the new “node”) and the other in a set
that was active in some previous iteration (a “node” in the growing component); see Figure
3-14. Notice that we never add edges whose endpoints are both in previously active sets,
and thus we never link two components. From this observation, it is not hard to see that

2-edges must always start growing a new component.

Figure 3-13: A “forest” on active sets. Each circle represents an active set.

The edges that particularly interest us for the new edge deletion step are 1-edges e such
that the edges added after e form a tree on the sets active before the addition of e. We
call these edges special edges, and we define them more formally below. In Figure 3-13, e3
and es are special edges. The other edges are not special edges: for example, e, is not a
special edge because e; contains an endpoint not in a set that is active just before e, is
added. We will show that special edges have a nice combinatorial structure such that we

can remove some of them and simultaneously ensure a good performance guarantee and
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Figure 3-14: Growing a component of the forest. The thin circles represent previously
active sets; the thick circle represents an active set.

maintain feasibility.

To generalize this concept to the case where new active sets are formed, we partition
the edges and the active sets. Let UC be the collection of all active sets formed over all
iterations of the algorithm, and augment UC by adding the set V to the collection. Recall
from Lemma 3.2.2 that UC is laminar. We define a tree 7 based on UC, with one vertex
ve for each €' € UC. Thus we make ve a parent of vp in the tree 7 if C' is the smallest
set in UC that properly contains D. Let D(C') denote the collection of sets corresponding
to the children of v¢c in 7. The collection D(C') can be thought of as an equivalence class
of the active sets. For edges, let C'(e) denote the smallest set C' € UC that contains both
endpoints of e. The set of all edges of /' for which C'(e) = C'is denoted F. The edges in
F can be thought of as an equivalence class of the edges of F. The behavior of the edges
F¢ on the active sets in D(C') will now be as in the case above in which no new active sets
are formed.

We can now formally define the special edges. Let A(e) denote the sets in D(C'(e)) that
are active just before edge e is selected. Say that an edge set H forms a spanning tree on
a family of disjoint vertex sets {C;}5_, if H forms a spanning tree on the graph induced by
considering each set C; as a vertex. Then e is special if it is a 1-edge, and the edges added
to Fi(.) after e form a spanning tree on the sets in A(e).

We illustrate the concept in its full generality in Figure 3-15. Frames 1-9 correspond to
the edge addition stage, frames 13-16 to EFFICIENT-EDGE-DELETE, while the final solution

is depicted in frame 11. In frames 1-9, the edges correspond to the edges of F while the
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rounded boxes represent the active sets. In the figure, only edges e, and eg are 2-edges, the
others being 1-edges. The special edges in the figure are €, €5, €5 and e;. The edge e, is not
special because e4 is a 2-edge (and hence forms a new “component” on the sets of A(ez)).
The edge e3 is not special because es has an endpoint not in one of the sets of A(es).

The new edge deletion stage is given in Figure 3-16. It scans the edges of F in the
reverse order of their selection in the edge addition stage. Let A(e) denote the union of
the sets in A(e); that is, A(e) = Ucea()C- The edge deletion stage removes edge e from
Fif e is special, no other edge of F(.) has already been removed, and all remaining edges
of F'in 6(C(e)) are also in 6(A(e)). It does not remove e if C(e) = V. We illustrate
EFFICIENT-EDGE-DELETE in frames 13-16 of Figure 3-15. Recall that the special edges
are ey, e5,eg and e;. Frames 13, 14, 15 and 16 correspond to the situation just before the
possible removal of edge e7, €5, €5 and e; respectively. In the frame corresponding to e;, the
vertices in A(e;) are represented in white. Edge e7 is removed since eg € §( A(e7)). Edge es
is not removed since eg ¢ 6( A(es)). Although e; ¢ §(A(es)), edge e5 is removed since e; was
previously removed. Edge e; is not removed since e5 € C(e;) has already been removed.
The resulting forest is represented in frame 11.

We conclude the section by proving that EFrICIENT-EDGE-DELETE delivers a feasible
solution for the integer program (I Py), and save the proofs of performance guarantee and

running time for Chapters 4 and 5 respectively.

Theorem 3.2.4 The edge set F’ remaining after the edge deletion stage is a feasible solution

for (I Py).

Proof: The edge addition stage terminates with no active sets, and thus no violated sets.
So we need only prove that EFFICIENT-EDGE-DELETE maintains feasibility. Assume it does
not. Suppose F” is feasible for (I P,) but F’ — e is not, and the edge deletion step removes
e from F’. The situation just before the removal of e is illustrated in Figure 3-17. Let
C = C(e). By the definition of EFrICIENT-EDGE-DELETE, C' # V. Let S be a set violated
by F' —e. We call the iteration of the edge addition step in which e was added the “current
iteration”. The set S was violated in the current iteration because of the ordering of the

edge deletion step.
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Figure 3-15: Simulation run of the algorithm.
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EFFICIENT-EDGE-DELETE

Fr— F

Let all sets that were active be unmarked. Mark the set V.

for j «— i downto 1
If e; is special and C'(e;) is unmarked and 6p/(A(e;)) 2 ép/(C(e;)) then
F' — F' — {¢;}
Mark C'(e;)

=] O TR W N

return /'

Figure 3-16: A more efficient edge deletion stage.

Figure 3-17: Notation used in the proof of Theorem 3.2.4.

Notice that all sets in .A(e) must also be violated in the current iteration, by the definition
of A(e). By Lemma 3.2.1, there exists a violated set S” that does not cross any set in A(e).
In fact we can show that S’ does not cross A(e): because no edge of Fz has been removed
so far in the edge deletion process, the edges of F added after e form a spanning tree on
the family A(e). Thus if 5" crosses A(e) but not any set in A(e), it would intersect an edge
of F added after e, contradicting the fact that 5’ is violated.

We now assume that A(e) C 5'; the case that A(e) C V — 5" is similar. Since C' # V,
the set C', as well as 57, is violated just before e was added. By Lemma 3.2.1, either C' — 5’
and S’ — C are violated or C'N.S" and C'U S’ are violated just before e was added. However
C — 8 cannot contain an active set, so it is not violated. Thus C'U S’ is violated. Since it
was not violated before e was removed, F” contains an edge € with exactly one endpoint in
V —(CUS’). The edge € is not in the coboundary of S’ since §(S") N F' = {e} and e # €.
Thus the other endpoint of € is in C'— 5’. On the one hand this implies € € 6(C(e)); on the
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other it implies € ¢ §( A(e)). But this contradicts the removal of e in the clean-up step. W

3.3 The Algorithm for Weakly Supermodular Edge-Covering

Problems

Recall that a weakly supermodular edge-covering problem is defined by the integer program

Min E Coy

1=
subject to:
(IP) 2(8(5)) > J(S) Scv
z. €{0,1} e€k,

for some weakly supermodular function f. In this section we show that approximating
a weakly supermodular edge-covering problem can be decomposed into f., calls to our
algorithm for approximating an uncrossable edge-covering problem. Our algorithm to ap-
proximate (/P), APPROX-WEAKLY-SUPERMODULAR, is summarized in Figure 3-18. It
takes as input a vertex set V, an edge set F/, non-negative costs ¢, for each edge e € F, and
a weakly supermodular function f. Its output is a set of edges that is feasible for (I P).

Since we proved in Chapter 2 that all proper functions are also weakly supermodular,
our algorithm for approximating proper edge-covering problems, APPROX-PROPER, is the
same as APPROX-WEAKLY-SUPERMODULAR. Notice that the first step in the algorithm,
step 2, is to compute f,.. by using the strong oracle MAX-VIOLATED. The oracle call
MaX-VIOLATED( f, ) must return a set S for which f(.9) = maxy f(7). By Lemma 2.0.11,
for proper functions we can compute f,., by using n calls to the weak oracle that computes
f.

The algorithm works by successively augmenting a set of edges in f.x phases. Let F,
denote the set of edges selected by the end of phase p. We start from the set £, = (. In each
phase p we specify certain sets 5 such that we need to augment the current solution £,_; by
adding at least one edge to the coboundary of each 5. In particular, we specify the sets that

are maximally violated; that is, the sets 5" for which the deficiency A,(S) = f(5)—|6p,_,(5)]
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is maximized. By setting h,(5) = 1 for these sets S and h,(5) = 0 otherwise, we can apply
APPROX-UNCROSSABLE to perform the augmentation; the function A, is uncrossable by
Lemma 2.0.5 and Observation 2.0.1. Thus the maximum deficiency will be decreased in
each phase of the algorithm. Since the maximum deficiency is f,.. at the start of the
algorithm, after f.. phases, all deficiencies will be non-positive, so that [6p, (5)| > f(5)

for all S. In other words, F}_  will be a feasible solution to the integer program (IP).

The idea of augmenting a graph in phases has been used previously in many graph
algorithms, including the two-phase approximation algorithms of Frederickson and Ja’Ja’
[39] and Klein and Ravi [74], and exact algorithms due to Naor, Gusfield, and Martel [93]
for solving unweighted graph augmentation problems.

More formally, in phase p we augment the sets 5 for which A,(.5) = f(5) — |6p,_,(5)| =
Jmax — P+ 1. We will show by induction that A,(5) < finax —p+1forall § C V, and there
exists some S for which the inequality is tight. Thus we can apply APPROX-UNCROSSABLE

to the function

1 if AP(S) = fmax —P+1
hp(s):

0 otherwise,

on the graph G = (V, E,), where £, = E — F,_;, since the function h, is uncrossable by
Lemma 2.0.5 and Observation 2.0.1. Now for the inductive proof. Certainly A;(.5) < fiax
forall § C V,and A;(5) = fiax for some S. Suppose by induction that A,(5) < finax—p+1.
Let F' be the set of edges returned by APPROX-UNCROSSABLE, and let F, = F,_; U F".
Since F” is a feasible solution to (I P) for the function h,, |6p/(5)| > 1 for each set S such
that A,(S) = finax — P+ 1. One can also check that the last edge selected by APPROX-
UNCROSSABLE cannot be removed without losing feasibility, implying the existence of a set
S such that A,(5) = fiax —p+ 1 and |6p:(5)| = 1. Because F' C E — F,_,, it follows that
Api(S) = f(S) = 16p,(5)| < fmax — p+ 1 for all sets S for which A,(5) = frnax — P + 1,
and thus for all sets S C V. It also follows that there exists a set S for which A,;;(5) =
(Jmax —p+1) = 1.

In the case of uncrossable functions generated by the APPROX-WEAKLY-SUPERMODULAR
algorithm, observe that the strong oracle for £, can be implemented directly in terms of

the strong oracle for f. That is, MAX-VIOLATED(h,, F') = MAX-VIOLATED(f, F'U F,_,).



64 The High-Level Algorithms

APPROX-WEAKLY-SUPERMODULAR (V, E ¢, f)
1 Fo — @

2 Jmax — f(9) for § € MAX-VIOLATED( f, ()
3 for p— 11to foax
4 Comment: Phase p.
5 A (S) — f(S)—|ép,_, ()| forall S CV
6 h,,(S)H{l ipr(g):fmax—pH
0 otherwise

7 E, — E—F,,

F" — AppPrROX-UNCROSSABLE(V, E,, ¢, h,)

F,—F,_ UF

10 return F;

Figure 3-18: The approximation algorithm for weakly supermodular edge-covering prob-
lems.

This follows from the definition of %, and MAX-VIOLATED.



CHAPTER 4

Performance Guarantees

In the preceding chapter we have given high-level algorithms that find feasible solutions for
edge-covering problems defined by proper functions with range {0,1} (APPROX-PROPER-
0-1), for uncrossable edge-covering problems (APPROX-UNCROSSABLE), and for weakly
supermodular edge-covering problems (APPROX-WEAKLY-SUPERMODULAR). This chapter
shows that these feasible solutions have a value that is close to the value of the optimal
solution. To prove this, we use the dual solutions implicitly generated by the algorithms. In
particular, we will show the following three theorems. For a given uncrossable function h,

we let £, designate the maximum number of disjoint sets S of vertices such that A(5) = 1.

Theorem 4.0.1 Let Z},_, be the value of an optimal solution to the integer program (1 P)
given by a proper function i : 2¥ — {0,1}. Then APPROX-PROPER-0-1 produces a set of

edges I’ and a feasible solution y to (D) such that

Z c. < (2— %) ZS:h(S)yS < <2— %) Zip.

ec P!

Theorem 4.0.2 Let Zj,_, be the value of an optimal solution to the integer program (1 P;)
given by a symmetric uncrossable function A. Then APPROX-UNCROSSABLE, using either

REGULAR-EDGE-DELETE or EFFICIENT-EDGE-DELETE, produces a set of edges F” and a

65
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feasible solution y to (D) such that

Z c. < (2— %) ZS:h(S)yS < <2— %) Zip.

eeF'!

Theorem 4.0.3 Let Zj, be the value of an optimal solution to a weakly supermodular edge-
covering problem given by a weakly supermodular function f, and Z}, be the value of an
optimal solution to the dual of its linear programming relaxation. Then APPROX-WEAKLY-

SUPERMODULAR produces a set of edges F;_ _ such that

Z Ce S 2,]_((fmax)Z;) S 2,]_((fmax)Z}‘P-

e€F rmax

If the uncrossable function A is not symmetric, then we show that the factor 2 — % in
Theorem 4.0.2 becomes 2 — i

To better define the performance guarantees, we prove the following bound on ;.
Lemma 4.0.4 For any uncrossable function h, ¢, = |MAX-VIOLATED(h,()]. If h is also

proper, then (, = [v € V : h({v}) = 1].

Proof: Let 51,...,5, be disjoint sets such that A(S;) = 1 and £ is maximum. Choose the
Si’s so that U;S; is as small as possible. By definition, the 5;’s are violated sets for the
empty set of edges and are minimal since UY5; is as small as possible. Hence the 5;’s are the
sets returned by MAX-VIOLATED(h, ().

If h is also proper, the maximality property implies that the S; are singletons, proving
the desired result. B

Because the performance guarantees of the algorithms are proved by comparing the
value of a feasible integral solution to the value of a feasible solution to the dual of the
linear programming relaxation, the theorems also imply results about the relative duality
gap of the integer program (I P) for weakly supermodular and uncrossable functions. As was
stated in the introduction, the relative duality gap of an integer program is the ratio of the
value of an optimal solution to the integer program to the value of an optimal solution to its
linear programming relaxation. Theorems 4.0.2 and 4.0.3 imply that the relative duality gap

for (1 P) is bounded above by 2 and 2H( finax) for all uncrossable and weakly supermodular
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functions, respectively, and all non-negative edge costs. This statement holds even for
functions for which we cannot implement the strong oracle MAX-VIOLATED in polynomial
time. We can further observe that if £, = 2, then Theorems 4.0.1 and 4.0.2 imply that
the performance guarantee of APPROX-PROPER-0-1 and APPROX-UNCROSSABLE is 1. As
a result, the algorithm must construct both a primal optimal solution and a dual optimal
solution, thereby showing that (I P) is equivalent to its linear programming relaxation in
this case.

The chapter is structured as follows. In the next section, we prove Theorems 4.0.1 and
4.0.2. We first reduce these two proofs to a combinatorial inequality about graph augmen-
tations, and then show that the inequality holds for the APPROX-PROPER-0-1 algorithm
and the APPROX-UNCROSSABLE algorithm with both the REGULAR-EDGE-DELETE and
the EFFICIENT-EDGE-DELETE deletion routines. The combinatorial inequality may be in-
teresting in its own right; the essence of the inequality is that the sum of the degrees of
vertices in any edge-minimal augmented graph is no more than twice the number of vertices
that need augmenting. We will make this statement more precise in the next section. Once
we have proven Theorem 4.0.2, we use it in Section 4.2 to prove the performance guarantee
for APPROX-WEAKLY-SUPERMODULAR. We conclude the chapter in Section 4.3 with an
example that shows that the performance guarantee of APPROX-WEAKLY-SUPERMODULAR
is essentially tight. The example also indicates that a substantially different approach will

be needed to achieve an algorithm with a better performance guarantee.

4.1 Proofs of Performance Guarantee for APPROX-UNCROSSABLE

In both algorithms APPROX-PROPER-0-1 and APPROX-UNCROSSABLE, the primal comple-
mentary slackness conditions are maintained; thus we know for any edge e € F’, no matter

how edges are deleted, that c. = 3 . c55)ys. Thus the cost of the solution F” is

o= > ys=Y yslop ()]

e€F! e€F’ S:e€b(S) Scv
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Thus in order to prove Theorems 4.0.2 and 4.0.1, all we need to do is show that

S yslbe ()] < (2 _ ;) S h(S)ys.

SCcv SCV

Because 3¢ h(5)ys is the dual objective function, and y is a feasible dual solution, this
inequality can be proved by induction on the while loop of both algorithms. Certainly the
inequality holds before the first iteration of the loop, since initially all ys = 0. Consider the
collection C of active sets at the beginning of some iteration of the loop. The left-hand side
of the inequality will increase by 3" .. €-|6p(C')| in this iteration while the increase of the
right-hand side will be (2 — 2)e-|C].

The inductive proof will follow from a proof that at any iteration,

> 16p(C)] < 2IC| - 2. (4.1)

cec

Because |C| < ¢} for all possible collections C of active sets, it follows that the inequality
implies that 3 occ [6p/(C)| < (2= 7-)IC|. Another way of looking at inequality (4.1) is that
we show that the sum of the degrees of the active sets with respect to F” is no more than
2|C| — 2, as if I’ were a forest on the active sets. For this reason we call inequality (4.1)
the total-degree inequality. The proof of the inequality can be viewed as a charging scheme
in which we show that there are many active sets of degree one that compensate for high
degree active sets. It can also be viewed as a statement about the edges needed to augment
a set of edges to a feasible solution for an uncrossable function h: if there are |C| minimally
violated sets, then the total number of edges that will be added to the coboundary of these
sets is at most 2|C| — 2, no matter how future active sets are created.

A third way to view the total-degree inequality (4.1) is as a relaxation of the dual
complementary slackness conditions. Recall from the introduction that typical primal-dual
approximation algorithms maintain primal complementary slackness conditions, as we have

done, but relax the dual complementary slackness conditions to

ys > 0= h(S) < D w. < ah(9).

e€s(S)
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Inequality (4.1) shows that for our algorithm the standard relaxed dual complementary
slackness conditions hold when averaged over the active sets of an iteration. That is, when

we increase the variables yc for C' € C in some iteration, inequality (4.1) implies that

3 (h(C) <Y w < 2(C) - %) ,

Cec e€d(C)

or

|C| < Z .’Ee§2|C|_2

c€5(C):CeC
We now need to show that the total-degree inequality (4.1) holds for the algorithm
APPROX-PROPER-0-1 and the algorithm APPROX-UNCROSSABLE with the edge deletion
stages REGULAR-EDGE-DELETE and EFFICIENT-EDGE-DELETE. For the remainder of this
section, we will concentrate on the active sets C' € C of some particular iteration of the

algorithm, which we call the current iteration.

4.1.1 The Total-Degree Inequality for APPROX-PROPER-0-1

Theorem 4.1.1 In any iteration of APPROX-PROPER-0-1, inequality (4.1) holds.

Proof: Let Z' be the collection of connected components N in Z such that 6z (N) # 0. To
begin, construct a graph H by considering the sets in C and Z’ of the current iteration as
vertices of H, and the edges e € §p/(9) for all § € CUZ’ as the edges of H. Notice that H
is a forest.

We claim that no leafin H corresponds to a set from Z'. To see this, suppose otherwise,
and let v be a leaf of H, I, its associated set from 7', e the edge incident to v, and N
the component of F’ which contains I,. Let P and N — P be the two components formed
by removing edge e from the edges of component N. Without loss of generality, say that
I, C P. The set P — I, is partitioned by some of the components of the current iteration;
call these Py,..., P, (see Figure 4-1). Since I, is a leaf, no edge in F” connects I, to any
P;. Thus by the construction of F’, h(UF;) = 0. Since h(l,) = 0 also, it follows that
h(P) = 0. We know h(N) =0, so by Observation 3.1.1 h(N — P) = 0 as well, and thus by

the construction of F’, e € F', which is a contradiction.
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*o-----e FF

Figure 4-1: Tllustration of claim that all leaves of H are active.

Let dy = |6p:(N)| for a component N € C UZ'. Thus dy gives the degree of the vertex

v in the graph H that corresponds to the component N. Then

Say = Y d- Y

NeC NeCuT!’ NeZ’

2(IC1+ 7' = 1) = 2{7']

IN

= 2C] -2

This inequality holds since H is a forest with at most |C| + |Z'| — 1 edges, and since each

vertex corresponding to an inactive component in 7’ has degree at least 2. B

4.1.2 The Total-Degree Inequality for APPROX-UNCROSSABLE with REGULAR-

EDGE-DELETE

The proof of the total-degree inequality for the APPROX-UNCROSSABLE algorithm becomes
somewhat more complicated than the proof for ApPPROX-PROPER-0O-1. In the previous
proof, we could take the structure of the current forest F' in terms of the connected com-
ponents in C and Z, and abstract a forest from this structure. We then showed that all of
the leaves of the forest corresponded to active sets, thus proving the total-degree inequal-
ity. The proof here follows the same general strategy, but abstracting the forest becomes
more difficult. Here we show that REGULAR-EDGE-DELETE induces a tree-like structure
on specific violated sets of the current iteration.

We will assume that the uncrossable function A is also symmetric; that is, h(S) =

h(V — §) for all § C V. This is true of all uncrossable functions generated by APPROX-
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ProOPER. At the end of the proof we will note that a non-symmetric h implies a performance

2
iy

guarantee of 2 — i instead of 2 —
Define Y = Jgee 67/(C); that is, Y is the set of edges in F” that are in the coboundary
of the currently active sets. Notice that these edges must have been added during or after

the current iteration.

Lemma 4.1.2 For each edge e € Y there exists a witness set S, C V such that

2. 8p(5.) = {e},

3. Foreach C € C either C C S, or CN S, = 0.

Proof: Any edge e € Y is alsoin F’, and thus during REGULAR-EDGE-DELETE the removal
of e causes h to be violated for some §. In other words, there can exist no other e’ € F”
that is also in 6(5). This set .5 will be the witness set 5. for e, and clearly satisfies (1) and
(2). Now let F}, be all the edges added before the current iteration. To show (3), notice that
when considering edge e in REGULAR-EDGE-DELETE, no edge in #; had yet been removed.
Hence 5, is violated even if all the edges of F} are included; that is, 5, is violated in the
current iteration. Thus (3) follows by Lemma 3.2.1 and the minimality of the active sets
cecC.

Consider a collection of sets 5, satisfying the conditions of the preceding lemma, taken
over all the edges e in Y. Call such a collection a witness family. Recall that any collection

of sets is called laminar if there is no crossing pair of sets A, B in the collection.
Lemma 4.1.3 There exists a laminar witness family.

Proof: By the previous lemma, there exists a witness family. From this collection of sets
we can form a laminar collection of sets as follows. We maintain that A(.S) = 1 for all sets
S in the collection. If the collection is not laminar, there exists a crossing pair of sets A, B.
Because h(A) = h(B) = 1, either (A—B) = h(B—A) =1or h(AUB) = h(ANB)=1.If

the latter is true, we uncross A and B by replacing them in the collection with AU B and
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AN B (the other case is analogous). This procedure terminates with a laminar collection
since whenever two sets are uncrossed, the total number of pairs of sets that cross is reduced.
To see this, note that if a set X in the collection crosses both A and B, then replacing A
and B with A — B and B — A, or AN B and A U B cannot increase the total number of
sets that X crosses. If X crosses only A and is not contained in B, then it cannot cross
B —Aor An B. If X crosses only A and is contained in B, then it cannot cross A U B or
A — B, and so again uncrossing A and B cannot increase the total number of sets that X
crosses. Thus uncrossing A and B does not increase the total number of pairs of sets that
cross, and in fact decreases the total by at least one, since A no longer crosses B.

We claim that the resulting laminar collection forms a witness family. This claim can
be proven by induction on the uncrossing process. Property (3) obviously continues to hold
when any two sets are uncrossed. Suppose we have two witness sets 5; and 95 corresponding
to edges e; and e; such that S; and S, cross. Since h is uncrossable, either h(.5; U S5) =
h(S1 N Sy) = 1 or A(S1 — S3) = h(S; — 51) = 1. Without loss of generality, suppose
h(S1US3) = k(51N Sy) = 1. By submodularity, 2 = [6p:(51)| 4+ [6p/(52)] > [6p:(S1 N S2)| +
|6p(S1 U S3)|. Because h(S; U S3) = 1, it is not the case that S; US; = V. Thus by the
feasibility of F”, |0 (51N S2)| > 1 and |6p/(S, U S3)| > 1. Hence it must be the case that
if A(S1US2) = h(S:NS2) =1, then |8#(51 N S2)| = |6p(51 U S2)] = 1. Therefore either
51 NS, is a witness set for e; and 5, U S, is a witness set for e,, or vice versa.ll

Let S be a laminar witness family. Add the set V to the family. The family can be
viewed as defining a tree H with a vertex vg for each S € § and edge (vs,vr) if T is the
smallest element of S properly containing 5. Fach active set C' € C is associated with the
smallest set § € S that contains it. We will call a vertex vg active if § is associated with
some active set C'. Let L(vs) be the collection of sets C' € C associated with an active

vertex vg.
Lemma 4.1.4 The tree H has no inactive leaf.

Proof: Only V and the minimal (under inclusion) witness sets can correspond to leaves.
Any minimal witness set is a violated set in the current iteration, and thus must contain

an active set which corresponds to it. Let S be any maximal witness set. Given that h is
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symmetric, both § and V — § are violated sets in the current iteration, and thus contain

active sets C'. Therefore, vy, cannot be simultaneously a leaf and inactive. B
Lemma 4.1.5 For any active vertex vs in H, the degree of v is at least 3 ¢ (.. [0p(C)].

Proof: Note that the one-to-one mapping between the edges of Y and the witness sets
implies a one-to-one mapping between the edges of Y and the edges of H: each witness set
S defines a unique edge (vg,vr) of H, where T contains 5. Consider any edge e € 6p/(C)
for some C' € C. Let (vs,,vr) be the edge defined by the witness set S.. The active set
C must be associated with either vg, or vy. By summing over all edges e € §5(C') for all
active sets C' corresponding to an active vertex vg of H (that is, all C' € L(vs)), we obtain

the lemma. W

Theorem 4.1.6 |n any iteration of APPROX-UNCROSSABLE with REGULAR-EDGE-DELETE,

inequality (4.1) holds.

Proof: Let H, denote the set of active vertices in H and let d, denote the degree of a vertex

v. Then, as is shown in the proof of Theorem 4.1.1,

Dody=3di— D dy S 2AH| 1) = 2|H| = [Hy) = 2|, -2
vEH, veH veEH-H,
This inequality holds since H is a tree with |H|— 1 edges, and since each vertex in H — H,

has degree at least 2. The lemma above implies that )" ... [6p/(C)] < 3, oy, dv, While
clearly |H,| < |C|. Thus

S 8m(C)] < 20| - 2.

cec

If A is not a symmetric function, then we can obtain a slightly weaker performance
guarantee. In this case, the tree H can have at most one inactive leaf, vy . Following the

same logic as above, we obtain that } ... |6(C)| < 2|C| — 1, which implies a performance

guarantee of 2 — i for ApPROX-UNCROSSABLE. Thus if £, = 1 for a non-symmetric

function h, the performance guarantee for APPROX-UNCROSSABLE is 1. The algorithm will
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construct primal and dual optimal solutions, implying that (/P) is equivalent to its linear
programming relaxation in this case.

As far as performance guarantees are concerned, however, we do not need to worry
about non-symmetric functions. Notice that by applying ApPPROX-UNCROSSABLE to the
symmetrization k' of h as described at the end of Section 3.2.1, one obtains a performance
guarantee of 2 — % Since, by Lemmas 3.2.3 and 4.0.4, £, < £, + 1, we see that 2 — % <
2 — 2 <2 1. Asa result, using the symmetrized function A’ never hurts in terms of

fn+1 Ln

the performance guarantee.

4.1.3 The Total-Degree Inequality for APPROX-UNCROSSABLE with EFFICIENT-

EDGE-DELETE

Our strategy for proving the total-degree inequality so far has been to construct a forest
on the active sets and the edges in Joce ¢7/(C') and then show that the leaves of the forest
correspond to active sets. With EFFICIENT-EDGE-DELETE, the proof strategy becomes
quite different. Here we show that the special edges are exactly those edges whose removal
can ensure the performance guarantee. Suppose for a moment, as we did in Section 3.2.2,
that no new active sets are created in subsequent iterations. Let e be the edge chosen in the
current iteration, and suppose that e is a special edge. Recall that we informally defined a
1-edge e as special if the edges added to F after e form a tree on the sets active just before e
is added. If e is added in the current iteration and is special, then )~ .. [065(C)| = 2|C| — 1,
but removing e causes the total-degree inequality to be satisfied (see Figure 4-2). This is the
central intuition of the proof; we employ it recursively in order to handle the more general
case.

We preface our proof of the total-degree inequality for ApPPROX-UNCROSSABLE with
EFFICIENT-EDGE-DELETE by reviewing some definitions. Recall that in Section 3.2.2 we
define UC to be the collection of active sets over all iterations, plus the set V. We define a
tree 7 with one vertex ve for each C' € UC. The node v¢ is a parent of vp in the tree if C
is the smallest set in UC that properly contains D. The collection of sets corresponding to
the children of v¢ is denoted D(C'). The set C'(e) is the smallest set C' € UC that contains
both endpoints of e; F¢ is the subset of edges e of F’ such that C'(e) = C'. We think of D(C')
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Figure 4-2: A bad case for the performance guarantee. Circles represent sets active just
before edge e is added. The edge e is special.

and F¢ as associated equivalence classes on the active sets and the edges of F. Finally, the

notation A(e) denotes all sets in D(C'(e)) that are active just before e is selected.

Theorem 4.1.7 In any iteration of APPROX-UNCROSSABLE with EFFICIENT-EDGE-DELETE,

inequality (4.1) holds.

Proof: Define the subtree 7’ of 7 to contain all the vertices corresponding to sets that will
be active in or after the current iteration. Thus the leaves of the tree correspond exactly
to the sets in C in the current iteration. Define £(C') to be the sets corresponding to the
children of an internal node v of 77; that is, £(C') contains the sets of D(C') that are active
in or after the current iteration. Let Y be the set of edges selected in or after the current

iteration. Let Y/ =Y N F".

We will prove inequality (4.1) by showing for each internal node vc of the tree 77 that

Y 18w (9)] =16y (C)] < 21E(C)| - 2. (4.2)

Se&(C)
In effect, we prove a version of the total-degree inequality for each “equivalence class” C,
subtracting off the contribution made to the total degree made by edges with only one
endpoint in C' (see Figure 4-3). Given that |6y (V)| = 0, by summing this inequality over

all internal nodes vc of the tree, we will obtain

> 1y (C)] < 2IC] - 2. (4.3)

cec
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A\

Figure 4-3: An illustration of inequality (4.2). Circles represent sets in £(C'). Numbers
are the coefficient of the edge in the left-hand side of inequality (4.2).

To see this, observe that on the left-hand side, the negative term —|éy.(C')| for an internal
vertex ve is cancelled by the positive term in the inequality on the parent of vc, leaving
only the positive terms corresponding to the leaves. Similarly, on the right-hand side, the
contribution of -2 for each internal vertex vc is cancelled by a contribution of 2 by the
parent of ve, leaving a positive contribution of 2 for each leaf and a contribution of -2 by
the vertex vy . Inequality (4.3) implies the total-degree inequality since éy.(C') = ép/(C') for
any active set C' € C; that is, no edge of F’ in the coboundary of an active C' could have
been added before the current iteration.

Now we must prove inequality (4.2) on each internal node v¢ of the tree. Let k = |£(C)|.
Let I = FoNY,let @ = 3 g0y [61(5)], and let J be the subset of edges in Y’ with one
endpoint in V' — €' and one endpoint in €' — Ugeg(cy 9. Then the inequality on the internal
node v¢ is implied by

& |J| <2k 2.

The idea behind proving this inequality is that we will always be able to show that ¢ <
2k — 1, and we will be able to show that ® < 2k — 2 when I contains a 2-edge or has more
than one “connected component” on the sets £(C'). Thus the bad case is exactly when there
is a special edge e, no other edges in I have been removed, and J = (), which is precisely

when EFFICIENT-EDGE-DELETE will remove edge e.
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In any iteration in which an edge of I is selected, we must make an active set S5 € £(C')
inactive. Thus || < k. Each edge in I contributes at most 2 to ®, so that we have ® < 2k. If
an edge in [ is a 2-edge, then it must make 2 active sets in £(C') inactive while contributing
at most 2 to @, proving that ® < 2k — 2, which implies the inequality. Note that if C' =V
and the function h is symmetric, then the final edge in I must be a 2-edge, between the
final two active sets.

So assume [ consists of 1-edges. Let e be the first edge of I that was selected; i.e., other
edges in I were selected in iterations after e was selected. Notice that e can only contribute
1 to @, since it is a 1-edge. Thus ¢ < 2k — 1. Since e is the first edge of I selected, it must
be the case that A(e) = £(C(e)). If e is not special, then [ contains an edge ¢’ with an
endpoint not in any S € £(C'). The edge ¢’ contributes 1 to ®, giving ¢ < 2k — 2.

Now suppose e is special. If some edge of I is deleted in the final edge set F”’, then
& < 2k — 2, since the edge must have contributed 1 to ®. If e is special, was not deleted,
and C' # V, then by the properties of EFFICIENT-EDGE-DELETE it must be the case that
J # 0; hence the inequality must hold. B

If h is not symmetric, then for C' = V we can only prove that & < 2k — 1. Summing

over all internal nodes in the tree 7 leads to the inequality > ... |6p (C)| < 2|C| — 1.

4.2 Performance Guarantee for APPROX-WEAKLY-SUPERMODULAR

Given the proofs of the performance guarantee for APPROX-UNCROSSABLE, we can now
turn to providing a proof for the APPROX-WEAKLY-SUPERMODULAR algorithm. We first
show that the dual solution y constructed in phase p by APPROX-UNCROSSABLE can be
mapped to a feasible solution to the dual of the linear programming relaxation of (/P).

This dual is:

Max > f(S)ys — D z

scv cEE
subject to:
(D) Yo ys<cotz e€E, (4.1)
S:e€6(S5)

ySZO SC‘/,
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N
®
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o

ec F.

Given the dual variables y constructed by the algorithm in phase p, define z. =} 5..c505) Us

for all e € F,_;, and 2z, = 0 otherwise. Notice that by this definition,

Zze: Z Z yS—Z|6F,1 )ys-

ecE e€Fp_1 S:e€b(S5)
Lemma 4.2.1 The vector (y, 2) is a feasible solution for (D).

Proof: By the construction of y by APPROX-UNCROSSABLE, for e € £, = £ — F,_4,
know that > s.e55) ¥s < c.. Thus the constraints (4.1) hold for e ¢ F, ;. Fore € F,_,,

the definition of z, ensures that the constraint (4.1) holds. B
We now provide a proof of Theorem 4.0.3.

Proof: From Lemma 4.2.1, we know that in phase p

Zy > S I(S)ys - Y
= E(f(S)—|6F,,_1(S)|)yS

= (fmax_p‘l' 1)2?]57
S

where we have used the fact that in phase p the dual variable ys > 0 only if the deficiency
of 5 (f(S5)—6p,_,(5)]) is fmax — p+ 1. Using the proof of the performance guarantee for

APPROX-UNCROSSABLE and summing over all phases, we obtain that

Smax

E Ce S QZ fmax _p_l_ 1 ZB = 2,]_((fmax) Z;)v

e€Ffmax

proving the desired result. B

The performance guarantee of APPROX-WEAKLY-SUPERMODULAR is actually somewhat
tighter than is given in the theorem. If the weakly supermodular function f is symmetric,
then the uncrossable functions A, defined in each phase will also be symmetric, and the

performance guarantee improves to Ef““’"(Q — —) If fis not symmetric, then the

fmax p+1°
1

performance guarantee is Ef“"(Q — —)W
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Theorem 4.0.3 also applies to the augmentation version of these problems: Given an
initial set of edges Fjy, find a minimum-cost set of edges to add to Fy such that the resulting
graph satisfies the weakly supermodular function f. We merely apply APPROX-WEAKLY-
SUPERMODULAR to the function f'(S) = f(5) — |6p,(5)|, which is weakly supermodular
by Lemma 2.0.5. This results in a performance guarantee of 2H(f...). We will show in

Chapter 5 that we can implement the strong oracle efficiently for such functions f’ when f

is proper.

4.3 A Tight Example

The performance guarantee of O(log fiayx) is essentially tight. To show this, we construct
a family of instances for which the cost of the solution returned by APPROX-WEAKLY-
SUPERMODULAR differs from the optimal cost by a factor exceeding £ 10g,( fimax). The edge-
covering problem in the example will be a minimum-cost flow problem, i.e., the problem
of finding k edge-disjoint paths between two nodes s and ¢ of minimum cost. The problem

can be modelled by the integer program (/P) with the weakly supermodular function

E ifseS,t¢58
f08) =

0 otherwise.

We now show that f is weakly supermodular: pick any two sets A and B. Obviously weak
supermodularity holds if f(A) = f(B) = 0. If f(A) =k and f(B) = 0, then either A — B
or AN B must contain s but not ¢, and weak supermodularity holds. If f(A) = f(B) =k,
then f(AU B) = f(AN B) =k, and the property holds. We could also model this problem

with the proper function

Eoif]Sn{s,t} =1

0 otherwise,

but it will be easier for us to work with the previous function.

We claim that on this function f, the algorithm APPROX-WEAKLY-SUPERMODULAR
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can be simulated by k shortest path computations. First notice that maximum deficiency
in phase pis f(5)—[0p,_,(9)| = k—(p—1); this implies that |65,_,(5)| > p—1 for all sets §
with s € 5t ¢ 5. Therefore there are at least p — 1 edge-disjoint paths between s and ¢. In
phase p, we consider the function A,(5) =1iff s € 5,1 ¢ 5, and |6p,_,(5)| = p — 1. Notice
that £,, = 1, so by the proof of performance guarantee for APPROX-UNCROSSABLE, the
algorithm will find an optimal solution for this uncrossable edge-covering problem. Thus
the overall performance guarantee of APPROX-WEAKLY-SUPERMODULAR for this problem
will be H(k).

We now show that the optimal solution for each uncrossable edge-covering problem can
be found by solving a shortest s-{ path problem. Choose any p — 1 edge-disjoint paths from
s totin F,_y, and direct all the edges in the paths from ¢ to s. Bidirect all other edges of
E. Assign all directed edges in F,_; a cost of 0, and all other edges their regular cost. A
path from s to ¢ corresponds to a solution of the uncrossable edge-covering problem of the
same cost: notice that for any set .5 such that &,(5) = 1, all zero-cost directed edges from
F,_, must be directed from vertices outside S to vertices in 5. Thus each set S such that
h,(S) =11is covered by an edge from £ — F,_;. Likewise, any solution to the uncrossable
edge-covering problem can be made to correspond to an s-¢ path of no greater cost: any set
S,se€8,t¢ 5, for which h,(5) = 0 must have some zero-cost edge of F,_; directed out of 5.
This fact implies that ¢ is reachable from s by directed edges corresponding to the solution
of the uncrossable edge-covering problem plus zero-cost edges. Hence the shortest s-¢ path
corresponds to the minimum-cost solution of the uncrossable edge-covering problem.

We can now give our tight example for APPROX-WEAKLY-SUPERMODULAR on this
function f. The tight example is built recursively (see Figure 4-4). Gy is a graph on two
nodes s and ¢ with a single edge of cost ¢ between them. To construct graph G;, take two
copies of G;_;. Identify the nodes s and ¢ in the two graphs. In the first copy, subdivide
the unique edge of cost ¢ entering ¢, and assign cost 0 to the part entering ¢, and ¢ to the
other part. In the second copy, subdivide the unique edge of cost ¢ leaving s, and assign
cost 0 to the part leaving s and cost ¢ to the remaining part. Then connect the two new
nodes by an edge of cost 2°='(¢ — €). The problem on graph G; is to find 2° — 1 disjoint

paths between s and ¢; we set £ = 2° — 1 and use the function f as above.
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Figure 4-4: The tight example for APPROX-WEAKLY-SUPERMODULAR. Bold edges in
the first instance of G5 are the edges selected by the algorithm. Bold edges in the second
instance denote the optimal solution.
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Given the discussion above, the algorithm APPROX-WEAKLY-SUPERMODULAR will se-
lect 2~! node-disjoint paths of cost (¢ —¢€), 2°=? node-disjoint paths of cost 2(¢ —¢€), etc., for
a total cost of i2'"*(c — ¢€). Notice that there exists a solution of cost (2' — 1)e: take 2/ — 1
copies of the graph Gy, where each has been subdivided into a path of length ¢. Hence,
the cost of the solution returned by APPROX-WEAKLY-SUPERMODULAR differs from the
optimal cost by a factor of %% > Llog,(fmax)-

The example suggests that any algorithm that greedily augments its solutions in phases
will also have a worst-case performance guarantee of O(log fiax). A better algorithm for

weakly supermodular edge-covering problems will probably require a more global approach

than the multi-phase augmentation that we use here.



CHAPTER b

Implementing the Algorithms

In this chapter we turn from the high-level outlines of the algorithms to the details of how
these algorithms can be implemented efliciently. In particular, Chapter 3 did not discuss

how to do the following:
1. Implement the strong oracle MAX-VIOLATED for proper functions f.

2. Select the edge e minimizing € in steps 10 and 8 of APPROX-UNCROSSABLE and

APPROX-PROPER-0-1 respectively.

3. Implement the edge deletion stages EFFICIENT-EDGE-DELETE and PROPER-0-1-EDGE-

DELETE.

Once we have completed the discussion of these steps, we will be able to show the following

theorems.

Theorem 5.0.1 The algorithm ApPROX-PROPER, using EFFICIENT-EDGE-DELETE, can be
implemented in time O(n*m/ finax + 7°W; fimax), Where m’ = min(n finax, m) and w; is the time

taken by the weak oracle to compute the proper function f.

Theorem 5.0.2 The algorithm APPROX-PROPER-0-1 can be implemented in time O(n(n +
vmloglogn+wy)), where wy, is the time taken by a weak oracle to compute the proper function
h.

83
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In addition, we will be able to show that the strong oracle can be made to run faster for a

particular problem called the survivable network design problem.

Theorem 5.0.3 The algorithm APPROX-PROPER, using EFFICIENT-EDGE-DELETE, can be

implemented for the survivable network design problem in O(n fiax (7 fiax ++/m loglog n)) time.

The chapter is structured as follows. In Section 5.1, we will show how to implement the
strong oracle MAX-VIOLATED for proper functions f. We will then give a faster implementa-
tion for the sequence of oracle calls generated by APPROX-PROPER with EFFICIENT-EDGE-
DELETE and a still faster implementation for APPROX-PROPER for the survivable network
design problem. Section 5.2 will show how to select the edge minimizing €. The algorithms
for EFFICIENT-EDGE-DELETE and PROPER-0-1-EDGE-DELETE are given in Sections 5.3

and 5.4, and the chapter concludes in Section 5.5 with a derivation of the theorems above.

5.1 Implementing the Strong Oracle

5.1.1 A General Implementation

We turn now to the problem of implementing the strong oracle MAX-VIOLATED for proper
functions f. Recall that for a function f and edge set F', MAX-VIOLATED(f, ') returns
a collection of the minimal (with respect to inclusion) sets S such that f(.5) — [6p(9)| =
maxy(f(T)—|6p(T)]) > 0, if any such sets exists. We have called these sets the maximally
violated sets. Notice that if we can implement the strong oracle for a function f, then
we can also implement it for a function f'(S5) = f(5) — |6y (5)| for any edge set Y that
is disjoint from F: a call to MAX-VIOLATED( f', F') will be equivalent to a call to MaX-
VIOLATED(f, F UY'). Thus we will be able to implement the strong oracle for the weakly
supermodular function f’ if f is proper.

We will also be able to implement a variation of the strong oracle MAX-VIOLATED( f, z)
for z € Qlfl. This variation is a version of a problem called the separation problem, which
merely requires finding any violated set 7" such that f(7)—z(6(7")) > 0. The ability to solve
the separation problem in polynomial time is known to imply that the ellipsoid algorithm for

linear programming can be used to optimize over the LP relaxation of (/P) in polynomial
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time [57]. Solving the separation problem also allows us to implement the m-approximation
algorithm of Hall and Hochbaum [60] for the integer program (/P), as was noted in the

Introduction.

To implement MAX-VIOLATED( f,z), we use the Gomory-Hu cut tree [54] on a graph
with edge capacities .. The Gomory-Hu cut tree is a very useful structure from network
flow theory that gives information about minimum s-¢ cuts in a capacitated graph. Given
the graph G = (V, F) with edge capacities z., the Gomory-Hu procedure returns a tree
H with values w, on its edges such that the value of the minimum cut between any two
vertices s and { is given by the smallest value w on the unique path in H between s and ¢.
Let 5, and V — 5, be the partition of the vertex set induced when e is removed. The tree
H also has the property that w, = z(6(5.)).

The procedure for constructing the tree works as follows. It starts from one supervertex
containing all vertices of the graph. At any stage of the construction, there is a partial tree
whose (super)vertices form a partition of the vertex set. The procedure selects two vertices
u and v within a supervertex A, shrinks the vertices in each connected component resulting
from the removal of A from the cut tree, and computes the maximum flow and minimum
cut between w and v in the resulting shrunk graph. The supervertex A is split into two
supervertices linked by an edge, in such a way that the removal of this edge induces the
computed mincut. The new edge of the cut tree gets labeled with the value of the maximum
flow between u and v. The procedure terminates when no supervertices remain. The overall
procedure requires n — 1 maximum flow computations.

We now show that the Gomory-Hu tree has structural properties that will allow us to
implement MaAX-VIOLATED(f,z). To simplify the presentation, we assume that for any
edge e, some specified vertex, say vertex 1, does not belong to the set S.. Also, given a
subset S of vertices, let 7(9) denote the edges of the cut-tree H with exactly one endpoint
in §.

Lemma 5.1.1 Let S C V. Then

z(6(5)) > nax we.
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Proof: We show that for any e = (4,7) € 7(5) we have z(6(5)) > w. = x(6(5.)). This
is immediate since, by definition of the cut tree, S, is a minimum cut (or simply mincut)
separating ¢ and j and therefore has value no greater than the value of any other cut

separating ¢ and j. But 6(9) is precisely such a cut. W

Lemma 5.1.2 Let f be a proper function. Then, for any S C V, we have

f(S) < max f(95.).

e€v(S)

Proof: Let (Vi,...,V;) be the vertex sets of the components of the cut tree after removing

the vertices in 5. By definition, since V — 5 = Vi U...UV, and the V; are disjoint, we have

f(9) = f(V=25)<max(f(V1), f(Va),..., f(V})). (5.1)

Consider any V;. Assume that 1 € V; (otherwise consider V — V). Notice that

V-V,= UeEV(VJSe,

and the sets 5, appearing in the union are disjoint. Hence,

f(V=Vy) = f(Vi) < max f(S.).

T e (Vi)

But, by definition of V;, we must have 7(V;) C 7(.9). Therefore,

J(V) < max [(S.). (5.2)

T een(S)

Combining (5.1) and (5.2), we obtain the desired result. B

These lemmas have a number of interesting consequences, which are easy to derive.
Theorem 5.1.3 maxg {f(5) — z(6(5))} = max.eg {f(5.) — 2(6(5.))}.

Proof: For any given set S, Lemmas 5.1.1 and 5.1.2 imply that

F(S) —2(6(9)) < max f(S5.) — max z(6(5.)) < max (f(S5.)— z(6(9.))),

c€(5) c€(5) = een(5)
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so that

max {(5) ~ #(6(5))} < max {/(5.) — #(6(5.))} .

Obviously the inequality must in fact be an equality. B

The theorem allows us to solve the problem of finding a set S such that f(.5)—z(6(9)) =
maxy {f(T) — z(6(T))} (and hence allows us to solve the separation problem) by solving
n — 1 maximum flow problems and restricting attention to the n — 1 cuts defined by the
cut tree. In addition, this theorem generalizes a result of Padberg and Rao [96] for T-cuts
(cuts S for which [SNT| is odd) or odd cuts (for which |S|is odd). Their result states that
the minimum 7-cut or odd cut is among the cuts of the Gomory-Hu tree. To derive this

result from Theorem 5.1.3, we set

M i |SNT|odd
J(8) =

0  otherwise,

where M > z(F). Using similar logic, our theorem shows that the minimum cut for any
proper function is among the cuts of the Gomory-Hu tree. Ravi and Klein [104] indepen-
dently showed that Padberg and Rao’s result could be generalized to proper functions f
with fr.. = 1.

The cut tree does not immediately give the minimal maximally violated sets. Assume
that € NIl and let A,,,, be the maximum deficiency; that is, A ., = maxy {f(T) — 2(6(T))}.
Let ¢(5) = max{f(9) — Apax,0}. By Observation 2.0.10, ¢g is a proper function. For all
sets 5, 2(6(.9)) > ¢(5), and a set S is maximally violated iff z(6(5)) = ¢g(.5). Let H denote
the edges in the cut tree. The following lemma will help us identify the minimal maximally

violated sets.

Lemma 5.1.4 Any maximally violated set 5 is a minimum cut between s and ¢ for some edge

e = (s,1) € H satisfying w, = ¢g(S5.) = z(6(9)) = g(9).

Proof: Let S be any maximally violated set, so that z(6(5)) = ¢(5). From Lemma 5.1.2,
there must exist an edge e = (s,¢) in v(.5) with g(5.) > ¢(5). Lemma 5.1.1 implies that
w, < z(6(5)). But since w, = z(6(95.)) and z(6(S.)) > ¢(S.) it must be the case that
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w, = z(6(5)) = g(5) = ¢g(5.). Since S, is a minimum cut between s and ¢ of value w, it
follows that S is also a minimum cut between s and ¢. B

For each edge e = (s,1) € H with w. = g(5.), we shall keep track of all (s,t) mincuts
(that is, minimum cuts between s and ¢). To do this, we use the compact representation of
all (s,¢) mincuts due to Picard and Queyranne [100]. The combination of the Gomory-Hu
tree and the Picard-Queyranne representation has also previously been used by Gusfield
and Naor [59], though for different reasons.

In network flow theory, a residual graph of an s-t flow £ in a graph with capacities z,
consists of the directed edges for which z, — £, is non-zero. If £ is a maximum flow, then
there is no directed path in the residual graph from s to ¢, since then there would be an
augmenting path. The Picard-Queyranne representation is a directed graph G, formed from
the residual graph of a maximum flow from s to ¢ for the edge e = (s,t) € H. The connected
components of the residual graph not containing s and ¢ are disregarded. The graph G,
is constructed by contracting each strongly connected component, as well as the set of all
vertices reachable from s, and the set of all vertices that can reach t. Because all strongly
connected components are contracted and there is no path from s to ¢, G, is acyclic. Each
vertex of GG, is a supervertex representing a set of vertices of the original graph; furthermore,
the supervertices of G, form a partition on V. For notational simplicity, let S and T denote
the supervertices of GG, containing s and ¢ respectively. Picard and Queyranne observe that
there is a 1-1 correspondence between the (s,?) mincuts and the (7', .5) dicuts of G., where
a (71,95) dicut is a cut with all arcs directed from the side of the cut containing 7" to the
side containing 5. Given a maximum flow, the digraph G, can be computed in O(m) time
since the residual graph contains O(m) edges.

Consider a topological ordering of G,. Because we contracted into the supervertex 71" all
vertices in the residual graph that can reach ¢, the first supervertex in the ordering must
be T'. Also, there must be a directed path in GG, from every supervertex to 5, so .S must be
the last supervertex in the ordering. By definition, all the supervertices smaller (or bigger)
than some supervertex A in the ordering must induce a (7, 5) dicut and hence an (s,1)
mincut but, clearly, not all (s,¢) mincuts arise in this fashion. Nevertheless, we will show

that we can limit our attention to particular (s,?) mincuts arising in this way.
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Lemma 5.1.5 Let e = (s,{) be an edge in the Gomory-Hu tree H such that w. = g(5.).
There exists a maximally violated set separating s from ¢ if and only if there exists a supervertex

A of G, with g(A) > ¢(S.).

Proof: Only if part. By Lemma 5.1.4 and the properties of GG, any maximally violated set
C' separating must be the union of supervertices A; and must have g(C) = g(5.). By the
maximality property of proper functions, at least one of these supervertices A; must satisfy
g(A) > g(5.).

If part. Choose the first (last) supervertex A in the ordering such that g(A) > ¢(5.).
Consider the union C' of all the predecessors (successors) of A in .. This set C induces an
(s,¢) mincut. Moreover, C'— A consists of the union of supervertices A; with ¢g(A4;) < ¢g(S5.),
so that by maximality, ¢(C — A) < g(S.). By Corollary 2.0.4, the maximum of g(C — A) ,
g(A), and ¢(C) cannot be uniquely attained, so that g(C') > ¢g(S.). The Gomory-Hu tree
implies that z(6(C)) = w. = ¢(5.), so that z(6(C)) < ¢g(C). But g(C) < z(6(C)), so that
it must follow that z(6(C')) = g(C') and C' is a maximally violated set.

Theorem 5.1.6 Let e be an edge in the Gomory-Hu tree H such that w, = g(5.). Let A
be the first vertex in the topological ordering of G, such that g(A) > ¢(5.), and let C' be A
together with its predecessors in .. If there exists a minimal maximally violated set separating

t from s, it must be C'.

Proof: Suppose there is another minimal maximally violated set C” containing ¢ but not s.
By Corollary 2.0.8, a minimal maximally violated set cannot cross a maximally violated set,
since this would contradict minimality. Hence, C" C C'. Since C" is a maximally violated set,
it must be the union of supervertices of G.. Moreover, it must contain A since g(C") > ¢(S.)
and A is the only supervertex within C' which has a g(A) > ¢(5.). Furthermore, since C’
corresponds to an (7, 5) dicut of G, it contains all predecessors of A in G,.. Thus C' = C.
|

We can find such another such set separating s from ¢ in a similar manner, by going
backwards in the topological ordering. Each set can be found in O(m + nw,) time: O(m)
time to construct GG, and perform a topological sort, and O(nw,) time to find the supervertex

A with g(A) > ¢(S5.). Note that the time w, for the weak oracle to compute g must be
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the same as wy. By doing this for all edges e € H with w, = ¢(5.), one thus constructs
in O(nm + n’w;) time a family of O(n) maximally violated sets guaranteed to contain all
minimal maximally violated sets; this follows from Lemma 5.1.4. The minimal maximally
violated sets can be obtained from this family in O(n?) time by finding the minimal sets
in the family. This can be done by keeping track, for each vertex, of the set (if unique) of
smallest cardinality containing it.

Let M F(n,m) denote the time taken to compute a maximum flow on n vertices and m
edges. The Gomory-Hu cut tree can be computed in (n—1)-M F(n, m) time. The preceding

discussion yields the following theorem.

Theorem 5.1.7 The strong oracle MAX-VIOLATED( f, z) can be implemented in O(nM F(n, m)+

nm + n*w;) time for any proper function f and z € NIEI,

The currently best known algorithm for maximum flow is due to Phillips and Westbrook
[99], and runs in O(mnlog,,,, n + nlog®*“n) time. An algorithm due to King, Tarjan, and

Rao [72] runs in O(mn + n?*¢) time, and so is slightly faster on sparse graphs.

5.1.2 An Implementation for APPROX-PROPER

A somewhat faster implementation of the strong oracle can be given for the sequence of
calls generated by the algorithm APPROX-PROPER.

As we observed in Section 3.3, all calls to the strong oracle in the algorithm APPROX-
PropER for a proper function f are equivalent to calls to MAX-VIOLATED(f, F'U F,_1),
for an edge set /' in APPROX-UNCROSSABLE and an edge set F),_; from phase p — 1 of
AprprOX-PROPER. Since |F U F,_;| < min(n fyax, m) = m', we only need to worry about
these m’ edges in implementing the strong oracle. Moreover, in the construction of the
Gomory-Hu cut tree, we need not solve the maximum flow problems to optimality. We can
stop as soon as the flow has value f,.., as is justified below. Such a flow can be obtained in
O(m frnax) time by locating up to fi., augmenting paths. For small values of f,,.x, we can
construct the Gomory-Hu cut tree without using a maximum flow subroutine. For example,
the case f.x = 1 reduces to finding connected components while the case f,.. = 2 reduces

to computing the 2-edge-connected components of a graph (which can be done in linear
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time [3, pgs. 179-187]).

To avoid computing maximum flows to optimality, we modify the procedure for con-
structing the cut tree, since whenever the maximum flow has value greater or equal to fi,.,
we do not need to use information from the associated mincut. To see this, note that we only
consider edges of the cut tree for which w, = g,(5.), where ¢,(.5) = max{f(.5) — Amax, 0};
recall that in phase p, the maximum deficiency A .x = fmax—p+1 > 0. Our modified proce-
dure maintains a forest on each supervertex of the cut tree. In the classical algorithm, these
forests are empty but, in our case, the edges of these forests correspond to maximum flow
problems whose value was at least f... If all forests are trees, we replace every supervertex
by its associated tree and we output the resulting tree as the modified Gomory-Hu cut tree.
Otherwise, we select two vertices, say u and v, of two different components of a forest of the
same supervertex, say A. We compute the maximum flow (up to the value fi.x) between
w and v in the shrunk graph, as in the classical procedure. If the maximum flow value is
at least fiax, we add the edge (u,v) to the forest of the supervertex A; otherwise, we split
A (and its forest) as in the classical algorithm. The correctness of this procedure follows
from the correctness of the Gomory-Hu procedure: the reason for maintaining forests on
the supervertices is so that no “underestimated” edge of value f, .. appears in the shrunk
graph.

We should also point out that Lemma 5.1.1 is still valid for this modified cut tree. Thus,
for the proper function f and the incidence vector of a graph with at most m’ edges, the
modified cut tree can be constructed in O(nm/ fy.x) time and the separation problem can
be solved in O(nm/ finax + nwy) time. Using the argument of the previous section, we can
then implement the strong oracle in O(nm’ fax + n2wf) time.

We can do still better, however, by noticing that the subsequent calls to the strong
oracle within a phase can be performed easily by updating the information in the Picard-
Queyranne representations G.. The first call to the strong oracle from APPROX-UNCROSSABLE
in phase p will be of the form MaX-VIOLATED(f, F,_;) (since F = (). In each iter-
ation of APPROX-UNCROSSABLE the algorithm adds an edge € to F and calls MAX-
VIOLATED(f, F,_; U F’). Notice that the minimal maximally violated sets corresponding

to F,_; U F must be maximally violated sets for F,_;. Thus we can update the O(n)
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Picard-Queyranne representations (G, by adding the (bidirected) edge € to the residual
graphs and recomputing their strongly connected components in O(m') time per residual
graph. Adding the edge € to the Picard-Queyranne representations eliminates all mincuts
containing € from consideration. Then, as in the discussion of the prior section, we create
a family of O(n) candidates for the minimal maximally violated sets and extract from this
family the minimal sets. In this case though, we can just make one call to the weak oracle
(instead of O(n)) per G, since, by adding an edge to a residual graph, only one new strongly
connected component can be created. Thus there is at most one new supervertex formed
in each graph GG.. Recomputing the minimal maximally violated sets for each edge added
therefore takes O(nm'+ nw;) time. Given that it takes O(nm/ fyax +n’w;) time to compute
the initial sets of the phase, that at most n additional calls to MAX-VIOLATED are made
during a phase, and that f,.. < n for any edge-covering problem, we obtain the following

running time.

Theorem 5.1.8 The calls to the strong oracle MAX-VIOLATED during a phase of APPROX-

PROPER can be implemented in O(n?m’ + nw;) time.

In Chapter 7, we will sometimes want to use the strong oracle as implemented here
on variations of proper edge-covering problems for which f,.. > n. Given the preceding

discussion, we can implement such an oracle in O(nm/ finax + n?m’ + nw;) time.

5.1.3 An Implementation for a Special Case

The calls to the strong oracle can be made still faster for a particular problem of interest.
The problem is called the survivable network design problem or the generalized Steiner
network problem; we will discuss it in more detail in Chapter 6. In this problem, a value r;; is
given for each pair of vertices ¢ and 7, and the object is to find the minimum-cost set of edges
such that there are at least r;; edge-disjoint paths between each 7 and j. The problem can
be modelled by the integer program (IP) with the proper function f(5) = maxX;es j¢s 7ij-
It is easy to see that the function is symmetric. For any two disjoint sets A and B, let
Teq = MaX;caup, jgauvn Ty If ¢ € A, then f(A) > 7.4, else f(B) > r.4. Thus the function

also obeys the maximality property.
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For the survivable network design problem, we don’t need to construct the modified
Gomory-Hu cut tree. Instead, we can use a maximum-cost spanning tree I’ of the graph
having cost r;; on edge (¢,7). Any set of edges satisfying the connectivity requirements of
the edges of 1’ satisfies all given requirements r;; (Gomory and Hu [54]). As in the general
case, maximally violated sets must correspond to mincuts associated with an edge e = (s, )
of T such that the cut value is g,(5.) = 75t — Amax = Tst — fmax +p— 1. However, in this case,
we have a 1-to-1 mapping: any such mincut must correspond to a maximally violated set.
As aresult, any minimal maximally violated set must be a minimal (s,?) mincut (separating
s from t) or a minimal (t,s) mincut (separating ¢ from s) for some edge e = (s,t) in the

tree T'.

We maintain these minimal mincuts for the sequence of calls to the strong oracle over
the entire algorithm. At the beginning of phase p we update a maximum s-¢ flow for each
edge (s,?) in the tree T. We start from the flows that were computed in phase p — 1 and
find augmenting paths for each edge e in T up to the value g,(S5.), if possible. By doing
this, in phase p we can detect any edge of 1" for which the cut value is g,(5.). Thus over
the course of the algorithm we must find at most f., augmenting paths for the flow for
each edge of T', leading to a total time bound of O(nm’ f.x) for maintaining these flows.

Suppose for an edge e = (s,t) in T, the cut value is g,(5.) = rst — fmax + P — 1 in phase
p. Initially, the minimal (s, ¢) mincut consists of all vertices reachable from s in the residual
graph of a maximum flow from s to t. The minimal (¢,s) mincut is similar. As before,
we can extract the minimal maximally violated sets from these mincuts in O(n?) time.
Whenever an iteration adds an edge e = (u,v) to the edge set F', each minimal mincut is
updated. For example for the minimal (s,?) mincut, if u is reachable from s then so is v, as
is any vertex reachable from v by residual edges. If { becomes reachable then we disregard
edge (s,?) in the tree T" for the rest of the phase. The total time in phase p to update the
minimal (s,?) mincut amounts to a search of the residual graph, and thus uses time O(m’).
Thus the total time in a phase for updating all edges (s,t) of 17" is O(nm’). To find the
new minimal maximally violated set (if any) resulting from the addition of edge (u,v), we
search through the O(n) candidate sets for the smallest maximally violated set containing

u. This set will be a new minimal maximally violated set if it contains no other currently
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minimal maximally violated sets. The search for the set takes O(n) time. Therefore, the
time for the calls to the strong oracle in a phase p is O(nm’) for the survivable network
design problem, leading to an total time bound of O(nm/ f,.x) over the course of the whole

algorithm.

Theorem 5.1.9 The calls to the strong oracle MAX-VIOLATED for the survivable network

design problem can be implemented in O(nm/ f,,.x) time.

5.2 Selecting Edges

5.2.1 A Simple O(n?logn) Implementation

The goal of this section is to show how to find the edge e = (u,v) that minimizes e(e) =
% quickly in each iteration of APPROX-UNCROSSABLE or APPROX-PROPER-0-1.
We will sometimes call €(e) the reduced cost of edge e. We begin by giving a simple method

that takes O(n?logn + wy) time for all the edge selections, and then build on these ideas
to obtain an implementation that takes O(n2 + ny/mloglogn + nwy) time.

In order to implement this step, we will maintain a union-find structure on the set of
vertices. We will use the union-find data structure due to Tarjan [120]. The sets of the
union-find structure will be called a-sets. The a-sets in any iteration will correspond to the
currently active sets, the sets active in previous iterations not contained in any currently
active set, and vertices that have not yet been in any active set. Whenever an edge spanning
two a-sets is selected but no new active set contains them, we merge together the two a-
sets. Because the collection of active sets over all iterations form a laminar family (Lemma
3.2.2), the a-sets in an iteration can always be derived by merging together a-sets from the
previous iteration. A-sets have the property that all vertices v in the same a-set have a
value a(v) which will be identical throughout the rest of the algorithm. Along with each
a-set we will keep a bit that indicates whether the a-set is currently active or not. The time
to update the a-sets through the course of the algorithm is O(na(n, n) + nwy,) for merging

the various components and updating the bits, where a is the inverse Ackermann function.

In ApPROX-PROPER-0-1, the a-sets take on a particularly simple form. By Theorem
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3.1.4, the active sets are the connected components C' for which ~2(C') = 1. Since we merge
a-sets together whenever a selected edge spans them, the a-sets that do not correspond to
active sets will correspond to components C' for which A(C') = 0. Thus the a-sets in a given
iteration of APPROX-PROPER-0-1 are simply the connected components of F.

As a naive approach to finding the minimum reduced-cost edge, we can simply use
O(ma(m,n)) time to compute the reduced cost for each edge e = (u,v) and to check
whether or not the edge spans two different a-sets. By being somewhat more careful, we
can reduce the time taken to find the minimum edge in dense graphs to O(nlogn). We need
three ideas for this reduced time bound. The first idea is to introduce a notion of time into
the algorithm. We let the time 7" be 0 at the beginning of the algorithm, and increment
it by the value of € each time through the main loop. The second idea is that instead of
computing the reduced cost for an edge every time through the loop, we can maintain a
priority queue of edges, where the key of an edge is the time T at which its reduced cost
is expected to be zero. We call this quantity the addition time of the edge. If we know
whether the endpoints of an edge are in active sets or not, and assume that the activity (or
inactivity) will continue indefinitely, it is easy to compute the addition time: it is simply
the current time plus the current reduced cost of the edge. Of course the activity of a set
can change, but this occurs only when it is merged with other sets, and only edges in the
coboundary of the sets are affected. In this case, we can recompute the addition time for
each affected edge, delete the element with the old addition time, and reinsert it with the
new addition time. The last idea we need for the lower time bound is that we only need
to maintain a single edge between any two a-sets. If there are parallel edges between any
two a-sets, one of the edges will always have an addition time no greater than that of the
others; hence the others may be removed from consideration altogether.

Combining these ideas, we get the following algorithm for edge selection: first, we
calculate the initial key value (addition time) for each edge and insert each edge into the
queue (in time O(mlogn)). Each time though the loop, we find the minimum reduced-cost
edge e = (u,v) by extracting the minimum element from the queue. Selecting edge e will
cause some number of a-sets to be merged. Whenever we merge two a-sets A and B, we

delete all edges incident to A and B from the queue. For each a-set D different from A and
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B we update the keys of the two edges from A to D and B to D, select the one edge that has
the minimum key value, then reinsert it into the queue. Each merge requires O(n) queue
insertions and deletions, and since there can be at most n merges, the total time spent in
maintaining the queue will be O(n?logn). In practice, we would be somewhat more careful
when several a-sets are merged together at once, to avoid inserting and deleting the same
edges several times. However, the asymptotic running time remains the same. This time

dominates the time spent in maintaining the a-sets.

5.2.2 A Better Time Bound By Using Packets

A time bound of O(n(n+ v/mloglog n+wy)) for selecting edges can be achieved by proving
a lemma that allows irrelevant edges to be ignored, and by using the data structure idea
of packets due to Gabow, Galil, and Spencer [45]. Before explaining this improvement, we
must define some additional notation. Let A(u) denote the a-set containing the vertex u.
At any time, let @ denote the number of a-sets. Assume that in choosing the next edge to
add, the edge addition step breaks ties for smallest addition time according to some fixed
numbering of the edges. Thus any set of edges is totally ordered by their addition times;
in particular, the kth smallest edge is unique. Through the remainder of this subsection,
we compare edges using addition time, not cost; e.g., “kth smallest edge” refers to addition

time.

Lemma 5.2.1 Fix an iteration in the main loop of APPROX-UNCROSSABLE (or APPROX-
PRrOPER-0-1). Consider an edge (u,v) € §( A(u)) that is not among the 2k smallest edges of
0(A(u)). Then (u,v) is not added to F' until A(u) has changed or A(v) has changed or @ has

decreased by k.

Proof: Suppose (u,v)is added to F in an iteration when neither A(w)nor A(v) has changed.
Consider an edge (u',v"), one of the 2k smallest edges of 6(A(u)). When (u,v) is added
to F', (u’,v") has not been added (since A(u) has not changed). Thus the reduced cost of
(u/,v") has increased, implying that A(v’) has changed. Thus the 2k distinct sets A(v') have
changed. These 2k changes must be the result of merging various a-sets which include the

2k sets A(v'). Thus a must have decreased by at least £. W
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The lemma above will allow us to ignore particular sets of edges during some portions
of the main loop of APPROX-UNCROSSABLE or APPROX-PROPER-0-1. In order to take
advantage of the lemma, we partition the main loop into subphases. Let r be a parameter
to be chosen later. Each time @ has decreased by r or more since the start of the last
subphase, a new subphase will begin. We will designate certain edges to be awake in such
a way that Lemma 5.2.1 will imply that an edge (u,v) that is not awake in this subphase
need not be considered unless A(u) or A(v) changes. At the beginning of a subphase, we
choose the 2r smallest edges in the coboundary of every a-set. Any edge chosen by the
a-sets of both its endpoints will be initially designated an awake edge.

In order to keep track of the awake edges, we use a number of priority queues. The key
for each entry in a queue will be the edge’s current addition time. The awake edges incident
to each a-set are partitioned into priority queues called packets of no more than log n edges
each. One packet for each a-set will be called the growing packetl; any edges added to the
a-set will be inserted in this packet. All other packets of the a-set are ordinary packets. In
addition to the packets, we also maintain a priority queue D. Each awake edge is incident
to the two a-sets of its endpoints. Thus an awake edge is in two packets corresponding to
these two a-sets. Any awake edge that is the minimum of both its packets is added to D;
such an edge is called a double minimum. Notice that the edge with the smallest addition
time in any iteration will be the minimum edge in D.

Given these data structures, the edge addition step will work as follows. To start a
subphase, each a-set chooses the 2r smallest edges in its coboundary. The awake edges
are organized into packets. Any edge that is a double minimum is placed in D. To select
the next edge e for F, choose the smallest edge in D. Let A be the new a-set created by
adding e to F. Delete all edges incident to vertices of A from their packets and from D.
If this causes a new packet minimum to be a double minimum, add it to D. Note that
now all packets corresponding to A are empty, so initialize a new growing packet. We now
need to choose the awake edges incident to A. To do this, examine all edges incident to A,
awake or not. Discard any parallel edges between A and other a-sets, always keeping the
smallest. The 2r smallest undiscarded edges incident to A will be designated awake edges.

Add each such edge (u,v) to the two growing packets of A(u) and A(v) (one of these is A).
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Whenever a growing packet gets logn edges, make it an ordinary packet and start a new
growing packet; also possibly add an entry to D for a new double minimum. The algorithm
is correct because it maintains the defining properties of the packets and D.

Before we estimate the running time, we observe that in any subphase, for any a-set A,
at most 3r edges of ¢(A) become awake. To see this, notice at most 2r such edges are awake
when any a-set A is initialized. After initialization, each iteration can make at most one
more edge of §(A) awake. Thus at most r more edges are made awake before the subphase
ends. As a result, any a-set A has at most 3r/logn packets at any point in a subphase.

First we bound the time for deletions and insertions from the priority queues. By the
observation above, an iteration that decreases the number a of a-sets by j deletes at most
O(jr) edges from packets and at most O(jr/logn) edges from D. Thus all addition steps
delete a total of O(nr) edges from packets and O(nr/logn) edges from D, for a total time
of O(nrloglogn + nr) for all deletions since packets have at most log n edges and D has at
most n edges. To bound the time on the insertions, note that there can be at most O(nr)
edges in packets and at most O(nr/logn) edges in D. Since these bounds are no larger
than the total number of edge deletions, the total time for edge insertions must also be
O(nrloglogn).

Putting everything together, note that there are at most n/r subphases. Using linear-
time selection, we can construct packets and D in O(m) time at the start of each subphase.
We need O(n) time whenever an edge is selected for discarding parallel edges and examining

the edges incident to A. Thus the total time is O(n* + nm/r + nrloglogn). Choosing

r = +/m/loglogn gives total time O(n(n + v/mloglogn)) for the edge addition step.

5.3 Implementing EFFICIENT-EDGE-DELETE

This section shows how to implement EFFICIENT-EDGE-DELETE in O(n) time. The imple-
mentation is based on a tree 7’ and auxiliary arborescences 7 which we now define.

The tree 7' is a modification of the tree 7 used to represent the active sets over the
course of the algorithm, as defined in Section 3.2.2. Recall that 7 is constructed by creating

a vertex ve for each C' € UC, where UC is the collection of all active sets over all iterations,
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plus the set V. The vertex vp is a parent of ve in 7 if D is the smallest set in UC that
properly contains C'. To make 7", we create one additional child vertex for each internal
node v of the tree to represent the vertices in C' that are not in the other children of vc.

For each vertex ve in 7', we construct an arborescence 7o. Recall that a branching
is a directed forest in which every node has in-degree at most 1, whereas an arborescence
is a connected branching. Using the edges of F, we form a branching B¢ on the nodes
corresponding to the children of C'in 7’. An edge (va,vp) is created for each edge e € Fi
when edge e is in the coboundary of the sets A and B. Each 2-edge is directed arbitrarily,
while a 1-edge is directed towards the active set that defines it. The edges of F form a
branching since two edges of F cannot be directed towards the same active set. It can
be converted into an arborescence 7c by adding a node connected to all the roots of the
branching. Both the tree 7’ and the arborescences 7¢ can be easily constructed during the
edge addition stage of APPROX-UNCROSSABLE and the running time for their constructions
can be charged to this stage.

Before we explain the clean-up procedure, we note that a 1-edge e is special if and only
if all the edges of Fi- added to 7¢ (C' = C(e)) after e form a “subarborescence” with the

head of e as its root.

We find all special edges in O(n) time as follows. We consider each active set C' € UC
in turn. Suppose F¢ consists of ey,...,e;, where e¢; was added before e; for ¢ < j. Let ;
denote the least common ancestor of the heads of e;,...,e; in 7. By the reasoning above,
a l-edge e; is special if and only if /; is the head of edge e; in 7¢. The [;’s can be found in
linear time by processing the edges in reverse order, by marking the nodes along the path
to the ancestor and by stopping at the first previously marked node.

We would like to implement EFFICIENT-EDGE-DELETE by performing a top-down traver-
sal of 7'. At each vertex vc of 7', we would process the edges of F in the reverse order
in which they appear in F, detecting and possibly removing the special edges of F. To be
able to do this, we need to argue that processing the edges of F in this order results in the
same set of edges F' as if we removed edges by processing the edges of F' in reverse order.
This follows from observing that the removal of an edge e depends only on the edges in Fg

and 0p(C'), and affects only the removal of edges in Frz and in Fp, where e € §(D). Such
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a set D must be a child of vertex v, and any vertex v, such that edges of ép(C') are in
F4 must be an ancestor of C'. Thus if we remove edges in a top-down traversal, the set of
edges F' will be the same as before.

When visiting a vertex ve in 77, we need to decide which special edge of Fiz to remove,
if any. Call a child vg of ve hit if there exists an edge already processed but not removed
that is simultaneously in the coboundaries of B and C'. Assume first that we know the set
of hit children of vc. We need to remove the deepest special edge e in 7¢ (if any) whose
head is an ancestor in 7¢ of all the hit children of ve: then all remaining edges in 6(C')
will be guaranteed to be in §(A(e)). Given that we know the hit nodes, we can detect the
appropriate special edge to remove while determining the special edges of Fr. To find the
hit nodes, whenever we keep an edge e = (u,v) € F’, we mark the nodes of the paths in 7"
from the leaves u and v up to (but excluding) their common ancestor v¢(.) as hit nodes. In
order for this procedure to run in linear time, we stop before reaching C(e) if we encounter
an already hit node. The validity of this argument follows from the fact that we perform a
top-down traversal of 7’. Therefore, the overall running time of the clean-up step is O(n)

time.

5.4 Implementing PROPER-0-1-EDGE-DELETE

Compared to the other edge deletion steps, the edge deletion step for APPROX-PROPER-0-1
is relatively simple. To compute F’ from F, we iterate through the components C' of F.
Given a component C', we root the tree at some vertex, put each leaf of the tree in a separate
list, and compute h of each leaf. An edge joining a vertex to its parent is discarded if the h
value for the set of vertices in its subtree is 0. Whenever we have computed the h value for
all the children of some vertex v, we concatenate the lists of all the children of v, add v to
the list, and compute h of the vertices in the list. We continue this process until we have
examined every edge in the tree. Since there are O(n) edges, the process takes O(n 4 nwy)

time.
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5.5 Putting Everything Together

We can now finally give time bounds on the algorithms APPROX-PROPER and APPROX-

PrRoOPER-0-1.

In APPROX-PROPER, there are f,.. phases for a proper function f. In each phase, we
call APPROX-UNCROSSABLE, which must select edges, call the strong oracle, then delete
edges. By the reasoning in the previous sections, this takes O(n(n + v/mloglogn + w;) +
(n*m’+n*w;)+n) = O(n?*m/+n’w; ) time per phase, using EFFICIENT-EDGE-DELETE. This
leads to an overall time bound of O( fiax(n?m’+n’w;)), proving Theorem 5.0.1. Notice that
if we used REGULAR-EDGE-DELETE, we would have to call the strong oracle O(n) times
for the edge deletion stage and the time bound would be O(n?*m/ f2,, + nw; fiayx). For the
survivable network design problem mentioned in Section 5.1.3, the overall time bound is
O(n fmax(7 fimax +v/mloglog ntwy)), using EFFICIENT-EDGE-DELETE. In this case the time
bound for the algorithm with REGULAR-EDGE-DELETE is still O(n*m/ 2, + n*w; finax)-

In APPROX-PROPER-0-1, we use the edge addition step and PROPER-0-1-EDGE-DELETE.

The algorithm does not call the strong oracle. Therefore the running time is O(n(n +

vmloglogn + wy)), proving Theorem 5.0.2.
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CHAPTER 6

Applications

In the past few chapters, we have developed a 2H( fiax)-approximation algorithm for all
weakly supermodular edge-covering problems, have proven its correctness, and have shown
how to implement it efficiently for proper functions. In the next two chapters, we turn to
the applications of this algorithm and of the techniques underlying the algorithm. In this
chapter, we enumerate many interesting graph problems which are proper edge-covering

problems, and we discuss how our work fits in with previous work on these problems.

6.1 The Survivable Network Design Problem

In the survivable network design problem, we are given a non-negative connectivity re-
quirement 7;; for every unordered pair of vertices 7,j. The goal is to find a minimum-cost
subgraph in which each pair of vertices 1, j is connected by at least r;; edge-disjoint paths.
This problem is also sometimes called the generalized Sleiner network problem. It arises
in the design of fiber-optic telephone networks [58]. The survivable network design prob-
lem is a proper edge-covering problem given the function f(5) = max;egjgs 7. Setting
R = max; ;r;;, APPROX-PROPER gives a 2H(R)-approximation algorithm for the gener-

alized Steiner network problem. By the discussion of Section 5.5, the algorithm runs in

O(Rn(Rn + /mloglogn)) time for this problem.
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Before this thesis, no approximation algorithm was known even for the case r;; =
min(r;,7;), r; € {0,1,2}. However, several algorithms were known for special cases of
the survivable network design problem. When r;; = k for all pairs of vertices 1,7, the
problem becomes the minimum-cost k-edge-connected subgraph problem; that is, the prob-
lem of finding the minimum-cost subgraph such that there are at least k edge-disjoint
paths between every pair of vertices. In 1981, Frederickson and Ja’Ja’ [39] developed a
3-approximation algorithm for the 2-edge-connected subgraph problem. Recently, Khuller
and Vishkin [71] developed a 2-approximation algorithm for the k-edge-connected subgraph
problem for any &, which runs in O(kn®logn) time. Their algorithm does not seem to
extend to the “Steiner” variant of this problem in which r;; € {0,k} for all ¢,j. There is
a 3-approximation algorithm due to Klein and Ravi [74] that can solve the Steiner variant
when r;; € {0,2}.

When r;; € {0,1}, the problem becomes the generalized Steiner tree problem. Given
sets T; CV,1=1,...,p, the generalized Steiner tree problem is that of finding a minimum-
cost forest that connects all vertices in each 7;. In this case, max;; r;; = 1, and thus we
can use APPROX-PROPER-0-1 to obtain a (2 — 2)-approximation algorithm that runs in
O(n* + ny/mloglogn) time, where £ = [{v € V : f({v}) = 1}| = |Uiy,, 11|

Klein, and Ravi [2] gave the first approximation algorithm for this problem. It also has

Agrawal,

a performance guarantee of 2 — % As we stated in the introduction, their algorithm led
to the research in this thesis. Although their use of the primal-dual method is similar to
ours, their algorithm is somewhat different: it shrinks and expands parts of the graph, uses
recursive calls to itsell to construct its solution, and has no equivalent of our edge deletion

stage.

When p = 1, the generalized Steiner tree problem reduces to the classical Steiner tree
problem. For a long time, the best approximation algorithm for this problem had a perfor-
mance guarantee of 2 — 2 (for a survey, see Winter [128]) but recently Zelikovsky [130, 131]
obtained an %—approximation algorithm. An improved B—G—approximation algorithm based
upon Zelikovsky’s ideas was later proposed by Berman and Ramaiyer [14]. Zelikovsky’s

algorithm runs in O({(m + nl + nlogn)) time, and the Berman and Ramaiyer algorithm

runs in O(n"/?) time.
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The performance guarantee of our algorithm can be shown to be tight for the Steiner
tree problem. When p = 1, our algorithm reduces to the standard minimum-cost spanning
tree heuristic as given in Goemans and Bertsimas [52]. The heuristic can produce solutions

which have cost 2 — % times the optimal cost, as is shown by Goemans and Bertsimas [52].

6.2 The 7T-join Problem

Given an even subset T of vertices, the T-join problem consists of finding a minimum-
cost set of edges that has odd degree at vertices in T and even degree at vertices not in 7.
Edmonds and Johnson [34] have shown that the T-join problem can be solved in polynomial
time and can be formulated by the linear programming relaxation of (/P) with the proper
function A(S) = 1if |SNT| is odd and 0 otherwise. Using ApPROX-PROPER-0-1, we
obtain a (2 — %)—appmximation algorithm for the T-join problem. The edge-removing step
of APPROX-PROPER-0-1 guarantees that the solution produced is a 7-join (see the next
section).

The performance guarantee of our algorithm is tight for the 7-join problem. Figure 6-1
(a)-(c) shows an example on 8 vertices in which the minimum-cost 7-join with 7" = V has
cost 4 + 3¢, while the solution produced by the algorithm has cost 7, yielding a worst-case
ratio of approximately % =2- %. Clearly the example can be extended to larger numbers
of vertices and to an arbitrary set 1.

When T = {s,t}, the T-join problem reduces to the shortest s-t path problem. Our

algorithm finds the optimal solution in this case, since 2 — % = 1.

6.3 The Minimum-Weight Perfect Matching Problem

The minimum-weight perfect matching problem is the problem of finding a minimum-cost
set of non-adjacent edges that cover all vertices. This problem can be solved in polyno-
mial time by a primal-dual algorithm discovered by Edmonds [31]. The fastest strongly
polynomial-time implementation of Edmonds’ algorithm is due to Gabow [44]. Its running

time is O(n(m + nlogn)). For integral costs bounded by C', the best weakly polynomial
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@ (b)

ST

(d)

Figure 6-1: Worst-case example for V-join and matching. Graph (a) gives the instance:
plain edges have cost 1, dotted edges have cost 1+ ¢, and all other edges have cost 2. Graph
(b) is the minimum-cost solution. Graph (c) is the set of edges found by APPROX-PROPER-
0-1, and graph (d) shows a bad (but possible) shortcutting of the edges to a matching.

algorithm runs in O(m+/na(m,n)logn lognC') time and is due to Gabow and Tarjan [47].
For instances drawn from the Euclidean plane, Vaidya [122] gives an O(n?®log” n)-time
implementation of Edmonds’ algorithm.

These algorithms are fairly complicated and have high worst-case running times. This
motivated the search for faster approximation algorithms. Reingold and Tarjan [110]
have shown that the greedy procedure has a tight performance guarantee of 3n°%% for
general non-negative cost functions. Supowit, Plaisted and Reingold [119] and Plaisted
[101] have proposed an O(min(n?logn,mlog®n))-time approximation algorithm for in-
stances that obey the triangle inequality. Their algorithm has a tight performance guar-
antee of 2logs(1.5n). As shown by Gabow [43], a scaling algorithm for the maximum-
weight matching problem can be used to obtain an (1 4+ 1/n®)-approximation algorithm
(a > 0) for the minimum-weight perfect matching problem. Moreover, if the original ex-
act algorithm runs in O(f(m,n)logC) time, the resulting approximation algorithm runs

in O(my/nlogn + (1 + a)f(m,n)logn) time. The fastest known scaling algorithm for



6.3 The Minimum-Weight Perfect Matching Problem 107

maximum-weight matching is the algorithm of Gabow and Tarjan [47] mentioned in the
previous paragraph. Vaidya [121] obtains a (3 + 2¢)-approximation algorithm for minimum-
weight perfect matching instances satisfying the triangle inequality. His algorithm runs in
O(n?log”’ nlog(1/¢)) time.

The algorithm APPROX-PROPER-0-1 can be used to approximate the minimum-weight
perfect matching problem when the edge costs obey the triangle inequality. We use the
algorithm with the proper function h(5) being the parity of |5|, i.e. h(S) = 1if | 5] is odd
and 0 if || is even. This function is the same as the one used for the 7-join problem
when 7" = V. The algorithm returns a forest whose components have even size. More
precisely, the forest is a V-join, and each vertex has odd degree. To see this, suppose a
vertex v has even degree, and suppose that removing any edge incident to v results in two
odd-sized components. Then the component containing v can be partitioned into v plus
an even number of odd-sized components, contradicting the fact that the component must

have even size.

The forest can be transformed into a perfect matching with no increase of cost in several
ways. One way is to repeatedly take two edges (u,v) and (v, w) from a vertex v of degree
three or more and to replace these edges with the edge (u,w). This procedure maintains the
property that the vertices have odd degree. After O(n) iterations, each vertex has degree
one. Another method is to double each edge, transforming each component into an Eulerian
graph of even size. We can then get a tour of each graph by shortcutting the traversal of
the graph. Fach tour defines two matchings, and we take the cheapest of the two. For
either method, the overall procedure gives an approximation algorithm for weighted perfect
matching which runs in O(n? 4+ ny/mloglogn) time and has a performance guarantee of
22,

The performance guarantee of the algorithm is tight for this problem also, as is shown
in Figure 6-1 (d).

We will discuss the application of our algorithm to this problem in much more detail in

the computational study presented in Chapter 8.
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6.4 Point-to-Point Connection Problems

In the fixed point-to-point connection problem, we are given a set C' = {¢y,...,¢,} of sources
and a set D = {d;,...,d,} of destinations in a graph G = (V, F) and we need to find a
minimum-cost set F' of edges such that ¢; is connected to d; in F' [84]. This problem is a
special case of the generalized Steiner tree problem where T; = {¢;,d;}. In a variation of
the problem called the non-fixed point-to-point connection problem, each component of the
forest F' is only required to contain the same number of sources and destinations. Both
problems are NP-complete [84]. They arise in the context of circuit switching and VLSI
design.

The non-fixed case is a proper edge-covering problem with h(S) = 1if |[SNC| # |[SN D|
and 0 otherwise. For this problem, we obtain a (2 — %)—approximation algorithm by using

APPROX-PROPER-0-1. No previous approximation algorithm was known.

6.5 Exact Partitioning Problems

In the exact tree (cycle, path) partitioning problem, for a given £ we must find a minimum-
cost collection of vertex-disjoint trees (cycles, paths) of size k that cover all vertices. These
problems and related NP-complete problems arise in the design of communication networks,
vehicle routing and cluster analysis. These problems generalize the minimum-weight perfect
matching problem (in which each component must have size exactly 2), the traveling sales-
man problem, the Hamiltonian path problem and the minimum-cost spanning tree problem.
No approximation algorithms for the general problems were known prior to this thesis.
We can approximate the exact tree, cycle and path partitioning problems for instances
that satisfy the triangle inequality. To do this, we consider the proper edge-covering problem
with the function A(S) = 1 if S # 0(mod k) and A(S) = 0 otherwise. The algorithm
APPROX-PROPER-0-1 finds a forest in which each component has a number of vertices
which is a multiple of &, and such that the cost of the forest is within 2 — % of the optimal
such forest. Obviously the cost of the optimal such forest is a lower bound on the optimal
exact tree and path partitions. Given the forest, we duplicate each edge and find a tour

of each component by shortcutting the resulting Eulerian graph on each component. If
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we remove every kth edge of the tour, starting at some edge, the tour is partitioned into
paths of k£ nodes each. Some choice of edges to be removed (i.e., some choice of starting
edge) accounts for at least % of the cost of the tour, and so we remove these edges. Thus
this algorithm is a (4(1 — £)(1 — +))-approximation algorithm for the exact tree and path
partitioning problems.

To produce a solution for the exact cycle partitioning problem, we add the edge joining
the endpoints of each path; given the triangle inequality, this at most doubles the cost of
the solution produced. We claim, however, that the algorithm is still a (4(1 — £)(1— +))-
approximation algorithm for the cycle problem. To see that this claim is true, note that the
following linear program is a linear programming relaxation of the exact cycle partitioning

program, given the function h above:

Min g Cely

eeFE

subject to:
2(6(5)) = 2h(5) Scv
z, >0 e€ k.

Its dual is
Max 2 h(5)-ys
scv
subject to:
> ys<e. e€k,
S:e€d(S)
ys > 0 0#ScCV.

We know the algorithm produces a solution y that is feasible for this dual such that
Yeer e < (2= 2)Y ys. The argument above shows how to take the set of edges F”

and produce a set of edges T such that T is a solution to the exact cycle partitioning
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problem, and Y,y ¢ <4(1— £) Y .cp ¢o. Thus

Zce§8<1—%) (1—%)2%.

eeT

Since 25 ys is the dual objective function, 25 ys is a lower bound on the cost of the

optimal exact cycle partition, Z7. Thus

Zce§4<1—%> <1—%)Z§.

eeT



CHAPTER 7

Extensions

The techniques used in developing the main algorithms are sufficiently general that they can
be applied to other graph problems which do not fall in the class of proper edge-covering
problems, and even to some problems which cannot be modelled by the integer program
(IP). In this chapter we consider how the main algorithms can be modified to solve some
of these problems. We begin with fairly simple modifications in the following sections, and
move towards more complicated modifications later in the chapter which will allow us to
solve the prize-collecting traveling salesman problem and the k-vertex-connected subgraph
problem. These modifications result in approximation algorithms with performance guaran-
tees better than the best previously known guarantees (as for the prize-collecting problems)
or algorithms for problems that had no previously known approximation algorithms (as for
the k-vertex-connected subgraph problem). Perhaps more importantly, this chapter shows

that the primal-dual technique developed in this thesis is surprisingly versatile and robust.

7.1 Solving Some Non-Proper Edge-Covering Problems

We observed in a previous chapter that the reason we cannot in general implement AppPROX-
UNCROSSABLE in polynomial time is that we do not know how to implement the strong
oracle for a general uncrossable function in polynomial time. It turns out that there are

other subclasses of uncrossable functions for which it is easy to find the minimal maximally
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SYMM-MAX-ORACLE (h, F)

1 Let Cy,...,Cy, I, -, I; be the connected components of (V, F'), where h(C;) = 1 and
Ifh(U; Ci) =0
return {Cy,...,C;}

else
S —U; C;
For j «— 1 tol
Ifn(; U, C;) =1
S—5S5Ul;

return {Cy,...,C,V — 5}

O 00=~1 O U k= W N

Figure 7-1: The strong oracle for the symmetrized version of an uncrossable function A
that obeys the maximality property.

violated sets. For any of these problems we can use the algorithm ApPPROX-UNCROSSABLE
to get a 2-approximation algorithm to the problem.

One such class of functions is the uncrossable functions h : 2V — {0,1} which obey
the maximality property h(A U B) < max(h(A), h(B)) for disjoint A and B. If h is also
symmetric, then h is proper, so the interesting case is when h is not symmetric. Given
the maximality property, we can maintain the active sets in the same way as we did in
the algorithm APPROX-PROPER-0-1; that is, in an iteration of the algorithm, we divide
the connected components C' of the graph into two sets: C € Cif A(C)=1and C € T if
h(C) = 0. Then C corresponds exactly to the active sets, as is shown in Theorem 3.1.4.
Given that the uncrossable functions may not be symmetric, we then have a (2 — i)—
approximation algorithm for this class of functions, where ¢, = {v € V : h({v}) = 1}.

As we have mentioned after Theorem 4.1.6, if A is not symmetric, we can consider a
symmetric version A’ of h and obtain a performance guarantee of 2 — ﬁ When h obeys
the maximality property, we can also easily provide an implementation of the strong oracle
for A/, although A’ itself will no longer obey the maximality property. The strong oracle for

h', SYMM-MAX-ORACLE, is given in Figure 7-1. We now prove its correctness.

Theorem 7.1.1 If & is an uncrossable function that obeys the maximality property, and
R(S9) = max(h(S5),h(V —29)) for all 5, then SYMM-MAX-ORACLE(R, F') returns the minimal

violated sets for h’ with respect to the edge set F.
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Proof: By the arguments above about the active sets for A and by Lemma 3.2.3, the oracle
correctly returns all connected components C' such that 2(C') = 1. The lemma also states
that there exists at most one more minimal violated set A. Any candidate violated set A
must be the union of connected components of F' such that h(V — A) = 1; furthermore,
since A must be disjoint from the components C; such that A(C;) = 1, the set V — A must
contain |J; C;. If A(J; C;) = 0, then by the maximality property, no additional violated set
can exist. Suppose h({J; C;) = 1, and let A be the additional set returned by the algorithm.
To see that A(V — A) =1, let B =, C; U I;, for some I; C V — A (if any exists). Pick any
I, € (V- A)— B. By construction, we know that A(B) = 1 and h(|J; C; U I;) = 1, but that
h((bigcup,C; U I;) — B) = h(1;) = 0. Therefore h(B U I;,) = 1. Set B to B U I, and repeat
the argument until B =V — A.

Now suppose there is a smaller violated set A’. Then there must exist I; such that
I; CV—A" but I; ¢ V—A. But by construction of the algorithm, h(Z; UJ; C;) = 0, which
by maximality implies that A(V — A’) = 0, a contradiction. W

The uncrossable functions that obey the maximality property turn out to include some
interesting problems, which we discuss in the next two subsections. In addition, some recent
work on one of these problems leads us to propose a simpler 2-approximation algorithm for

a subclass of this class of functions.

7.1.1 Lower-Capacitated Partitioning Problems

The lower-capacitated partitioning problems are like the exact partitioning problems except
that each component is required to have at least k vertices rather than exactly & vertices.
The lower capacitated cycle partitioning problem is a variant of the 2-matching problem.
More precisely, the cases £ = 2, 3 and 4 correspond to integer, binary and triangle-free
binary 2-matchings respectively. The lower-capacitated cycle partitioning problem is NP-
complete for & > 5 (Papadimitriou in Cornuéjols and Pulleyblank [22] for £ > 6 and
Vornberger [124] for £ = 5), polynomially solvable for £ = 2 or 3 (Edmonds and Johnson
[33]), while its complexity for k = 4 is open. Imielinska, Kalantari, and Khachiyan [63] have
shown that the lower-capacitated tree partitioning problem is NP-complete for k£ > 4, even

if the edge costs obey the triangle inequality.
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The lower-capacitated tree partitioning problem is an uncrossable edge-covering problem
with the uncrossable function h(S) = 1if 0 < |S| < k and 0 otherwise. Notice that this
function also obeys the maximality property. Hence we have a (2 — %)—approximation
algorithm for this problem for any & (by using the symmetrized version of h). Furthermore,
assuming the triangle inequality, the algorithm can be turned into a (2 — %)—approximation
algorithm for the lower-capacitated cycle partitioning problem and a (4 — %)—approximation
algorithm for the lower-capacitated path partitioning problem by using algorithms and
analysis similar to that given for the exact path and cycle partitioning problems.

As far as we know, there was no approximation algorithm known for this problem for
general k prior to the work in this thesis. However, after a preliminary part of this thesis
appeared [53], Imielinska et al. [63] showed that the algorithm ApPPROX-LOWER-CAP-TREE
given in Figure 7-2 is a 2-approximation algorithm for the lower-capacitated tree partitioning
problem. By duplicating edges and shortcutting to tours, the algorithm also implies a 4-
approximation algorithm for the lower-capacitated cycle partitioning problem when edge
costs obey the triangle inequality. The algorithm takes as input a graph G = (V, £, edge
costs ¢, and a bound k. It computes a minimum-cost spanning tree, and sorts the edges by
cost. The algorithm then considers each edge of the spanning tree in order, starting with
the minimum-cost edge. Each edge will span two connected components: if at least one of
these is currently smaller than k, the edge gets added to the final edge set. Because the
algorithm merely requires finding and sorting the edges of a minimum-cost spanning tree,
it can be made to run in O(m + nlogn) time for general graphs and O(nlogn) time for
Euclidean graphs, which is faster than our algorithms.

We can, however, recast their algorithm into our framework and in the process improve
their approximation algorithm for the cycle problem from a 4-approximation algorithm to
a 2-approximation algorithm. In addition, we can generalize the algorithm to handle all
uncrossable functions that obey the maximality property and the additional property that
whenever h(S) = 0, then A(T) = 0 for all 7" O S. We give our amended algorithm in
Figure 7-3, and structure it to resemble APPROX-PROPER-0-1, although this will turn out
to be unnecessary. There are two main differences between APPROX-PROPER-0-1 and this

algorithm. First, we delete edges in the reverse of the order in which they were added,
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ApPPROX-LOWER-CAP-TREE (V, E, ¢, k)

1 P~

2 W «— MINIMUM-COST-SPANNING-TREE (V, £, ¢)

3 Sort edges of W = {e,...,e,_1} sothate,, <---<ec. _,
4 C—{{v}:veV}

b) 10

6 1 — 1

7 While [C| >0

8 Ife, = (u,v),ueC,eCUZL, ve(C, e CUI, and either |C,| < k or |C,| < k
10 Delete ), and C, from C and 7

11 If|C,uC,| <k

12 C—Cu{C,ucC,}

13 else

14 I—TU{C,uC,}

15 1—1+1
16 return F

Figure 7-2: Imielinska et al.’s algorithm for the lower-capacitated tree partitioning prob-
lem.
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instead of in an arbitrary manner. Second, in each iteration we increase the dual variables
for all connected components, instead of the connected components C for which A(C') = 1.
Notice that this implies that the variables d(v) will be identical for all v, and thus the
edge selected in each iteration will simply be the minimum-cost edge joining two distinct
connected components; that is, the edges selected are exactly the edges of the minimum-
cost spanning tree. Hence we can reduce the algorithm to the algorithm in Figure 7-4,
which is similar to the algorithm of Imielinska et al.: we add the edges of the spanning tree
until A(C) = 0 for each connected component C. Then we delete unnecessary edges in the
reverse of the order they were added. For purposes of analysis, we will concentrate on the
first version of the algorithm.

By construction A(N) = 0 for all connected components of F”. Thus the feasibility of
the solution produced by the algorithm follows by Theorem 3.1.2, given that h obeys the

maximality property. We also show the following theorem.

Theorem 7.1.2 Let Zj,_, be the value of an optimal solution to the integer program (1 P;)
given by a uncrossable function & : 2¥ — {0,1} that obeys the maximality property and the
property that if 2(S) = 0 then A(T) = 0 for all T O S. Then APPROX-RESTRICTED-

UNCROSSABLE produces a set of edges I’ and a feasible solution y to (D)) such that

Z c. < QZh(S)yS <2Z7p.

ecF' S

Proof: Using the argument of Section 4.1, we can reduce the theorem to showing that

Z ?/5|5F'(S)| < QZh(S)y57

Secul

which follows from

> 16 (5)] < 2cl,

Secuz
if this statement is true at every iteration. This statement differs from the standard total-
degree inequality in that the sum on the left-hand side is taken over both the active and
inactive components, rather than just the active sets. This difference is caused by increasing

the dual variables for all connected components in each iteration.
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APPROX-RESTRICTED-UNCROSSABLE (V, F, ¢, h)

1 F—0

2 Comment: Implicitly set ys «— 0 for all S C V

3 C—{{v}:veV,hr({v}) =1}

4 I —{{v}:veV,h({v})=0}

5 For each v € V do d(v) < 0

6 10

7 While [C| >0

8 t—1+1

9 Find edge ¢; = (u,v) withu e C, e CUZ,ve C, € CUZ, Cp # C, that minimizes
- Ce—d(u)—d(v

2

11 For all v do d(v) « d(v)+ ¢

12 Comment: Implicitly set yo «— yc +¢€ forallC e CUZ
13 Delete C), and C; from C and 7

14 Ih(C,UC,)=1

15 C—Cu{C,ucC,}
16 else
17 I—ZuU{C,uC,}
18 F «— F

19 for j «— 7 downto 1

20 If h(N) =0 for all connected components N of (V, F’' — {¢;})
21 F— F— {GJ}

22  return F’

Figure 7-3: A generalization of Imielinska et al.’s algorithm.
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APPROX-RESTRICTED-UNCROSSABLE (V, F, ¢, h)

1 F 10

2 W — MINIMUM-COST-SPANNING-TREE(V, E, ¢)

3 Sort edges of W = {ey,...,e,_1} so thate,, <---<ec. _,

4 While h(N) =1 for some connected component N of F

5 1e—1+1

7 F—F

8 for j «— ¢ downto 1

9 If h(N) =0 for all connected components N of (V, F’' — {¢;})
10 F— F - {6]}

11 return F”

Figure 7-4: A simple version of APPROX-RESTRICTED-UNCROSSABLE.

Pick an arbitrary iteration. As in the proof of Theorem 4.1.1 for APPROX-PROPER-0-1,
we construct a graph H by considering the sets in C and Z of the current iteration as vertices
of H, and the edges e € 6p:(5) for all § € CUZ as the edges of H. We claim that for
every connected component in H, there can be at most one vertex corresponding to a set
in Z. Suppose there exists a connected component of H with two vertices corresponding to
sets Iy, I, € 7. Pick any edge e in H on the path in H between the vertices corresponding
to I and I,. Notice that any edge e in H must have been added after all the edges in
the connected components S € C UZ. Also, notice that all edges in H are in the final set
of edges F’. Thus when we tested whether e should be deleted, removing e formed two
connected components Ny and N, with [; C Ny and I, C N,. But since h(1;) = h(l3) =0
by hypothesis, it must also be the case that h(N;) = h(N,) = 0 by the properties of h,
implying that e must have been deleted from F”’, a contradiction.

Let dy = |6p/(N )| for a component N € CUZ. Thus dy gives the degree of the vertex v
in the graph H that corresponds to the component N. Let ¢ be the number of components

of H. By the claim above, |Z| < ¢. Then

S dy =2/ +1Z] - o) < 2],

Necul



7.1 Solving Some Non-Proper Edge-Covering Problems 119

since the forest has at most |C| + |Z| — ¢ edges. W

As with Imielinska et al.’s algorithm, we can implement this algorithm in O(m+nlog n+
nwy ) time for general graphs or O(nlogn + nwy,) time for Euclidean graphs. Also, because
we generate a dual lower bound, we can use the same techniques as in the exact partitioning
problem to prove that duplicating and shortcutting edges from the lower-capacitated tree
2-approximation algorithm yields a 2-approximation algorithm for the lower-capacitated

cycle problem.

7.1.2 The Classical Edge-Covering Problem

The classical edge-covering problem is that of selecting a minimum-cost set of edges such
that each vertex is adjacent to at least one edge. The problem can be solved in polynomial
time via a reduction to the minimum-weight perfect matching problem [57, p. 259]. The
problem is also an uncrossable edge-covering problem with A(5) = 1 iff |S| = 1. It is easy
to see that h is uncrossable. Also, h obeys the maximality property, and the property
that A(S) = 0 implies A(T) = 0 for T O 5. Thus APPROX-RESTRICTED-UNCROSSABLE
yields a 2-approximation algorithm for this problem. In this case, the algorithm becomes
particularly easy to describe: we repeatedly choose the cheapest edge adjacent to any
uncovered vertex until all vertices are covered. We then go through the edges backwards,
and remove unnecessary edges. In fact, it is simple to show that the algorithm is a 2-
approximation algorithm without the edge deletion stage. Note that each vertex v will
select the minimum-cost edge incident to it. Call the cost of this edge ¢,. Then the cost

of the solution generated is at most y_ ., ¢,. Let F* be the set of edges in the optimal

veEV

solution. Then

N | —

u —I_ v
Z Clu,w) Z Z maX(Cuvcv) Z Z c 2 ‘ Z

(u,v)eF* (u,v)EF™* (u,v)EF™

E Cy.
veEV

7.1.3 Location-Design and Location-Routing Problems

We can apply the algorithms for non-proper edge-covering problems to solve some problems
in network design and vehicle routing. Many of these problems require two levels of deci-

sions. In the first level, the location of special vertices, such as concentrators or switches



120 Extensions

in the design of communication networks, or depots in the routing of vehicles, needs to be
decided. There is typically a set of possible locations and a fixed cost is associated with
each of them. Once the locations of the depots are decided, the second level deals with
the design or routing per se. These problems are called location-design or location-routing
problems [78].

Several of these problems can be approximated using either APPROX-UNCROSSABLE
or APPROX-RESTRICTED-UNCROSSABLE as discussed in the previous section. We illustrate
the ideas involved on one of the simplest location-routing problems. In this problem [79, 78],
we need to select depots among a subset D of vertices of a graph G = (V, £) and cover
all vertices in V with a set of cycles, each containing a selected depot. The goal is to
minimize the sum of the fixed costs of opening our depots and the sum of the costs of the
edges of our cycles. In order to approximate this NP-complete problem, we consider an
augmented graph G’ = (V U D’, E'), which we obtain from G by adding a new copy u’' of
every vertex u € D and adding edges of the form (u, ') for all w € D. Edge (u,u’) has a cost
equal to half the value of the fixed cost of opening a depot at w. Consider the uncrossable
edge-covering problem with the uncrossable function by 2(S) = 1if § # S C V and 0
otherwise. Notice that h obeys the maximality property and the property that h(S5) = 0
implies h(T) = 0 for T 2 S. Thus we can apply either APPROX-UNCROSSABLE or APPROX-
RESTRICTED-UNCROSSABLE to obtain a (2 — %)— or 2-approximation algorithm respectively
for this function k. Duplicating and shortcutting the forest obtained can be shown to result
ina(2- %)— or 2-approximation algorithm for the original location-design problem by using
analysis similar to that given for the exact cycle partitioning problem.

The same approach works also if, as in the lower constrained cycle partitioning problem,
every cycle is required to have at least k vertices. In this case, h(S)=1if 0 # 5 CV or
0 <|SNV| <k, and 0 otherwise, and once again h obeys all the requisite properties to

apply either APPROX-UNCROSSABLE or APPROX-RESTRICTED-UNCROSSABLE.
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7.2 Edge Duplication

So far we have considered edge-covering problems in which each edge can appear in the
solution at most once: the integer program (I P) has the explicit constraint that =, € {0,1}
for all edges e € E. Here we consider what happens if we allow an edge e to be included
multiple times, up to a multiplicity m, which is possibly infinite. This problem can be

modelled by the following integer program, (I P’):

Min E Coy

eeF
subject to:
(1P o> f(S) 5cCV,
e€6(S)
z, €40,1,...,m.} ec E.

Replacing an edge of multiplicity m. by min{ f,.x, m.} copies of the edge and applying the
algorithm APPROX-WEAKLY-SUPERMODULAR yields a solution of cost within a factor of
2H( finax) of optimal. Notice, however, that when f,., is much larger than n, this approach
has two significant problems. First, the number of phases of the algorithm is proportional
t0 fmax, Which is not polynomial. Moreover, the performance guarantee achieved by this
approach is 2H( fiax ), which can be rather weak. In this section, we give two methods for
solving proper edge-covering problems with edge duplication which avoid some of these dif-
ficulties. The first method applies only if m, > 2 f,,.. for every edge e. It invokes APPROX-
PrOPER-0-1 in a sequence of |log fiax] + 1 phases and obtains a performance guarantee
of 2|log fimax] + 2. The second method applies to any set of values of m.. It uses the ellip-
soid algorithm for linear programming together with APPROX-WEAKLY-SUPERMODULAR
to obtain a 2H(m)-approximation algorithm.

The algorithm for the first method is given in Figure 7-5. In phase p, we set h,(5) = 1if
J(9) > 2logfmuxl+1=p and h,(S) = 0 otherwise, then call APPROX-PROPER-0-1. We make
2108 fmax]+1-2 ¢opies of the edges of the resulting forest #” and add them to the set of edges
to be output. The function A, is proper by Observation 2.0.10. We now prove that the

algorithm provides a feasible solution that is within a factor of 2|log fi.x] + 2 of optimal.
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ProPER-EDGE-CoVER-WITH-DUuPLICATES (V, E, ¢, f)
1 Fo — @

Jinax = max{f({v})[ve V}
for p— 1 to [log finax| +1
Commenl: Phase p.

i [log fmax|+1=p
S)%{ 1 if f(5) > 2

0 otherwise

= W N

ot

h(

F" — ApproX-PRrOPER-0-1(V, E, ¢, h,)
Make 2Ll8 fmax]+1=2 copies of each edge in F”

6
7
8 F,— F,_,UF
9

return £

Figure 7-5: An approximation algorithm for proper edge-covering problems with edge
duplication.

Theorem 7.2.1 Let Zj, be the cost of an optimal solution to (/P’). Then the algorithm
PRrOPER-EDGE-COVER-WITH-DUPLICATES produces a feasible solution for (I P’) of cost no

more than (2[1og fuax] +2)Z5p.

Proof: Tt is not too hard to see that the algorithm produces a feasible solution: for an
arbitrary S such that f(.9) = p, we set h,(5) = 1 in phases |log fiax] — [log p| + 1 through
|10g fmax] + 1. Hence there is at least one edge in the coboundary of S in the solutions

produced by these phases, implying that the final solution has at least

[10g frmax|+1
Z 9108 fmax)+1-7 — 9llogr]+1 _ 1 > p
p=|log fmax|—log p]+1

edges in the coboundary of 5, as desired.

It is also not hard to see that we use at most

[log fmax]+1
Z 9llog fmax]+1-p _ 9llogfmax|+1 _ | < 2 fonax

p=1

copies of any edge.

To prove the performance guarantee of the algorithm, we need to relate the cost of the

edges selected in phase p to the cost of an optimal solution & to (I P’). Let (LP,) denote the
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linear programming relaxation of the integer program given by the function 4, in phase p,
and let Z* be the cost of the optimal solution to (LF,). By Theorem 4.0.1, we know that the
cost of the edges selected in phase p is no more than 2Z7. Since mi is a feasible
solution to (LP,), we know that Z} < siprmysi=y Z1p:- Since we use 21108 fmax]+1=P copies of

the solution of phase p, the overall cost of the solution is no more than 2(|log fiax| +1)Z5p.
|

This algorithm for decomposing a proper edge-covering problem with unlimited copies
of edges into many 0-1 proper edge-covering problems is essentially the same as one given
by Agrawal, Klein, and Ravi [2]. Agrawal, Klein, and Ravi show how to use their 2-
approximation algorithm for the generalized Steiner tree problem to approximate the sur-
vivable network design problem given edge duplication. They achieve the performance
guarantee given above. Agrawal et al. based their algorithm on an earlier algorithm of Goe-
mans and Berstimas [52]. Goemans and Bertsimas show how to decompose a subclass of the
survivable network design problem into a sequence of Steiner tree problems. If a function
for this subclass assumes at most k different values po = 0 < p; < -+ < pg, their algorithm
applies a 2-approximation algorithm for the Steiner tree problem k times, and obtains a

performance guarantee of 2 %_, . A approach similar to Goemans and Bertsimas

pimpiz1

pi
can also be applied here to proper edge-covering problems, with the same results as in
Goemans and Bertsimas. However, in the worst case the algorithm needs f,.. phases and
is pseudopolynomial. If f,., is polynomial in the input size, then the Goemans/Bertsimas
approach can potentially give a better performance guarantee.

Our second method for solving proper edge-covering problems modelled by (IP’) is
as follows. Consider the linear programming relaxation of (/P’") in which the integrality
constraints on z, are replaced by constraints 0 < z, < m,.. We use the ellipsoid method [57]
or the convex programming algorithm of Vaidya [123] to solve this linear program. Both
of these algorithms require a subroutine to solve the separation problem, as mentioned
in Section 5.1; we can solve the separation problem for proper functions by using the
strong oracle MAX-VIOLATED. Let 2* denote the optimal fractional solution obtained. We
include z, = [z%] copies of each edge e in the solution, and then apply APPROX-WEAKLY-

SUPERMODULAR to a reduced problem given by the function f'(5) = f(5)—z(6(5)) on the
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edge set ¥ —{e € F:z, =m.}. By Lemma 2.0.5, the function f’ is weakly supermodular,
and by the discussion of Section 5.1, we can implement the strong oracle for this class
of functions. Let 2! be the incidence vector of the edges returned by APPROX-WEAKLY-

SUPERMODULAR. It is not hard to see that (Z. 4 z!) is a feasible solution to (/F’).
Theorem 7.2.2 }°  pc.(Z.+2,) <2H(m) Y, cpc.xt < 2H(m)Zip.

Proof: The second inequality follows from the fact that z} is an optimal solution to the
linear programming relaxation of (I P’). Since z* is feasible, for each S C V, 2*(6(5)) >
f(5), which implies that f._ _ < m. Observe that z* — Z is an optimal solution to the
linear relaxation of (/P) given the weakly supermodular function f’. By Theorem 4.0.3,

the cost of the solution 2’ is bounded by 2H( f!,.) times the optimum solution to the linear

!

relaxation. In other words, ), . c.2l < 2H(fl .,

)Y ecr ce(2* =), and the theorem follows.
|

Very recently, Aggarwal and Garg [1] have shown how to obtain a 2H({)-approximation
algorithm for any proper edge-covering problem with edge duplication if m, > f,.. for
every edge e, where { = |[{v : f(v) > 1}|. Their algorithm is based on our algorithm

APPROX-PROPER-0-1, and uses an interesting scaling variation of it.

7.3 Fixed-Charge Network Design Problems

A common problem that arises in the design of telephone and traffic networks is the fized-
charge network design problem. In this problem, we are given a graph G = (V, ), non-
negative design costs c,, positive capacities u., and non-negative flow costs fi on each edge
e € F, as well as | commodities, where commodity ¢ has a demand d; of that must be
shipped from a source node s; € V to a sink node {; € V. The objective is to construct a
network so that all demands can be satisfied, minimizing the sum of the cost of the network
and the cost of the flow in the network (i.e., each unit of commodity ¢ shipped on edge e
costs f!). Needless to say, this is a very difficult problem in its full generality, and many
special cases have been considered; see Magnanti and Wong [90] for a survey.

Here we will show that our techniques lead to an 2f,..-approximation algorithm for a

variation on the fixed-charge network design problem in which the flow costs are negligible
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and the total capacity of the edges in the coboundary of a set S must be at least f(.9), for

some weakly supermodular function f. We can model this problem by the integer program

Min Z Cele

=
subject to:
(FC) > uex. > f(S) S5cv,
e€8(S)
z, €{0,1} ec k.

In the case that all capacities u, = u for some fixed positive integer « and the function
[ is proper, the problem reduces to a proper edge-covering problem with the proper func-
tion ¢(S) = [f(S)/u]. Applying APPROX-PROPER gives a 2H([ fiax/u|)-approximation
algorithm.

If the capacities are not all the same, then we apply APPROX-UNCROSSABLE in a se-
quence of f,.. phases, as given in Figure 7-6. The algorithm is almost precisely the same as
APPROX-WEAKLY-SUPERMODULAR. Let F,_; denote the set of edges we have selected by
the end of phase p — 1. Initially, , = (0. In phase p, we consider the remaining deficiency
A (5) = f(5) — u(ép,_,(5)), where we use u(A) to denote }~, ., u.. As with APPROX-
WEAKLY-SUPERMODULAR, we guarantee that in phase p the deficiency A,(5) < frax—p+1
for all sets 5 C V, and in this phase we add an edge to the coboundary of all sets with
deficiency A,(S5) = fmax —p+1. Thus we call ApPROX-UNCROSSABLE on the graph (V, E,),

where F, = F — F,_;, with edge costs ¢, and uncrossable function

1 i A(S) = foux — p+ 1
ho(S) P(5)

0 otherwise.

The function 5, is uncrossable by Lemma 2.0.5 and Observation 2.0.1. The resulting set of

edges, F”, is then added to F,_; to give F},.

Theorem 7.3.1 The algorithm APPROX-FIXED-CHARGE is a 2 f,,..-approximation algorithm
for the fixed-charge network design problem with negligible flow costs and cut capacities given

by f. If the function f is proper then each phase can be implemented to run in O(nm’ frax +
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ApPPROX-FIXED-CHARGE (V, E, ¢, u, f)
1 Fo — @

Jmax — f(S) for § € Max-VioLaTed(f,0)

2

3 for p— 1to foa

4 Comment: Phase p.
5

AL (S) «— [(S) — u(ép, ,(8)) forall § C V
h(S) — { 1 i AL(S) = fuoax — P+ 1

0 otherwise
7 E, —E—F,_,
F" — AppPrOX-UNCROSSABLE(V, E,, ¢, h,)
F,— F,_UF

10 return F;

Figure 7-6: The approximation algorithm for a variation of the fixed-charge network design
problem.

n?m’ + nw;) time.

Proof: Section 5.1 argues that we can implement the strong oracle for functions of the form
J(S) —u(ép,_,(5)), where f is proper. By the discussion of Section 5.1.2, this leads to an
implementation of a phase that runs in O(nm/ finax + n?m’ + nw;) time.

We now prove the performance guarantee. In phase p, we incur a cost of . c.. By
Theorem 4.0.2, we know that - . c. <277, where Z7 denotes the optimum value of the
integer program (/P) corresponding to the uncrossable function h,,.

Let z* be an optimal solution to (F'C'), with value Z}.. Observe that by assigning z*
for each e € E,, we get a feasible solution to the integer program (/P) with function h,
and edge set E,. Hence, Z7 < Zj.. Combined with the previous inequality, this shows
Yeer Ce < 2Z%. In other words, the cost incurred in every phase is bounded by twice the
optimal value, which leads to a performance guarantee of 2 /... B

The performance guarantee of O( fi,ax) is essentially tight. Let G be a graph on k + 2
nodes s,t, and v; for ¢ = 1,...,k. The edges of the graph are (s,v;) and (v;,1) for every
i, with capacities and costs u(,, ) = 0, and ¢(,, 1) = k for every 4, and ¢, ,,) = ¢ and
Ugs ) = Lfor i # k, and u, ) = k and ¢(; ) = c+€ (see Figure 7-7). The proper function

[ is k for every s-t cut and 0 otherwise. As for the tight example for APPROX-WEAKLY-
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Vi

ct+el Kk 0/ k

Figure 7-7: Tight example for APPROX-FIXED-CHARGE. Edges are labelled with the edge
cost/edge capacity.

SUPERMODULAR in Section 4.3, each call to APPROX-UNCROSSABLE finds the minimum-cost
augmenting path from s to t. Therefore, phase p selects F; = {(s,v,),(v,,?)}. This results
in a solution of value kc + €, whereas the optimum solution is {(s, vy ), (v, ¢)} at a cost of
c+ e

If fo.x becomes larger than m, then we can use a simple greedy algorithm which has
performance guarantee of m. Consider the edges in order of decreasing cost, and greedily
delete an edge if the remaining graph is a feasible solution. We claim that this greedy
algorithm is an m-approximation algorithm. Let e be the first edge on which the greedy
solution differs from the optimal solution, and let C' be the cost of the edges shared by the
greedy and the optimal solution. Then the cost of the optimal solution is at least C' + ¢,
whereas the cost of the greedy solution is at most C' 4+ me..

Using techniques analogous to the 2H(m)-approximation algorithm for edge duplication

in Section 7.2, the guarantees of Theorem 7.3.1 extend to a further generalization of the

fixed-charge model when an edge e can be included up to m, times. This problem is modelled



128 Extensions

by replacing the constraint z, € {0,1} in the integer program (FC') by the constraint
z, €{0,1,...,m.}.

Our algorithm for the fixed-charge network design problem can be used to solve a net-
work reinforcement problem recently investigated by Bienstock and Diaz [15]. Given a
graph G = (V, F), edge costs c., and a weakly supermodular function f, one must find a
minimum-cost set of edges such that the graph induced by contracting these edges satisfies
Jf. In other words, the set must include one edge from the coboundary of every set § such
that [6(5)] < f(.9). By using the function f'(5) = f(.5) — |6(9)| and setting u. = f,,, for

all e, we can apply the algorithm above.

In practice, most fixed-charge network design problems are specified in terms of multi-
commodity flow, as we stated initially, rather than by specifying a function f on the cuts
of the graph. Given a fixed-charge network design problem in which the flow costs are
negligible, we observe that in order to be able to ship the commodities, we must construct a
network such that f(.5) > 37, snqs, 0721 - When there is a single commodity, it is known
that f1(S) = i snqs. 1:3)=1 @i is sufficient to be able to ship the commodity, by the max-
flow min-cut theorem [38, 35]. Thus the algorithm above leads to a 2 f,.,-approximation
algorithm in the single commodity case, since f; is proper. When there are [ > 1 commodi-
ties, fi(S) = clog’ 13 15015, 1.31=1 di for some constant ¢ is known to be sufficient to ship
all commodities by recent results in multicommodity flow theory [49, 103]. Unfortunately,
since this amount of capacity may not be necessary, it does not translate into a straightfor-
ward O( fimax log®1 )-approximation algorithm for the multicommodity fixed-charge network

design problem with negligible flow costs.

7.4 The Prize-Collecting Problems

The prize-collecting traveling salesman problem is a variation of the classical traveling
salesman problem (TSP). In addition to the cost on the edges, we have also a penalty
m; on each vertex ¢. The goal is to find a tour on a subset of the vertices that minimizes
the sum of the cost of the edges in the tour and the vertices not in the tour. We consider

a variant in which a prespecified root vertex r has to be in the tour; this is without loss
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of generality, since we can repeat the algorithm n times, setting each vertex to be the
root. This version of the prize-collecting TSP is a special case of a more general problem
introduced by Balas [9]. The prize-collecting Steiner tree problem is defined analogously.
The standard Steiner tree problem can be seen to be a special case of the prize-collecting
Steiner tree problem in which non-terminals have a penalty of zero, while terminals have a

very large penalty (e.g., equal to the diameter of the graph).

Bienstock, Goemans, Simchi-Levi and Williamson [16] developed the first approximation
algorithms for these problems. The performance guarantees of their algorithms are 5/2 for
the TSP (assuming the triangle inequality) and 3 for the Steiner tree problem. These
approximation algorithms are not very eflicient, however, since they are based upon the
exact solution of a linear programming problem.

The prize-collecting problems cannot be modelled by the integer program (/P). How-
ever, the techniques used in APPROX-UNCROSSABLE and APPROX-PROPER-0-1 can be
modified to give a (2— —)-approximation algorithm for both the prize-collecting TSP (un-
der the triangle inequality) and the prize-collecting Steiner tree problem. Moreover, these
algorithms are purely combinatorial and do not require the solution of a linear program-
ming problem as in Bienstock et al. [16]. We will focus our attention on the prize-collecting

Steiner tree problem, and at the end of the section we will show how the algorithm for the

tree problem can be easily modified to yield a prize-collecting TSP algorithm.

7.4.1 The Prize-Collecting Steiner Tree

The prize-collecting Steiner tree can be formulated as the following integer program:

Min Zcexe—l- Z ZT(ZM)

ecE TCVrgT i€T
subject to:
(PC-IP) 2(8(8)+ > er>1 SCVirgs
TS
Z 7 S 1
TCVrg¢T
e, €{0,1} cek

zp € {0,1} TCcVrgT
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Intuitively, zp is set to 0 for all T" except the set T of all vertices not spanned by the tree of
selected edges. A linear programming relaxation (PC-LP) of the integer program can be
created by replacing the integrality constraints with the constraints z, > 0 and z; > 0 and
dropping the constraint >, zr < 1. In fact, including this constraint does not affect the
optimal solution. Suppose there is some problem instance in which every optimal solution
that minimizes Y, zp has >, 2z > 1. Notice that if z4 > zp > 0 and B € A, then we can
create an equivalent solution by setting zaup < (zauB + 28), 24 < (24 — 2p), and zp < 0.
Continuing this process eventually yields a solution in which z4, zg > 0 implies that either
A C Bor BC A. Thus there is some smallest set C' with zc > 0 such that z, > 0 implies
ADC. I3 pyc2r > 1, we can decrease z¢ without affecting the feasibility of the solution,
contradicting the minimality of ), 2.

The LP relaxation (PC-LP) can be shown to be equivalent to the following, perhaps
more natural, linear programming relaxation of the prize-collecting Steiner tree problem,

which was used by the algorithm of Bienstock et al. [16]:

Min Z CeT, + Z(l — )T

¢EE itr
subject to:
2(6(5)) = i i€Sirgs
z, >0 ec
y; >0 teVii#E

Given a feasible solution to (PC-LP) with the z variables such that z4, 2z > 0 implies that
either A C B or B C A, we can construct a feasible solution of the same cost by setting
Yi = 1 =3 ;cp 2r and leaving z untouched. Similarly, given a feasible solution to the linear
program above with y;, <y, <--- <y, , we can construct a feasible solution to (PC-LP)
of the same cost by setting 2,3 = i, — ¥iys 2{i1,ia} = Yis — Yinr -0 2v = L — i

The dual of (PC-LP) can be formulated as follows:

Max Z Ys

S:rgSs
subject to:
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(PC-D) > ys<ec. cck
S:e€b(S)
sCT ieT
yg > 0 ScVirghb.

The algorithm for the prize-collecting Steiner tree problem is shown in Figure 7-8. The
basic structure of this algorithm is similar to that of APPROX-PROPER-0-1. The algorithm
maintains a forest F of edges, which is initially empty. Hence each vertex v is initially in
its own connected component. Unlike the previous algorithms we have looked at, here we
have no notion of a “violated” set; the sets that are violated depend on which vertices we
choose to include in the Steiner tree. Hence we are going to assign activity or inactivity to
particular sets as the algorithm progresses. Initially, all components except the root r are
considered active.

The algorithm loops, in each iteration doing one of two things. First, the algorithm
may add an edge between two connected components of F. If the resulting component
contains the root r, it becomes inactive; otherwise it is active. Second, the algorithm may
decide to “deactivate” a component. Intuitively, a component is deactivated if the algorithm
decides it is willing to pay the penalties for all vertices in the component. In this case, the
algorithm labels each vertex in the component with the name of the component. The main
loop terminates when all connected components of F are inactive. Since in each iteration
the sum of the number of components and the number of active sets decreases, the loop
terminates after at most 2n — 1 iterations. The final step of the algorithm removes as many
edges from F as possible while maintaining two properties. First, all unlabelled vertices
must be connected to the root, since these vertices were never in any deactivated component
and the algorithm was never willing to pay the penalty for these vertices. Second, if a vertex
with label C' is connected to the root, then so is every vertex with label C' D C'.

As before, the choices of this algorithm are motivated by primal-dual method. We
implicitly construct a solution to the dual (PC-D). Initially all dual variables are set to
zero and the set of selected edges F' is empty. Let T" denote the set of vertices for which we

are willing to pay a penalty; 7" is also empty initially. In each iteration of the main loop,
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ApPPROX-PC-STEINER (V, E,c,7,7)
F—0;T <0

1

2 Comment: Implicitly set ys — 0 for all S C V

3 C—{{v}:veV,o£r}

4 IT—{{r}}

5 For each v € V

6 Unmark v; d(v) < 0; w({v}) < 0

7 If v = r then a(r) < 0 else a(v) — 1

8 While |C| > 0

9 Find edge e = (u,v) with w € C, € C, v € C, € CUZ, C, # C, that minimizes

6 = ce—d(u)—d(v)

() +a(e)
10 Find C € C that minimizes €, = 3;.c m — w(C)
11 € = min(e€y, €)
12 w(C) —w(C)+eforall C eC
13 Comment: Implicitly set yoc «— yc + € for allC € C

14 Forall v € C, € C do d(v) «— d(v)+ ¢
15 Ife=¢

16 C—C—-{CHI—TU{CH, T—TuUC
17 a(v) = 0 forveC

18 Mark all unlabelled vertices of C' with label C
19 else

20 F — FU{e}

21 Delete C, and C, from C and 7

22 w(Cp U Cq) — w(cp) + w(cq)

23 IfreC,uC,

24 IT—TU{C,uC,}

25 a(v) — 0 forall v e C, UC,

26 else

27 C—Cu{C,ucC,}

28 a(v) — 1lforall ve C,UC,

29  F'is derived from F by removing as many edges as possible but so that the following
two properties hold: (1) every unlabelled vertex is connected to r; (2) if vertex v with

label C' is connected to r, then so is every vertex with label C’ O (. In this case,
delete all vertices in these C' from T to yield T".

30 return F' 71"

Figure 7-8: The algorithm for the Prize-Collecting Steiner Tree Problem.
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the algorithm performs a dual improvement step by increasing yc for all active sets C' by a
value € which is as large as possible without violating the two types of packing constraints of
(PC-D): Yos.eess)Ys S coforall e € B, and Yogcr ys < 3ier mi for all T C V. Increasing
the yc for active sets C' by € will cause one of the packing constraints to become tight. If
one of the first kind of constraints becomes tight, then it becomes tight for some edge e
between two connected components of the current forest F’; hence we add this edge to F,
and improve the feasibility of the primal solution. Now suppose one of the second kind of
constraints becomes tight for some set 7. The constraint must have become tight due to
an increase in yc, for some active sets C; C T. Thus it must also be the case that the
second kind of constraint is also tight for some active C' = Cj; it cannot be the case that
Yosce, Ys < 2jec, mj for all active C; CT'. In this case, the algorithm chooses to deactivate
C', and we add the vertices of C' to T, also improving the feasibility of the primal solution.
When there are no active sets remaining, the solution z, = 1 for all € € F and zp = 1 is
feasible for (PC-1P).

As with our other algorithms, we must modify the primal solution in order to get a
good performance guarantee. Intuitively, we would like to ensure that r is connected to all
vertices in V — 7', and delete all other edges. In doing so, we might use edges that connect
r to vertices in T, say to a vertex in component C' deactivated at some point during the
algorithm. Including these edges satisfy the primal constraints for all deactivated €’ 2 C,
so we reduce T by removing all the vertices in these C’ from T. Reducing T may, in turn,
require us to keep more edges connecting vertices in V — T to the root r, possibly allowing
us to reduce 7" further. Thus we remove as many edges as possible to ensure that all vertices
in the original set V' — 1 are connected to r, and that if a vertex in some deactivated C' is
connected to r, then so are all vertices in deactivated C" D C'.

We claim that the algorithm shown in Figure 7-8 behaves exactly in the manner de-
scribed above. The claim follows straightforwardly from the algorithm’s construction of y
and F', and from the fact that d(i) = 3 5,c5 ys and w(C) = Yscc ys at the beginning of
each iteration.

We can now prove the correctness of the algorithm in a manner similar to that of the

previous algorithms.
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Theorem 7.4.1 Let Z}p be the value of an optimal solution to the integer program (PC-1P).
Then APPROX-PC-STEINER produces a set of edges F’, a set of vertices 1", and a feasible

solution y to (PC-D) such that

1

1 »
Ece+z7ri§ <2—m)szc;/’y5§ (2—m)ZPCIP-

e€F"’ €T’

Proof: It is not hard to see that the algorithm produces a feasible solution to (PC-IP),
since F’ has no non-trivial component not containing r and the component containing r is
a tree.

By the construction of F”, each vertex not spanned by F’ (i.e., the vertices in 7”) lies
in some component deactivated at some point during the algorithm. Furthermore, if the
vertex was in some deactivated component C, then none of the vertices of C' are spanned
by F’. Using these observations, plus the manner in which components are formed by
the algorithm, we can partition the vertices of 1" into disjoint deactivated components
Ci,...,Cy. These sets are the maximal labels of the vertices in 7”. Since each Cj is a
deactivated component, it follows that Esgcj Ys = Zz’ecj 7;, and thus that the inequality
to be proven is equivalent to 3, pc. + 305 2 sce, Ys < (2 - —L-) Y scv ¥s- In addition,
since ¢, = Y g..e505)Ys for each e € F' by construction of the algorithm, all we need to

prove is that

E E ’ys-l-zz’ys

e€F' S:ecb(S) Jj SCCy

IN

CEERT

SCcvV

or, rewriting terms,

IN

Ey5|5Ff(5)| + Z E Ys

Jj SCC;

)

SCcv

Using the argument of Section 4.1, we can prove this inequality by showing that at every

iteration, the following “total degree” inequality holds:

Yo ler(OI+ Y {SeC:SC <21,
J

SecC

where C is the set of all active sets in the current iteration. Since |C| < n — 1, the previous
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inequality follows. We prove the total-degree inequality by induction on the main loop.
Pick any particular iteration. Let Z’ be the inactive components N such that ép (N ) # 0,
and let C; be the active sets contained in some C;. Let H be the graph formed by considering
the components in C UZ’ as vertices and the edges e € ép/(C') for active C' as the edges of
H. Let dy = |6p/(N)| for any component N € CUZ’. To prove the inequality, we would
like to show that
Yodn+ 16| <20 -1

NeC

Notice that for all components N € Cy, dyy = 0. Hence if we can show that

S dw <2l -le) - 1,

NeC-C,

then the proof will be complete.

To do this, we show that all but one of the leaves of H must be correspond to active
sets. Suppose that v is an inactive leaf of H, adjacent to edge e, and let I, be the inactive
component corresponding to v. Further suppose that I, does not contain the root r. Since I,
is inactive and does not contain r, it must have been deactivated. Because I, is deactivated,
no vertex in I, is unlabelled; furthermore, since v is a leaf, no vertex in I, can lie on the path
between the root and a vertex which must be connected to the root. By the construction
of F', then, e ¢ F’, which is a contradiction. Therefore, there can be at most one inactive

leaf in H, which must correspond to the component containing r.

Then

S Y 4 Ya

Nec-C, Ne(C—Cy)uT' NeT!

2(Cl =[Gl + 1T = 1) = (217 = 1)

IN

IN

2(ICl = 1c) -1

The inequality holds since all but one of the components in Z’ has degree at least two. B

The algorithm can be implemented in O(n(n 4 y/mloglogn)) time, by using the edge-

selection algorithm given for APPROX-PROPER-0-1 and an O(n?) time edge deletion step.
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AppPrOX-PC-TSP (V, E,c,m,7r)
1 F',T" — ApPROX-PC-STEINER (V, E,c,7,7)

2 Duplicate the edges F’ of the Steiner tree returned to form an Eulerian graph R.
3 Shortcut R to form a tour R’.
4

return R’ T’

Figure 7-9: The algorithm for the Prize-Collecting Traveling Salesman Problem.

Recall that for APPROX-PROPER-0-1 we kept track of an “addition time” for each edge in
a priority queue in order to select the edge minimizing the reduced cost € in each iteration.
For this algorithm, we must also keep track of the time at which we expect each component
to deactivate. We keep a separate priority queue for these deactivation times, and in
each iteration of the main loop we select the edge or deactivate the component having
the minimum addition time or deactivation time respectively. Each iteration of the main
loop requires at most O(1) changes to the elements of the deactivation time priority queue,
leading to an overall time bound of O(nlogn) for maintaining this queue. To implement the
edge deletion step in O(n?) time, we first perform a depth-first search from every unmarked
vertex to the root, and “lock” all the edges and vertices on this path. We then look at all
the deactivated components corresponding to the labels of “locked” vertices or supersets
of these deactivated components. If one of these contains an unlocked vertex, we perform
a depth-first search from the vertex to the root and lock all the edges and vertices on the
path. We continue this process until each locked vertex is in a deactivated component
that contains only locked vertices and whose supersets contain only locked vertices. We
then eliminate all unlocked edges. This procedure requires at most n O(n) time depth-first

searches.

7.4.2 The Prize-Collecting Traveling Salesman Problem

In order to solve the prize-collecting TSP given that edge costs obey the triangle in-
equality, we use the algorithm shown in Figure 7-9. Note that the algorithm uses the above

algorithm for the prize-collecting Steiner tree problem with penalties 7! = 7; /2. To see that

1

— )-approximation algorithm, we need to consider the following

the algorithm is a (2 —

linear programming relaxation of the problem:
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Min Zcexe—l- Z ZT(ZM)

ecE TCV,rgT i€T
subject to:
w(é(S))—}—QZzTZQ r¢g s
T2S
z, >0 ec k
zp >0 TCcV;rgT.

This linear program is a relaxation of an integer program similar to (PC-IP) in which
zp = 1 for the set of vertices 1" not visited by the tour, and zp = 0 otherwise. We relax the
constraint that each vertex in the tour be visited twice to the constraint that each vertex

be visited at least twice. The dual of the linear programming relaxation is

Max 2 E Ys

S:rgs
subject to:

Z ySSCe GEE

S:e€6(S)

QEySSEﬂ'Z TC"CT%T

SCT ieT

ys 2 0 ScVv,rgs.

Notice that this dual is very similar to (PC-D). The dual solution generated by the al-
gorithm for the prize-collecting Steiner tree for penalties 7’ will be feasible for the dual
program above with penalties m. By duality, 23 ¢y ys < Zpopgp, Where Zppgp is the
cost of the optimal solution to the prize-collecting TSP. Given a solution F’ and T’ to

the prize-collecting Steiner tree problem, the cost of our solution to the prize-collecting

TSP is at most 23, . e + D ier T = 22 ,cp € + D jep ™)) Theorem 7.4.1 shows that
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Yoeer Cet i T < (2 - nlj) Y scv Ys, so that

1 1
20) e+ E?rg)SQ(Q—m) D ys < (2—m) Zpcrsp-

e€F! €T’ SCV

Thus the cost of the solution found by the algorithm is within (2 — —L5) of optimal.

7.5 The k-Vertex-Connected Subgraph Problem

So far the problems we have considered have had constraints requiring at least a certain
number of edges in the coboundary of each set. We can, however, use the primal-dual
methodology to solve problems requiring sets to have at least a certain number of neigh-
boring vertices. In particular, our technique extends to solve a basic problem of this kind,
the minimum-cost k-vertex-connected subgraph problem. In this problem, we must find the
minimum-cost set of edges such that there are at least k vertex-disjoint paths between ev-
ery pair of vertices. The minimum-cost 2-vertex-connectivity problem is NP-hard [36], and
the only approximation algorithm known is a 3-approximation algorithm for the 2-vertex-
connectivity problem due to Khuller and Thurimella [70]. By modifying APPROX-WEAKLY-
SUPERMODULAR and APPROX-UNCROSSABLE, we can obtain a 2H(k)-approximation algo-
rithm for the minimum-cost k-vertex-connected subgraph problem for any k.

Menger [92] has shown that a graph is k-vertex connected if and only if it has at least
k+ 1 vertices and there is no vertex set T C V with |T| < k—1 such that the graph induced
by removing 7" is disconnected. Define §(A : B) to be §( A) N é(B). The latter condition is
equivalent to saying that for all |[T| < k—1,forall S CV —T,6(5:V —T —5) # (. Thus
the minimum-cost k-vertex-connected subgraph problem can be modelled by the following

integer program:

Min g CoXy

eeFE
subject to:

(kVC) oo w.>1 TCV, IT|<k—-1, SCV-T
e€s(S:V-T-5)
z. integer ec k.
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We do not need the constraint z, € {0, 1} in this case, since for any feasible solution z to
(kVC) the solution 2/, = 1if . > 0 and 2/ = 0 otherwise is also feasible and of no greater

cost. The dual of the linear relaxation of (kV () is

Max ZySVT
ST
subject to:
(DVC) > Yso < Ce eck,
S5 T:e€b(S:V-T-5)
ysr > 0 TcV, [T|<k-1, SCcV-T.

Asin ApPROX-WEAKLY-SUPERMODULAR, we will augment our solution in phases, starting
with an empty set of edges. Our strategy here will be to select edges so that by the end of
phase p we have an edge set that is p-vertex-connected. The edge set at the end of phase p
will be denoted F,. Asin APPROX-WEAKLY-SUPERMODULAR we will augment F,_; to F,
by adding a set of edges F’ to the coboundaries of “violated” sets; we select a set of edges

F using the primal-dual method, then remove redundant edges to obtain F”.

To define a violated set in this case, we first need some notation. Let I'4(5) be the
vertex neighborhood of S given the set of edges A: that is, the vertices not in S that are
adjacent to some vertex in S5 via an edge in A. We also define the “vertex complement”
Ca(5) of S to be V-8 —T4(5). Let F' be the set of edges selected so far in phase p.
Unless we specify otherwise, the edge set under consideration for both I' and ¢ will always
be F,_; U F, and thus for notational simplicity we drop the subscript. Then a violated set
S is one such that [T'(S)] < p—1 and ((5) # 0. By Menger’s Theorem, the set of edges
F,_y U F is p-vertex-connected if and only if there are no violated sets. Because F,_; is
(p — 1)-vertex-connected, |I'(S)| = p — 1 for any violated set 5.

Instead of looking at all violated sets, we will instead consider only small violated sets.
Call a set S in phase p small if | 5] < Lﬂg;llj If there are no small violated sets, then we

claim that there will be no violated sets, since for any non-small violated set S, the set {(5)

is a small violated set. We can now prove that the small violated sets behave much like the
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violated sets of the APPROX-UNCROSSABLE algorithm. We define the active sets to be the
minimal small violated sets with respect to the edge set F,_; U F’. As before, we can show
that in any particular phase p, the active sets are disjoint. To do this we need the fact that
I'y (9) is submodular for any edge set Y. That is, for any edge set Y and any two sets of
vertices A and B, |I'y(A)| + [I'yv(B)| > [I'y(AU B)| + |[I'y (AN B)|. We also observe that
I'v(ANnB)—A—-BCTIy(A)NnTIy(B).

Lemma 7.5.1 If A and B are crossing small violated sets with respect to the edge set F,_; UF,

then AN B is a small violated set and either AU B or ((AU B) is a small violated set.

Proof: Since A and B are small-violated, |I'(A)| = |I'(B)| = p — 1. Because A and B are
small-violated and cross, we know that [AU B| < n — (p—1) — 1. We would like to show
that ((AN B) # (). Using the relation that (AN B) — A— B C T'(A)NT(B), we see that
(AN B)UT(ANB)| < |[AUBU(I(A)NT(B))| < n— 1, implying that ((AN B) # 0.
Thus by the feasibility of F,_;, [I'(AN B)| > p— 1. By the submodularity of |I'(.5)], it
follows that |[I(AU B)| <p—1. Then [AUBUT(AUB)| <n—-1,o0r ((AUB) # (. Hence
the feasibility of F,_; implies [I'(AU B)| > p — 1. Then it follows by submodularity that
II(AUB)| = |I'(ANB)|=p—1,and AUB and AN B are both violated. AN B is certainly
small-violated, and either AU B or ((A U B) must be small-violated. W

Theorem 7.5.2 The minimal small violated sets with respect to the edge set F,_; U I are

disjoint.

Proof: Suppose there are two active sets A and B which cross. Then by the lemma above,
AN B is also small-violated, which contradicts the minimality of A and B. B

In order to find the minimal small violated sets in phase p, we assume the existence of
an oracle SMALL-VIOLATED(p, F,_; U F') that returns all the active sets (the minimal small
violated sets) with respect to the edge set F,_; U F. Later we will show how to implement
the oracle SMALL-VIOLATED in polynomial time.

The overall algorithm is given in Figure 7-10. The algorithm for each phase is simi-
lar to ApPROX-UNCROSSABLE. In each phase, we select a set of edges F and construct

a dual solution for (DV (). Initially F' is empty and ysr = 0 for all §,7. The dual
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improvement step increases dual variables ycpcy for all active sets €' uniformly until
Y osTeessv-r—s)Ysr = c. for some edge e. In particular, the constraint will become
tight for some edge e € §(C' : ((C')) of some active set C'; we then add this edge e to /' and
continue until there are no small violated (and hence no violated) sets left for the phase.
Notice that an increase in a dual variable yc () does not increase the sums in the dual
constraints for any edge from vertices in C' to vertices in I'(C'). In particular, the sums are
not increased for any edge already in F,_; U F, so an edge from F,_; will never be selected,
and once an edge in F' is selected, ¢. = Y 7. cs5.v_7—5)Ysr for the rest of the phase.
Once there are no small violated sets left, we go through the edges of F' in reverse order,
removing all edges that do not affect the feasibility of the solution for the pth phase, as in
the REGULAR-EDGE-DELETE step of APPROX-UNCROSSABLE.

We now begin to prove that the following theorem, where Z;,, . is the value of an optimal

solution to (kVC).

Theorem 7.5.3 The algorithm APPROX-k-VERTEX-CONN produces a k-vertex-connected

set of edges F), such that
> e <2H(k) Ziy -

e€Fy
Let 2* be the optimal solution to (kV (') of value Zj, . Notice that in phase p, we only

increase dual variables for sets |T| = p—1. In effect, we provide a dual solution to the linear

program
Min Z Coly
=
subject to:
(kVC,) Z z, > 1 TcV,|T|=p-1,5CcV-T
e€8(S:V-T-5)
z, >0 ec k.

*

Then #x is a feasible solution to this linear program: for any sets 5,7 such that

+1

T = p—1and S C V =T, it must be the case that z* has at least k — (p — 1) edges

in the cut from S to V — 1 — 5. Thus k—11>+1$*(6(5 V-T-95)>1,and 35 pysr <

k—;TZZVC for the feasible dual solution constructed in phase p. If we can show that in
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ArprOX-k-VERTEX-CONN (V, E k)

0 ~1 O U = W N =

10
11
12

13
14
15
16
17
18
19
20
21
22

23
24
25

26
27

FOF®

forp — 1tok

Comment: Begin phase p

F—0

Comment: Implicitly set ysp «— 0 for all S, T CV

1 — 0

dle) —O0forallee F— F,_;
C «— SMALL-VIOLATED(p, F},_1)

a(e) —

2 ife € 6(C1 . C(Cl)) N (5(C2 . C(CQ)) for Cl,CQ € C,Cl }é CQ
0 ife¢é(C:¢(C))forany C eC

1 otherwise

while |C| > 0
71— 1+ 1
Comment: Begin iteration 1

Find edge e; = (u,v), a(e;) # 0, that minimizes ¢ =

ce—d(e)

a(e)

Forallec £ —F,_;
d(e) — d(e)+ a(e)-€
Comment: Implicitly sel ycricy < Yo,rey + € for all C € C
F — FU{e}
C «— SMALL-VIOLATED(p, F,_; U F)
Update a(e)

Comment: End iteration 1

Comment: Fdge deletion stage

F— F

for j «— ¢ downto 1
If Fl,_y U F' — {e;} is p-vertex-connected

F— 1 —{e}
F, —F'UF,
return F,

Figure 7-10: The algorithm for k-vertex-connectivity.
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phase p, > cpic. <23 51 Ys, then the cost of the overall set of edges F; is no more than
E;f:l k—iTZ;:VC = 2H(k)Z}y ¢, giving the desired performance guarantee.

Now we must show that >, p c. <2} 57 ysr in phase p. By rewriting > c. we get

> > ysr <2 ysor-

¢€F! S T:e€8(S:V-T-5) 5,T

Rewriting again gives

Zy&T . |6F1(S . ‘/—T— S)| S QZyS7T'
s, T

ST

To prove this statement, we use the techniques from Section 4.1 to reduce the inequality to

proving that at each iteration,

Y16 (C 1 ¢(C))] < 20C).

cec

To prove this, we essentially use the proof of the performance guarantee for ApPPROX-
UNCROSSABLE with REGULAR-EDGE-DELETE, as in Section 4.1.2.

Define Y = Jgee 00/ (C 2 ¢(C)); that is, Y consists of the edges in F” in the coboundary
of active sets C' and not incident to vertices in I'(C'). The set ((C') and I'(C') are defined
with respect to the set of edges F,_; U F, where F' is the set of edges chosen up to (but
not including) the current iteration. Notice that all the edges in Y must have been added

during or after the current iteration. We prove a lemma analogous to Lemma 4.1.2.

Lemma 7.5.4 For each edge e € Y there exists a witness set S, C V such that
1. 6F’(Se H C(Se)) = {6},
2. 5, is small and violated in the current iteration,

3. Foreach C € C either C C S, or CN S, = 0.

Proof: Any edge e € Y is also in F”, and thus during the edge deletion stage the removal
of e causes there to exist some violated set, and hence some small violated set; call this

set 5. In other words, there can exist no other ¢’ € F” that is also in ép/ (5 : ((.5)). This
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set S will be the witness set S, for e, and clearly satisfies (1). Now let F' be all the edges
added in this phase before the current iteration. To show (2) and (3), notice that when
considering edge e in the reverse delete stage, no edge in F had yet been removed. Hence
S is small-violated even if all the edges of F are included; that is, 5, is small-violated in
the current iteration. Property (3) follows by the minimality of the active sets C. B

We can now prove a lemma analogous to Lemma 4.1.3. Consider a collection of sets S,
satisfying the conditions of the preceding lemma, taken over all the edges e in Y. Recall
that such a collection is called a witness family. As in Lemma 4.1.3, we will show that there
exists a laminar witness family by uncrossing pairs of sets using Lemma 7.5.1. Because we
can replace a pair of sets A, B with a set ((AU B) ¢ AU B, it becomes more difficult to

prove that the uncrossing process terminates.
Lemma 7.5.5 If A is a violated set, then ((({(A4)) = A.

Proof: It is not hard to see that A C (({(A)). Suppose there exists a vertex v € ((((A))—A.
Then it must be the case that v € I'(A), ((AU {v}) = ((A), and I'(AU {v}) =T'(4) — {v}.
Since A is violated, ((A) # @ and |T'(A)| = p—1. But then ((AU{v}) # @ and [T(AU{v})| <
p — 1, which contradicts the feasibility of the edge set F,_;. B

Lemma 7.5.6 Let S be a collection of small violated sets. Then there exists a laminar family
of small violated sets formed by successively replacing a crossing pair of sets A and B with an

appropriate choice of AN B and AU B, or AN B and ((AU B).

Proof: We use a potential function

®(S) = (IS +1¢(5)”)

Ses

to prove the lemma. If A and B cross and are both small violated sets, then by Lemma
7.5.1 either AN B and AU B, or AN B and ((A U B) are both small and violated. Let S’
be the collection of sets formed by replacing A and B with the pair of small violated sets.
We will show that ®(S’) — ®(S) > 0. Since uncrossing pairs of sets does not increase the
number of sets in the collection, ® can never grow larger than 2|S|-n? Thus the uncrossing

process must terminate with a laminar family.
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Figure 7-11: Two crossing sets A and B.

Let

a=|AnN B b=|A—T(B)—B| ¢=|B—TI(A)- A
¢ =|ANT(B) y=BAT(A)]  z=|I(A)nT(B)

p=I[I(A)-T(B)-B] ¢=|I'(B)-TI(A)-A] d=][((AUB)

(see Figure 7-11). The initial contribution of A to ®(S)is (e 4+ 2 + b)* + (¢ + ¢ + d)?, and
the initial contribution of B is (a +y+¢)?+ (b+ p+d)*. After uncrossing, the contribution
of AN B is at least a®> + (b+ p+ d 4+ ¢ + ¢)* and the contribution of AU B (or ((A U B),
which we treat symmetrically by Lemma 7.5.5) is at least d? + (a+b+c+az+ y)2. Since
all other sets in &’ stay the same, ®(S’) — ®(S) is at least the difference between these two
quantities, which, by algebraic manipulation, is 2((b+ p)(c+ ¢) 4+ (z + b)(y + ¢)). Since A
and B are crossing, |A— B| > 0 and | B — A| > 0, which implies that z4+b > 0 and y+¢ > 0.
Thus ®(S') — ¢(S)>0. A

We can now prove the following.
Lemma 7.5.7 There exists a laminar witness family.

Proof: By Lemma 7.5.4, there exists a witness family. From this collection of sets we can
form a laminar collection of sets as follows. We maintain that all sets S in the collection
are small and violated. If the collection is not laminar, there exists a pair of sets A, B
that cross. We uncross A and B by replacing them in the collection with either A U B and
AN B or with ((AU B) and AN B. By Lemma 7.5.1, we know that at least one of these
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two uncrossings yields two small violated sets. This procedure terminates with a laminar
collection by Lemma 7.5.6.

We claim that the resulting laminar collection forms a witness family. This claim can be
proven by induction on the uncrossing process. Obviously property (2) holds. Property (3)
continues to hold because the uncrossed sets are small violated sets for the current iteration,
and must either contain or be disjoint from the minimal small violated sets. Now we must
prove (1). Suppose we have two crossing witness sets S; and 53 corresponding to edges

e; and e,, and, without loss of generality (by Lemma 7.5.5) suppose we uncross them into

51 NS5 and S U S,. We claim that
|6F’(Sl . C(Sl))| + |(5F/(SQ . C(Sg))| Z |6F’(Sl U SQ . C(Sl U SQ))l + |6F’(Sl N Sg . C(Sl N SQ))|

This follows from a simple counting argument showing that each edge counted on the right-
hand side is accounted for by the same edge on the left-hand side. Because F” covers all small
violated sets, we know that |0p(S1 U8 : ((S1US2))] > 1and [6p(S51N 52 : ((51N85))] > 1,
and so it must be the case that |§p/(5, U Sy 1 ((S1U 99))] = [0 (51N 52 : (51N 85,))| = 1.
Then either e; € §%(51U S5 : ((S1US,)) and ey € 8p(51 N S2 : (51N 93)), or vice versa. B

The remaining proof of the inequality is essentially identical to the proof in Section
4.1.2, but we include it here for the sake of completeness. Let & be a laminar witness
family. Augment the family with the vertex set V. The family can be viewed as defining a
tree H with a vertex vg for each S € § and edge (vg,vr) if T is the smallest element of S
properly containing S. To each active set C' € C we associate the smallest set S € § that
contains it. We will call a vertex vg active if § is associated with some active set C'. Let

L(vs) be the collection of sets C' € C associated with an active vertex vg.
Lemma 7.5.8 The tree H has at most one inactive leaf.

Proof: Only V and the minimal (under inclusion) witness sets can correspond to leaves.
Any minimal witness set is a small violated set, and thus must contain an active set which

corresponds to it. Thus only V' can correspond to an inactive leaf. B

Lemma 7.5.9 For any active vertex vs in H, the degree of vg is at least ECEL(US) |6p(C -
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CEI-

Proof: Note that the one-to-one mapping between the edges of Y and the witness sets
implies a one-to-one mapping between the edges of Y and the edges of H: each witness set S
defines a unique edge (vs, vp) of H, where T' contains 5. Consider any edge e € 65/ (C : ((C))
for some C' € C. Let (vs,,vr) be the edge defined by the witness set S.. The active set C'
must be associated with either vs, or vy. By summing over all edges e € §(C : ((C)) for
all active sets C' corresponding to an active vertex of H (that is, all C' € L(vg)), we obtain
the lemma. W

Let H, denote the set of active vertices in H and let d, denote the degree of a vertex v.

Then,

Sd=Ydo— Y d <2AIH|-1) = 2(|H|— |H - 1)~ 1= 2| H,] - 1.

veEH, veH veEH—-H,

This inequality holds since H is a tree with |H| — 1 edges, and since all vertices of H — H,
except for possibly one have degree at least 2. The lemma above implies that )", . [0p/(C :

C(C)| £ ¥pen, dyv, while clearly |H,| < |C|. Thus

Y16 (C (O] £ 2IC],

cec

as desired.

We now turn to the problem of implementing the algorithm. As with APPROX-UNCROSSABLE,
we must show how to implement the strong oracle, how to select the edge minimizing € in
each iteration, and how to remove edges. Our implementation techniques from Chapter
5 do not seem to generalize cleanly to this case, so we will merely give a straightforward
implementation.

The strong oracle SMALL-VIOLATED can be implemented using network flow theory.
Suppose that in phase p there is a minimal small violated set S with respect to the edge set
F,_; UF. We can determine S as follows. Construct a directed graph G' = (V', E’) from
the graph (V, F,_; U F) by making two copies v',v" for each v € V, adding directed edges

(u”,v") and (v"”,u') for each (u,v) € F,_; U F, and adding an edge (v', ") for each v € V.
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Consider a vertex s € § and a vertex ¢ € ((.5). It is known that the value of a maximum
s'-t" flow in G’ corresponds to the number of vertex-disjoint paths between s and ¢ in G
[98, p. 458]. Furthermore, the minimal mincut in G’ will correspond to 5. The minimal
mincut is given by the vertices reachable from s in the residual graph of the flow.

Thus a straightforward way of implementing SMALL-VIOLATED is to calculate an s-1
maximum flow for all pairs of vertices s,t € V, find all the minimal mincuts, then extract
all the minimal small violated sets from this collection. Since there will be O(n?) candidate
sets, it will take O(n”) time to extract the minimal small violated sets. We can, as in Section
5.1.3, cut down the time incurred by the sequence of calls to SMALL-VIOLATED by keeping
track of the residual graphs for each network flow problem. At the beginning of phase p, we
ensure that we have found a flow of at least p in each graph if such a flow exists. Whenever
the algorithm adds an edge, we add the edge to each graph, and see if it makes any more
vertices reachable from s. Given the active sets from the previous iteration, we can then
extract the new active sets in O(n?) time. Let m’ = min(nk,m). As in Section 5.1.3, it
will take O(km’) total time per vertex pair to keep the graph updated at the beginning of
each phase, and O(m') time per vertex pair to find the new minimal mincuts in the graph
over the course of a phase. Thus implementing SMALL-VIOLATED will take O(km/'n?) time
through the course of the algorithm.

Toimplement the edge selection step, we keep track of a variable d(e) = 3= 7. es5(5.v —7_s) Ys,7

for each edge e. Let a(e) denote the number of sets C' € C for which e € §(C : ((C')). Then

ce—d(e)
a(e)

7.5.1, we can prove as in Lemma 3.2.2 that the active sets over all iterations of a phase

in each iteration we search for the edge that minimizes ¢ = Because of Lemma
form a laminar family. Thus we can, as before, use a union-find structure to keep track
of the vertices in the current collection C of active sets. Whenever a new active set C' is
formed, we use O(m'a(n,n)) time to find the vertices in I'(C'). Then in each iteration we
examine each edge to compute %ﬂ. This takes O(a(n,n)+ k) time per edge: O(a(n,n))
time to determine the C' € C to which its endpoints belong and O(k) time to check if the
edge is in §(C : ((C)). It takes O(na(n,n)) time per phase to maintain the union-find
structure on the active sets. Thus the overall running time of the edge selection process is

O(mn(a(n,n)+ k)) per phase.
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Every time an edge is removed in the edge deletion stage of phase p, we must verify
that the remaining graph is still p-vertex connected. Steiglitz, Weiner, and Kleitman [117]
have shown that this can be done with O(pn) network flows. Since each flow is in a graph
with m’ edges, and we need only p augmenting paths per flow, the time needed to compute
each flow is O(pm'). We check O(kn) edges for deletion over the course of the algorithm,

so that the total time used for the edge deletion step is O(k*m'n?).

The discussion above leads to the following theorem.

Theorem 7.5.10 The algorithm APPROX-k-VERTEX-CONN runs in O(k*m/n?) time and

produces a k-vertex-connected set of edges F such that

> e <2H(k) Ziy -

e€Fy



150



CHAPTER 8

Experimental Results

The main criticism which is often formulated with regard to approximation algorithms is
that, although they are backed up by a performance guarantee, they might not generate
“nearly-optimal” solutions in practice. Indeed, a practitioner will seldom be satisfied with
a solution guaranteed to be of cost less than, say, twice the optimum cost; by far, he
will prefer a heuristic algorithm which typically generates a solution within, say, 3% of
optimality, although this heuristic might from time to time generate a more costly solution.
For example, in the context of the traveling salesman problem, computational studies show
that the heuristic algorithm of Lin and Kernighan [85] outperforms in practice the algorithm
of Christofides [17], although the latter has a performance guarantee of 2: Christofides’
algorithm typically comes within 9% of optimal, while Lin-Kernighan comes within 2%
[40].

Motivated by these comments, this thesis initiates a computational study of the ap-
proximation algorithms presented in the previous chapters. We study our 2-approximation
algorithm for minimum-weight perfect matching based on APPROX-PROPER-0-1 (see Sec-
tion 6.3). We restrict our attention to Euclidean instances where the edge costs are the
distances between points under the L, or L., norms. The main reason for choosing to
study our Fuclidean matching approximation algorithm is that a number of heuristics and

exact algorithms for Euclidean matching have been designed and implemented, and it is not
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difficult to compare the performance of our algorithm to other algorithms, both in terms of
running time and quality of solutions produced.

In addition to the original algorithm of Edmonds [31], other algorithms for minimum-
weight perfect matching have been devised by Cunningham and Marsh [23], Derigs [25],
Grotschel and Holland [56], and Lessard, Rousseau, and Minoux [82]. Various implemen-
tations of these algorithms have been studied by Applegate and Cook [5], Cunningham
and Marsh [23], Derigs [24, 25, 26], Derigs and Metz [27, 28], and Lessard, Rousseau, and
Minoux [82]. Aside from Applegate and Cook’s paper, the largest problem studied in these
papers was on 1000 vertices; Applegate and Cook solve one example with 101,230 vertices.

Many heuristics for Euclidean perfect matching have been proposed. A survey of many
of these heuristics can be found in Avis [8]. Computational studies of some of them have
been carried out by Iri, Murota, and Matsui [64] and Jinger and Pulleyblank [67]. The

largest instance in these two studies had 10,000 vertices.

The remainder of the chapter is divided into four sections. Section 8.1 discusses the
implementation of APPROX-PROPER-0-1 that we used in our study. The problem with the
implementation given in Chapter 5 is that it uses O(n?) space, which severely restricts the
size of the instances that can be approximated. Section 8.2 reviews known results about the
behavior of Euclidean optimization problems on random instances. These results prompted
our study of particular properties of the approximation algorithm. Section 8.3 gives the

results of our study. We conclude with a discussion of the results in Section 8.4.

8.1 Description of an Implementation

In this section, we describe the implementation of APPROX-PROPER-0-1 that we use in
our computational study. The heart of the implementation is a new implementation of the
edge selection routine. Recall that APPROX-PROPER-0-1 maintains variables d(v) for each
vertex v, and that for the minimum-weight perfect matching problem we use the proper

function A(S) = |9|(mod 2). In each iteration, we select the edge e = (u,v) between con-

ce—d(u)—d(v)

By Hh(C,) " The packet implementation

nected components C), and C/, that minimizes € =

of the edge selection step given in Section 5.2.2 is somewhat complicated to code. The
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simple implementation described in Section 5.2.1 has two main disadvantages for perform-
ing computational experiments. The first is that it uses ©(n?) space; this severely limits
the size of the instances that can be solved. The second is that the running time is in fact
O(n?logn): the algorithm must add at least n/2 edges to obtain a feasible solution, necessi-
tating @(n?) queue operations. The main theoretical advantage of our new implementation
compared to the one given above is that it is much more space efficient, using only O(n)
space. Moreover, although its worst-case time complexity appears to be worse than the
original implementation, it performs well enough on average to allow us to run relatively
large instances. It will require O(n?) queue operations, and we will see experimentally that
it requires O(n'*¢) queue operations on random instances, although other factors will now
dominate the running time.

Before we go on to describe the main idea behind selecting edges in our implementation,
we note that several small tricks are necessary to ensure that other parts of the algorithm
do not force the running time to be Q(n?). For example, updating the d(v) variables each
iteration would take ©@(n?) time. To avoid this, we augment the union-find structure used
to keep track of the connected components of the current edge set. Since the d(v) are
increased by the same amount for all vertices v in the same component, we increase an
offset in the root of the component, and define d(v) to be the sum of the offsets along the
path to the root. In addition, we let the increases for a component accumulate and only
change the offset when we merge the component with another component, or when we need
to calculate d(v) for some vertex v in the component.

Recall that the current time T of the algorithm is the sum of the values of ¢ over
the preceding iterations, and the addition time of an edge e = (u,v) is defined to be
T+ %%%. The basic idea of the implementation, suggested to us by David Johnson,
is that each component should maintain an estimate of its closest neighboring component
under addition times. The corresponding edges are placed in a priority queue with the
estimates as the key values. The estimates are maintained in such a way that the shortest
edge (under addition times) between two components is always found in any iteration; thus
the algorithm can be successfully implemented. The main advantage of this implementation

is its space efficiency: we need to keep track of the keys of only |C UZ| edges, where C UZ
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is the set of components.

More formally, let [(e) denote the current addition time of edge e = (7,j). For two
components C), and C, in CUZ, let I(C},,C,) be equal to the smallest addition time of an
edge with one endpoint in C), and the other in C;. The key of an edge e in the queue will
be denoted by k(e) and corresponds to the addition time of that edge when it was added
to the queue. By abuse of notation, we let £(C') denote the key of the edge in the queue
which was selected by component C'.

The implementation works as follows:

e Initially, every vertex calculates its nearest neighbor (under addition times) and puts

the corresponding edge in the priority queue with a key value of the addition time.

e Whenever we pull an edge e off the queue, we check if its key value k(e) is no less
than its actual addition time /(e). We maintain that whenever this is true, then the
edge is the next edge that should be added; that is, it has the smallest addition time.
Whenever two components get merged into one, we find its new nearest neighbor

under addition times.

o When the key value of the edge e is less than the actual addition time, we then search
for the associated component’s real nearest neighbor, bounding the search by the

correct addition time [(e) of e.

In order to prove that the implementation is correct, we first prove that it maintains an

invariant.

Lemma 8.1.1 At any point in the algorithm, for all C,,C, € C, min(k(C,),k(C,)) <
(G, Cy).

Proof: Certainly the invariant is true initially. Suppose that we insert an edge e selected
by component C' to the queue. This insertion might be the result of either two components
merging into C' or the discovery that the edge in the queue corresponding to C' has a key less
than its addition time. In both cases, the invariant is maintained for any two components

C, and C, different from C'. Moreover, if €, = C then our choice of the edge to insert
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guarantees that min(k(C),k(C,)) < k(C) = k(e) = l(e) < I(C,C,), implying that the
invariant continues to hold. W

The invariant leads to a proof of correctness.

Theorem 8.1.2 The implementation selects an edge with the smallest addition time in every

iteration.

Proof: In each iteration of the algorithm, we must find the edge with the smallest addition
time. Let @ denote the smallest addition time of this iteration, and let e be the edge at
the top of the queue. We will show that whenever k(e) > I(e) then [(e) = @ and thus
the algorithm correctly selects edge e. Whenever k(e) < I(e) we replace the queue element
e with another edge e’ such that k(e’) = [(¢’). Such a replacement does not affect the
distances between components or the other key values in the queue, so we can replace at
most |C| number of edges before we must reach the case that k(e) > I(e) for the top element
e of the queue.

Suppose k(e) > I(e). By the invariant, for any C,, C, € CUZ, we have min(k(C,), k(C,)) <
[(C,,C,). But since e is the edge at the top of the queue, k(e) < k(C) forall C € CUZT
and, thus, k(e) < [(C,,C,). The fact that I(e) < k(e) now implies that I(e) < I(C,, C,) for
any C,,C, € CUZ. In other words, e is an edge with smallest addition time. W

We now evaluate the worst-case number of queue operations. The argument of the
theorem shows that we perform at most O(n) queue operations for each edge selection.
This implies that the algorithm performs a total of O(n?) queue operations.

In order to complete the description of our implementation, we must describe how to
find an edge e that represents the nearest neighbor of a component C' under addition time.
To do this, we use k-d trees of Friedman, Bentley, and Finkel [41] as described in Bentley
[13]. A k-d tree is a binary tree that corresponds to a partitioning of a given set of points
in d-dimensional space; here we use d = 2. The tree is constructed by determining whether
the points are spread out most in the x or y direction, then finding the vertical or horizontal
line that splits the points in half in that direction. The line determines an internal node
of the tree, and the procedure is performed recursively on each half until the number of

points remaining is below a certain threshold (usually 5 or 6). Hence each leaf in the tree
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corresponds to a bucket containing at most a certain number of points. The tree can be
used to perform a search for the nearest neighbor of a given point under a number of norms
(including L, L, and L., ): at each internal node we first search the subtree containing
the given point, then search the other tree iff the nearest neighbor found so far is no closer
than the distance from the given point to the line determining the internal node. Friedman
et al. show experimentally that this search takes O(logn) expected time, and Bentley [13]
gives a bottom-up variation that seems to take O(1) expected time. Notice that this search
method also lends itself to searching for the nearest neighbor within a certain radius.

To find the nearest neighbor of a component € under addition time, we iterate through
the vertices in C' to find the smallest edge (under addition time) from the vertex to a vertex
not in C'. We use the smallest edge found so far to bound the search on the next vertex.
Let v; denote the point in the Euclidean plane corresponding to vertex ¢, and let ||v; — v;]]
denote the distance between vertices ¢ and j, and hence the cost of edge (¢, 7). Suppose we
are searching from vertex ¢ in component C', the current time is T, and the smallest edge
found so far has addition time a. Then since d(v) < T for all v € V, any potentially smaller
edge must be within distance (¢ — T)(h(C) + 1)+ d(i) + 1. As long as T remains small,
this reasonably restricts the number of points that we have to consider.

As one might suspect, the time spent performing these searches dominates all other
operations in our implementation. Therefore, we introduce a few tricks for speeding up
these searches. The first trick is that whenever we notice that all the vertices in a subtree
of the k-d tree belong to the same component, we label the subtree with the name of that
component. Then whenever we search for the nearest neighbor of a vertex in C', we ignore
all subtrees labelled C'. This trick is useful as C' becomes large and most of the neighboring
vertices of a given vertex in C are also in C.

Another trick we use is that when searching for the nearest neighbor of a vertex ¢ in C,
we can sometimes infer when possible nearest neighbor candidates will be closer to another
vertex j in C than i. We say that ¢ is shadowed by j. Thus we can disregard these nearest
neighbor candidates. To be more formal, consider the four quadrants of the plane formed
by using v; as the origin (see Figure 8-1). Let (z;,y;) denote the coordinates of v;. Let n;

be the Euclidean point (z; 4+ d(7),y;) and let e; be the point (z;,y; + d(7)).
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M

Vi ei
1 \%

Figure 8-1: The four quadrants around v;.

Theorem 8.1.3 Suppose there is some other vertex j in C such that j is not in quadrant Ill

(i.e. 7 is such that z; > z; or y; > y;), and

ln: — ;]| < d(j)and [le; — v;]| < d(5).

Then, for any vertex ¢ in quadrant | (z, > z; and y, > y;) that is in component C’ # C', vertex

7 is at least as close to vertex ¢ under addition times as is vertex ¢.

Proof: To show this, we will prove that [|v, — v;|| — d(j) < [|v, — vi|| — d(¢). From this it

; llvg—vsll=d(i)—d(a) o llvg=vill=d(i)—d(q)
will follow that HEITRET < IR

We consider two cases. First suppose that v; is in quadrant I. Because vertex ¢ is not
in component C', it cannot lie inside the triangle defined by v;, n; and e;. Furthermore, v,
cannot lie inside the triangle defined by v;, n; and e; since both n; and e; are within distance
d(7)of v;. As aresult, the line segment (v,, v;) must intersect either the line segment (n;, v;)
or the line segment (v;,e;) (see Figure 8-2). Assume the former (the other case is similar),

and let m be the intersection point. Then

[0 = vgl| + llvg = mill = llvs = mll + [l = nal| 4 [log = ml] + [lm = vyl| > [Jos = nal| + [Jog =05l

which implies that [|v, — v;|| + d(j) > ||v, — v;]| + d(%), as desired.
Now suppose that v; is in quadrant IV (the case for II is similar). Since |Jv; — v;|] <

In;—v;|| < d(j)and v, is not in the same component as v; and v;, v, cannot be in the triangle
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Vg

n; ¢ Vi

Vi &j

Figure 8-2: Illustration of the case in which v, is in quadrant I.

defined by v;, v;, and n;. Hence, the line segments (v,, v;) and (n;, v;) must intersect. Then
the proof is the same as above. B

Thus if vertex 7 is shadowed as in the statement of the theorem, we need not look for
nearest neighbors of ¢ in quadrant I. Obviously, shadowing is symmetric with respect to
quadrants. Once the size of a component has increased by a certain amount, we sweep
through the component, determining in which quadrants each vertex is shadowed. We store
this information in four bits for each vertex and use it when we perform nearest neighbor
searches to cut down the scope of the search for each vertex. If a vertex is shadowed in all
four quadrants, then we do not perform a search on it at all.

In conclusion, we note that the final step of the algorithm for minimum-weight perfect
matching, which transforms the even-sized components into a perfect matching, is not
implemented as described in Section 6.3. Indeed, we have observed experimentally that
most of these components contain few vertices (see Section 8.3 for details). As a result, for
any component having at most 10 vertices, we compute optimally the perfect matching on

the vertices spanned.
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8.2 Probabilistic Analysis of Euclidean Functionals

Our study of the behavior of the approximation algorithm on random instances is prompted
by a wealth of results about the behavior of combinatorial optimization problems on ran-
domly distributed Euclidean instances. In this section, we review the results known about
Euclidean matching and other problems, and indicate results that are likely to be true about
the approximation algorithm.

In the basic version of the Fuclidean model, the vertices of the problem instance are
distributed independently and uniformly in the unit square [0, 1]? and the Euclidean metric
plays the role of cost function. The functionals of interest are typically the values of com-
binatorial optimization problems (such as the traveling salesman, matching or minimum
spanning tree problems) on these randomly distributed points. The behavior of these func-
tionals is somewhat independent of the functional itself and, for these reasons, we briefly
review some of these probabilistic results for the most studied problem, the traveling sales-
man problem. We also indicate results likely to hold, although they have never been proved.
For a more detailed picture of the field, the reader is referred to [115, 69, 113].

The area of probabilistic analysis under the Euclidean model has its origin in the pio-
neering paper of Beardwood, Halton, and Hammersley [11]. It characterizes the asymptotic
behavior of the value of the traveling salesman problem by proving the existence of a con-

stant Opgp such that
= Brsp almost surely (8.1)

where T'S P,, denotes the value of the optimal tour on X, X», ..., X,, with the X;’s being an
infinite sequence of independently and uniformly distributed vertices from [0, 1]>. We should
point out that the exact value of S75p is not known. More recently, a careful analysis of the
functional has led to the following results and/or conjectures. It is known that Var T'S P,
is upper bounded by a constant (see Steele [114]): Var TSP, < £ 4 O(+). Quoting Steele
113],

it seems inevitable that one has a genuine limit, lim,,_.., VarTSP, = ¢ > 0.
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It is less certain but (still very likely) that one has a central limit theorem

TSP, — E[TSP,] ~ N(0,0?).

Rhee and Talagrand [111] have proved a first step towards this central limit theorem by
showing that the tails of TS P,, are Gaussian or subgaussian: there exists K such that, for all
t, Pr(|TSP, — E[TSP,]| > t) < Ke */%_ From the knowledge of E[T S P,] for a finite value
of n, one can derive a bound on the limiting constant 8y5p. Indeed (see Jaillet [65]), there
exists a constant ypsp < 9.5 such that, for all n, |E[T'S P,] — Brspy/n| < yrsp. Furthermore,
it seems likely that there exists a limit apsp such that lim,_ ., |E[TSP,] — Brsp/n| =
arsp.

Some of these results also hold for other functionals; see Steele [115], Goemans [51], and
the references above. However, for the minimum-cost perfect matching problem and its as-
sociated functional M, only the asymptotic behavior (8.1) is known to hold (Papadimitriou
[97]), although the other results and/or conjectures are likely to be true.

From these results and/or conjectures, we shall implicitly assume for our experimental
study that, for several functionals L, L, is normally distributed with mean Bz/n + af
and variance o7. These functionals are the values of the minimum-cost perfect matching,
and also of F”’, the perfect matching and the dual solution returned by our approximation
algorithm. We shall denote these additional functionals by F’, P (for primal) and D (for
dual).

Functionals of a more structural nature have also been studied. For example, Steele et
al. [116] have shown that there exist constants v, such that the number of degree k vertices
in a minimum-cost spanning tree divided by n is almost surely equal to v,. In a set of

experiments Steele et al. estimated these constants to be 0y = .221, v, = .566, 3 = .2006,

vy = .007, and 5 = .000. It is known that v, = 0 for k£ > 6.

8.3 Results

We summarize our main experimental results in a sequence of tables. Table 8.1 contains our
results on structured examples. We drew our structured examples from the Traveling Sales-

man Library, TSPLIB [108]. Tables 8.2 and 8.3 contain our results on random instances;
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the first table is for instances using the L, norm, and the second is for instances using the
L, norm. The columns LBGAP and OPTGAP give the ratio of the cost of the approximate
matching to the cost of the dual lower bound and to the cost of an optimal matching respec-
tively. For the purposes of comparison, we used the efficient code of Applegate and Cook
[5] to find optimal matchings. We used the variation of the Applegate and Cook code which
begins with a fractional 10 nearest neighbor graph. The Time columns specify the running
time of the approximation algorithm, while the AC Time column specifies the running time
of the Applegate and Cook algorithm. All running times are in CPU seconds on a Silicon
Graphics Challenge machine with eight 100Mhz MIPS R4400 processors. The Speedup col-
umn gives the ratio of the running time of Applegate and Cook’s algorithm to the running
time of the approximation algorithm. We summarize our estimates of the parameters 8 and
a in Table 8.4. We include for comparison parameters given for other matching heuristics.
Finally, some asymptotic estimates of structural properties of the solutions are given in
Table 8.5. Each of these tables is discussed in the following paragraphs.

As mentioned above, the structured examples in Table 8.1 were taken from the TSPLIB.
The number in the problem name indicates the number of vertices in the problem. We
attempted to use the same procedure as given in Applegate and Cook [5]; namely, if the
example contained an odd number of points, we sorted by z and y coordinates, then deleted
the last point. We also attempted as much as possible to run the same suite of examples as
given in [5]. The solution obtained by the approximation algorithm for the problem r1002
is shown in Figure 8-9.

The random examples in Tables 8.2 and 8.3 were generated on a 2?° by 2?° grid using
the UNIX random() function. A single seed was used to generate all the instances of a
given size. The first entry of Table 8.2 comes from a sequence of 1000 experiments run
separately on a VAX 9000 (11 data points had to be omitted). We used these experiments
to get an upper bound on the variance of the matching parameters for ', P, D, and M on
the unit square. Using the parameter with the largest variance (#”), we obtained an upper
bound of .05399 with 99% confidence. This information was used to decide the number of
experiments to perform in order to obtain small confidence intervals on the parameters .

We did not use the 1000 experiments in these parameter estimations.
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Problem Name | Norm | LBGAP | OPTGAP Time | AC Time
r1002 Lo 1.0459 1.0154 3.57 2.69
r2392 Ly 1.0357 1.0098 7.38 11.51
pcb3038 Lo 1.0298 1.0093 30.32 22.26
r15934 Lo 1.0237 1.0093 326.30 119.85
pla7396 Lo 1.0172 1.0094 461.25 203.11
rl11848 Lo 1.0287 1.0118 944.60 229.82
d18512 Lo 1.0357 1.0164 3651.13 664.93
r20726 Lo 1.0440 1.0188 718.95 4636.06
pla33810 Lo 1.0214 1.0169 | 24687.20 1704.09
pla85900 Ly 1.0152 1.0134 | 107653.81 6202.22

Table 8.1: Experimental results on TSPLIB instances.

Ave Ave Max Max Ave
Size || Trials | LBGAP | OPTGAP | LBGAP | OPTGAP || Ave Time | Speedup
210 989 1.0369 1.0159 1.0587 1.0346 - -
210 64 1.0369 1.0158 1.0615 1.0367 5.09 .92
211 64 1.0369 1.0160 1.0486 1.0245 21.60 .92
212 32 1.0372 1.0165 1.0500 1.0265 79.75 1.12
213 32 1.0361 1.0157 1.0434 1.0208 261.59 1.72
214 16 1.0368 1.0163 1.0390 1.0189 1330.69 2.17
215 16 1.0371 1.0165 1.0400 1.0189 7533.67 2.00
216 8 1.0370 1.0164 1.0379 1.0179 32942.70 2.00
217 4 1.0374 1.0163 1.0383 1.0170 || 200820.00 1.87

Table 8.2: Experimental results on random instances using the L, norm.
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Ave Ave Max Max Ave
Size || Trials | LBGAP | OPTGAP | LBGAP | OPTGAP || Ave Time | Speedup
210 64 1.0440 1.0190 1.0644 1.0382 4.04 73
211 64 1.0440 1.0197 1.0564 1.0289 14.86 87
212 32 1.0440 1.0201 1.0526 1.0265 53.15 1.27
213 32 1.0440 1.0197 1.0514 1.0254 246.27 1.73
214 16 1.0433 1.0195 1.0456 1.0222 885.21 2.79
215 16 1.0435 1.0196 1.0452 1.0213 4577.87 2.95
216 8 1.0446 1.0205 1.0470 1.0223 28017.50 2.16
217 4 1.0445 1.0197 1.0451 1.0203 || 150841.00 3.19

Table 8.3: Experimental results on random instances using the L., norm.

We summarize our findings on the matching parameters in Table 8.4. Parameters were
estimated using a least-squares fit. The “Std Err” column gives the standard error s,
or the estimated standard deviation, of the estimated parameter. At 99% confidence, the
actual parameter is within £2.576 s, of the estimated parameter; for example, with 99%
confidence By, is between .31 and .3106. To allow comparisons with our algorithm, we
include the g coeflicient of several other Fuclidean matching heuristics from the literature,
including the Serpentine and Spiral-rack heuristics of Iri, Murota, and Matsui [64], the
Rectangle and Strip heuristics of Supowit, Plaisted, and Reingold [119], the MST heuristic
of Papadimitriou as given in Supowit et al. (and tested in [67]), and the DUST heuristic
of Jinger and Pulleyblank [67]. All of these heuristics run in O(nlogn) time, except for
the first two, which require O(n) time. We should also mention that there have been
other efforts to estimate the matching parameter 3y, where the cost of the matching was
assumed to be By1/n, rather than Sy+/n + apr. Scatterplots of the matching cost divided
by v/n (see Figure 8-3) tend to suggest the existence of this additional term. Because of the
omission of ayr, we believe previous estimates are overestimates. The influence of the ay,
term is especially strong if the maximum number of vertices in the experiments is small.
Papadimitriou [97] conjectured that 33, = .35, based on some experiments that had at most
200 vertices. Iri et al. [64] noted that their experiments on sizes up to 256 vertices seemed
to indicate that .32 < By < .33 (note that this agrees well with our predicted value for this

value of n). Weber and Liebling [125] obtained an estimate 3y ~ .3189; the largest example
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Ls norm Lo norm

B Std Err « Std Err B Std Err « Std Err
Cost of F' .3363 .0002 | .2720 0236 || .2989 .0002 | .2248 .0207
Approx. Matching (P) | .3154 .0001 | .2327 .0150 || .2807 .0001 | .2038 .0149
Opt. Matching (M) 3103 .0001 | .2357 0127 || .2752 .0001 | .2052 .0129
Lower bound (D) 3041 .0001 | .2298 .0121 || .2688 .0001 | .1978 .0123
Serpentine [64] 585 545
Spiral-rack [64] 495 450
Rectangular [119, 109] | .5164 4288
Strip [119] 474 436
MST-H [119, 67) .358 -
DUST [67] .338 -

Table 8.4: Estimates of matching constants for our approximation algorithm (adjusted
for the unit square) and other heuristics. The estimates on Rectangular and Strip are
analytically determined.

used in their study was on 1,000 vertices. It is also likely that there is some sensitivity to

the means of generating the random instances in the estimation of these parameters.

In Table 8.5, we list some asymptotic estimates of the structural properties of solutions.
All appear to be linear in n, and we modelled them either as yn or yn+n for some constants
~,7n. The choice of which model to use was based on whether the residuals of the estimation
were skewed for low values of n in the yn model: if so, the additive constant was included.
For the most part, the variance of properties associated with the set of edges F tended to be
quite high, growing with n?, while the variance of properties associated with F”’ tended to
be low, growing with y/n. We illustrate this in Figure 8-4 with scatterplots of the fraction
of vertices of degree 1 in both F and F’. We judged the order of growth of the variance for
each property by looking at its relative increase from instances of size 2” to instances of size
271 'We used this judgment to properly adjust the least-squares estimation (least-squares
requires constant variance in the observations). In looking at the data we observed that
unlike the minimum-cost spanning tree it is possible to have vertices of degree 6 or 7 in F,
but vertices of degree 7 are extremely rare, and we saw no vertices of degree 8. Similarly,

vertices of degree 5 in F” are also extremely rare, and we saw no vertices of higher degree.

We illustrate the behavior of the algorithm on random instances by showing an example
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Figure 8-3: Scatterplots of the matching cost (M) divided by y/n versus n (top), and the
approximate matching cost (P) divided by y/n versus n (bottom). Both costs have been

scaled down to the unit square.
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Lo norm Lo norm

F F F F'
Vertices of degree 1 Blln+ 36 | .954n || .320n 4 20 | .950n
Vertices of degree 2 H08n — 21 0 | 494n — 12 0
Vertices of degree 3 166n — 12 | .046n 167n — 8 | .050n
Vertices of degree 4 .014n — 2 0 018n -1 0
Vertices of degree 5 .001n ~ 0 .001n ~

H Number of edges 931n ‘ .546n H .936n ‘ .550n H

Number of components | .057n+ 26 | .454n || .057n 4+ 15 | .450n
Components of size 2 — | .416n — | .409n
Components of size 4 — | .032n - | .034n
Components of size 6 — | .005n — | .006n
Components of size 8 — | .001n — | .001ln
Components of size 10 - ~ 0 - ~ 0

Table 8.5: Estimates of asymptotic properties of solutions.

of the algorithm working on a random 500 vertex instance in Figures 8-5 to 8-8.

We conclude with some observations about the estimated behavior of our implemen-
tation. Modelling the number of queue operations as An*e (where € is assumed to be a
normally distributed error term), we obtained an estimate of 4 = 1.006, with a standard
error small enough to reject the hypothesis that the exponent is 1. The total number of
calls to the routine to find the nearest neighbor of a vertex had an exponent i = 2.013 for
the L, norm instances and g = 1.929 for the L, instances. The running time of the imple-
mentation is highly correlated to the number of calls to this routine. We presume this fact
leads to a running time of @(n*logn) for our implementation. Modelling the running time
of Applegate and Cook’s code as An*e gave an estimate of i = 2.29 for the L, instances and
f = 2.41 for the L., instances. We note that the variances of the running times for both
algorithms increased significantly with n, making it difficult to make intelligible estimates

of the asymptotic running times.
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Figure 8-4: Scatterplots of the fraction of vertices of degree 1 in F' versus n (top), and the
fraction of vertices of degree 1 in F” versus n (bottom).



168 Experimental Results

8.4 Discussion

Empirically, our approximation algorithm seems to deliver perfect matchings which are very
close to optimal. Asis shown in the tables, the algorithm was never more than 4% away from
the optimal solution or 7% away from the lower bound in any of the over 1,400 experiments.
One can also see that the algorithm was closer to optimal on structured instances than on
random instances. As with any computational study, one might argue that the observed
behavior is dependent on the classes of instances being considered. However, in this case,
the knowledge of the worst-case performance gives us some peace of mind: our algorithm
will never perform embarassingly poorly.

Our study to this point does not yet answer the question of whether the approximation
algorithm is a practical alternative to a very good implementation of an exact algorithm
or to other heuristics for the matching problem. Our implementation was only faster than
Applegate and Cook’s code on large random instances; it was slightly slower on small ran-
dom and structured instances and usually significantly slower on large structured instances.
Although Applegate and Cook’s code seems to be an exceptionally good implementation
of Edmonds’ matching algorithm, one would still want an implementation of the approxi-
mation algorithm that consistently beat the best exact algorithm by a substantial margin
before one could call the algorithm practical. Thus more work needs to be done on the algo-
rithm’s implementation. The best implementations of exact matching algorithms, including
the Applegate-Cook implementation, usually solve the instance on a sparse subgraph first,
then correct the solution afterwards; it might be possible to do something similar with the
approximation algorithm.

We should observe that the behavior of ApPROX-PROPER-0-1 for the Euclidean minimum-
weight perfect matching problem does not necessarily imply that ApPPROX-PROPER will
obtain near-optimal solutions for other proper functions. Luckily, the design of AppPROX-
PROPER-0-1 should allow us to study other proper functions with range {0,1} without
much difficulty, by simply changing the weak oracle for f. Researchers at Bellcore are plan-
ning to implement APPROX-PROPER for the survivable network design problem for possible

inclusion in their network design software. These further studies should tell us more about
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the practicality of APPROX-PROPER in terms of its running time and the quality of solutions

produced.
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Figure 8-6: The forest F' for the random instance of 500 vertices.
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Figure 8-7: The forest F’ for the random instance of 500 vertices.
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Figure 8-8: Final matching produced by the algorithm for the random instance of 500

vertices.
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Figure 8-9: The approximation algorithm’s solution to the TSPLIB r1002 problem.



CHAPTER 9

Conclusion

The previous chapters have given several different algorithms for a wide variety of graph
problems, and so it is important for us to step back and examine the common technique
employed by all of the algorithms. Most of the problems involve finding a minimum-cost
set of edges that cover each coboundary 6(.9) with some number or capacitated amount
f(9) of edges. The first step of our technique reduces these problems into a sequence of
subproblems. In each subproblem, we try to find a minimum-cost set of edges that cover
each coboundary 6(9) from a specified collection of sets 5 at least once. Given a current
partial solution £’ to the overall problem, we specify this collection as the sets of maximum
deficiency f(.5) — |6g/(5)]; that is, those cuts 6(.9) which are currently farthest from the
necessary number (or capacity) of edges.

A collection of sets specified in this way often has the interesting property that it is
uncrossable; that is, if A(S) = 1 for sets S in the collection and A(S) = 0 otherwise,
then h is uncrossable. We then use the primal-dual methodology to find an approximate
solution for the subproblem of covering the collection of sets. In each iteration of the
method, we increase the dual variables associated with the minimal violated sets until some
primal constraint becomes tight. We add the associated primal variable to our solution, and
continue until primal feasibility is reached. By removing unnecessary parts of the primal

solution, we can then prove a “total degree” inequality on each dual increase, and thus show

175



176 Conclusion

that the primal solution is not too far away in value from the dual solution, implying that
it is not too far away from the optimal value.

We have seen that a remarkable number of problems can be approximated using this
single framework, from minimum-cost spanning trees to survivable network design problems,
from shortest path problems to minimum-cost k-vertex-connected subgraphs. It seems
natural to expect that the technique will be extended to still more problems. This might
happen by the implementation of the strong oracle for particular weakly supermodular
or uncrossable edge-covering problems of interest, or via applications of the technique to
related problems, as with the prize-collecting algorithms. In any case, we think that this
technique will become a useful part of the algorithm designer’s toolkit.

Another consequence of this work is that it highlights the importance of the primal-dual
method in algorithm design, particularly for creating approximation algorithms. Before
the line of work started in Agrawal, Klein, and Ravi [2] and expanded in this thesis, the
primal-dual method for approximation algorithms had been applied mainly to the vertex
cover and general set cover problems. Here we see that a particular means of applying
the primal-dual method gives good approximation algorithms for edge-covering problems,
which form a subclass of the general set cover problem. We believe that the primal-dual
method will continue to be useful in designing algorithms for covering problems. It is an
interesting open question as to whether it can be applied to other non-covering problems.

Furthermore, the concepts of uncrossable, weakly supermodular, and proper functions
seem useful in and of themselves. Ravi, Ragavachari, and Klein [106] and Ravi, Marathe,
Ravi, Rosencrantz, and Hunt [105] have shown how to extend work of Fiirer and Ragavachari
[42] on finding minimum-degree spanning trees to finding minimum-degree connected net-
works specified by proper functions with f,., = 1. Ravi and Klein [104] have shown how a
concept akin to the toughness of a graph can be approximated for graphs defined by proper
functions. These classes of functions may continue to find use in graph problems other than
edge-covering problems.

Many interesting problems present themselves. Is it possible to design a single phase
algorithm for some class of edge-covering problems? Can the performance guarantee for

proper edge-covering problems be improved to a constant? Is it possible to prove, using
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recent lower bound techniques (see [6]), that essentially no such improvement is possible?
This seems like an especially interesting direction to try, given the results of Lund and
Yannakakis [89] and Bellare, Goldwasser, Lund, and Russell [12] showing that the set cover
problem cannot have an approximation algorithm with performance guarantee less than
s log, n unless NP C DTTM E(n'°s'°s™),

Is it possible to analyze the algorithms probabilistically? For example, it would be
interesting to show theoretically that the value of solutions produced by the approximation
algorithm for matching does converge almost surely to 81/n on random Euclidean instances,
or to show some theoretical basis for the structural properties of the algorithm on such
instances. This would seem to be a difficult task, however.

Can the algorithms be extended to classes beyond uncrossable and weakly supermodular
edge-covering problems? This cannot be done in general using our current techniques,
because there exist non-uncrossable functions for which the relative gap between the value
of an optimal dual solution and an optimal integral solution is large. Consider the problem
for which A(S)=1ifaw € 5 and |5| < k+ 1, and A(S) = 0 otherwise. Let G = (V, F)
be a star graph, with V' = {u,v,..., v}, £ = {(u,v1),...(u,v2)}, and a cost of 1 on all
edges. Then the solution z, = % for all e € I is a feasible solution of value 2 for the linear
programming relaxation of (I P), while any k£ + 1 edges form an optimal integer solution.
Thus any approximation algorithm for a class of problems which includes these functions
h will not have a constant performance guarantee if its analysis relies on bounding the gap
between an integer solution and a dual lower bound.

The key feature of uncrossable functions is that any dual solution can be made laminar
with no decrease in value; that is, the solution can be transformed so that the family of
sets S for which yg > 0 is laminar. This property characterizes the uncrossable functions.
The theory of laminar sets and supermodular and submodular functions looms large behind
the design and analysis of the algorithms presented here, and approximating edge-covering

problems without these properties will likely require significantly different techniques.
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