
SCHOOL OF OPERATIONS RESEARCH
AND INFORMATION ENGINEERING

COLLEGE OF ENGINEERING
CORNELL UNIVERSITY

ITHACA, NEW YORK 14853-3801

TECHNICAL REPORT NO. 1460

July 2007

LECTURE NOTES ON NETWORK FLOW
SPRING 2004

by

David P. Williamson

Lecture Notes on Network Flow Algorithms

David P. Williamson

Spring 2004

2

Contents

Preface 8

Lecture 1 1-9
1.1 Course overview . 1-9
1.2 The maximum s-t flow problem . 1-9

Lecture 2 2-15
2.1 The maximum s-t flow problem . 2-15

Lecture 3 3-20
3.1 Applications of the maximum flow problem 3-20

3.1.1 Carpool fairness . 3-20
3.1.2 Baseball elimination . 3-21

Lecture 4 4-24
4.1 Applications of the maximum flow problem 4-24

4.1.1 Baseball elimination (cont.) . 4-24
4.2 Preliminaries for a polynomial-time algorithm for the maximum flow problem 4-27

Lecture 5 5-28
5.1 Polynomial-time algorithms for the maximum flow problem 5-28

5.1.1 Augmenting path algorithms . 5-28
5.1.2 The push-relabel algorithm . 5-30

Lecture 6 6-32
6.1 Polynomial-time algorithms for the maximum flow problem 6-32

6.1.1 The push/relabel algorithm (cont.) 6-32

Lecture 7 7-36
7.1 Polynomial-time algorithms for the maximum flow problem 7-36

7.1.1 The push/relabel algorithm (cont.) 7-36
7.2 Polynomial-time algorithms for the global min-cut problem 7-38

Lecture 8 8-40
8.1 Polynomial-time algorithms for the global min-cut problem 8-40

8.1.1 The Hao-Orlin algorithm . 8-40

3

Lecture 9 9-43
9.1 Polynomial-time algorithms for the global min-cut problem 9-43

9.1.1 The Hao-Orlin algorithm . 9-43
9.1.2 Global min-cut in undirected graphs 9-46

Lecture 10 10-49
10.1 Polynomial-time algorithms for the global min-cut problem 10-49

10.1.1 MA Orderings . 10-49

Lecture 11 11-53
11.1 More polynomial-time algorithms for the maximum flow problem 11-53

11.1.1 Blocking flows . 11-53
11.1.2 Blocking flows in unit capacity graphs 11-55

Lecture 12 12-58
12.1 More polynomial-time algorithms for the maximum flow problem 12-58

12.1.1 Blocking flows (cont.) . 12-58
12.1.2 The Goldberg-Rao algorithm . 12-59

Lecture 13 13-63
13.1 More polynomial-time algorithms for the maximum flow problem 13-63

13.1.1 The Goldberg-Rao algorithm (cont.) 13-63

Lecture 14 14-66
14.1 Types of polynomial time . 14-66
14.2 Minimum-cost flows . 14-66

Lecture 15 15-70
15.1 Minimum-cost circulations . 15-70

15.1.1 Residual graph . 15-71
15.1.2 Potentials . 15-71
15.1.3 Optimality conditions . 15-72
15.1.4 A cycle-cancelling algorithm . 15-73

Lecture 16 16-74
16.1 Polynomial-time algorithms for minimum-cost circulations 16-74

16.1.1 Minimum mean-cost cycle cancelling 16-74

Lecture 17 17-77
17.1 Polynomial-time algorithms for minimum-cost circulations 17-77

17.1.1 Minimum mean-cost cycle cancelling algorithm (cont.) 17-77
17.1.2 Strongly polynomial time analysis 17-78

Lecture 18 18-81
18.1 Polynomial-time algorithms for minimum-cost circulations 18-81

18.1.1 Minimum mean-cost cycle cancelling algorithm (cont.) 18-81
18.1.2 A primal-dual algorithm . 18-82

4

Lecture 19 19-84
19.1 Polynomial-time algorithms for minimum-cost circulations 19-84

19.1.1 A primal-dual algorithm (cont.) . 19-84
19.1.2 A cost scaling algorithm . 19-86

Lecture 20 20-88
20.1 Polynomial-time algorithms for minimum-cost circulations 20-88

20.1.1 A cost-scaling algorithm (cont.) . 20-88

Lecture 21 21-92
21.1 Polynomial-time algorithms for minimum-cost circulations 21-92

21.1.1 A cost-scaling algorithm (cont.) . 21-92
21.2 An application of minimum-cost flows . 21-94

Lecture 22 22-97
22.1 The market-clearing pricing problem . 22-97

22.1.1 Characterizing market clearance using maximum flow 22-98
22.1.2 A polynomial-time algorithm . 22-99

Lecture 23 23-102
23.1 The market-clearing pricing problem . 23-102

23.1.1 Formal statement of the algorithm and analysis 23-103

Lecture 24 24-107
24.1 The market-clearing pricing problem . 24-107

24.1.1 Analysis of the algorithm (cont.) . 24-107

Lecture 25 25-110
25.1 Generalized flows . 25-110

25.1.1 Definitions . 25-111
25.1.2 Optimality conditions . 25-113

Lecture 26 26-114
26.1 Generalized flows . 26-114

26.1.1 Definitions . 26-114
26.1.2 Optimality conditions . 26-116

Lecture 27 27-118
27.1 Generalized flows . 27-118

27.1.1 Truemper’s algorithm . 27-119
27.1.2 A gain-scaling algorithm . 27-121

Lecture 28 28-122
28.1 Generalized flows . 28-122

28.1.1 Truemper’s algorithm . 28-122
28.1.2 Gain scaling . 28-122
28.1.3 Error scaling . 28-124

5

Lecture 29 29-127
29.1 Network design problems . 29-127

29.1.1 The survivable network design problem 29-127
29.1.2 The generalized Steiner tree problem 29-127
29.1.3 A primal-dual algorithm for the generalized Steiner tree problem . . 29-130

Lecture 30 30-131
30.1 Network design problems . 30-131

30.1.1 A primal-dual algorithm for the generalized Steiner tree problem (cont.)30-131

Lecture 31 31-136
31.1 Network design problems . 31-136

31.1.1 The survivable network design problem 31-136
31.1.2 An LP rounding algorithm for the survivable network design problem 31-137

Lecture 32 32-142
32.1 Network design problems . 32-142

32.1.1 An LP rounding algorithm for the survivable network design problem 32-142
32.1.2 Proof of Jain’s theorem . 32-142

Lecture 33 33-146
33.1 Network design problems . 33-146

33.1.1 Proof of Jain’s theorem (cont.) . 33-146
33.2 The multicommodity flow problem . 33-149

Lecture 34 34-150
34.1 The multicommodity flow problem . 34-150

34.1.1 Definition . 34-150
34.1.2 Linear programming formulation . 34-150
34.1.3 The Garg-Könemann approximation algorithm 34-151

Lecture 35 35-154
35.1 The multicommodity flow problem . 35-154

35.1.1 The Garg-Könemann approximation algorithm (cont.) 35-154

Lecture 36 36-159
36.1 Multicommodity flow . 36-159

36.1.1 A dynamic, local control algorithm 36-159
36.1.2 Definitions and assumptions . 36-159
36.1.3 Algorithm . 36-160

Lecture 37 37-163
37.1 Multicommodity flow . 37-163

37.1.1 A dynamic, local control algorithm (cont.) 37-163

6

Lecture 38 38-167
38.1 Unsplittable flow . 38-167

38.1.1 NP-hardness . 38-167
38.1.2 Decision version . 38-168
38.1.3 An algorithm . 38-169

Lecture 39 39-171
39.1 Unsplittable flow . 39-171

Lecture 40 40-174
40.1 Flows over time . 40-174

40.1.1 Maximum s-t flow problem over time 40-174
40.1.2 Time-expanded network . 40-175
40.1.3 Temporally repeated flow . 40-176

Lecture 41 41-178
41.1 Flows over time . 41-178

41.1.1 Maximum s-t flow problem over time (cont.) 41-178

7

Preface

The contents of this book are lecture notes from a class taught in the School of Oper-
ations Research and Industrial Engineering of Cornell University during the Spring 2004
semester (ORIE 633, Network Flow). The notes were created via the “scribe” system: each
lecture one student was appointed as the scribe for that lecture, and was responsible for
turning their notes into a LATEX document. I then edited the notes, and made copies for the
entire class. The students in the class who served as scribes were Dhruv Bhargava, Alice
Cheng, Ed Hua, Patrick Kongsilp, Sumit Kunnumkal, Retsef Levi, Ivan Lysiuk, Chan-
drashekar Nagarajan, Christina Peraki, Xin Qi, Mateo Restrepo, Yun Shi, Sam Steckley,
Christina Tavoularis, Yankun Wang, Stefan Wild, and Anke van Zuylen. Any errors which
remain (or were there to begin with!) are, of course, entirely my responsibility.

David P. Williamson
Ithaca, NY

8

ORIE 633 Network Flows January 26, 2004

Lecture 1

Lecturer: David P. Williamson Scribe: Patrick Kongsilp

1.1 Course overview

The course will cover algorithms for network flow problems. Networks flows is an important
subfield of combinatorial optimization, and combinatorial optimization is all about how to
make decisions that have discrete choices. It helps us answer natural questions involving
networks of one sort or another, such as roads, railway lines, and computer networks. We
can answer questions such as: how much stuff can be routed from point A to point B?
What paths should it take? How can it be done most cost effectively? How quickly can it
be done? What if some fraction of the stuff gets lost along the way?

Less obviously, network flow problems turn out to be useful in modelling problems that
don’t seem to have anything to do with networks. It can be used to answer questions such
as: is my favorite baseball/basketball/hockey team eliminated from winning its division?
What types of amino acids should be combined to give a protein that folds into a specified
shape? How should prices of goods be set so that a marketplace operates most efficiently?
We will see some of these applications during the semester.

In this class we will focus on several things:

• Efficient algorithms in combinatorial optimization. That is, algorithms that
run in polynomial time. Fortunately for us, many network problems have efficient
algorithms. We may look at some NP-hard network problems towards the end of
the semester and there we will consider approximation algorithms; that is, efficient
algorithms that return near-optimal solutions.

• Central role of linear programming and duality. LP is one of the fundamental
tools in combinatorial algorithms and in thinking about these problems – both in
modelling the problems and algorithms for them. Often for flow problems one can
think about the problem in purely combinatorial terms, but we will sometimes step
back and show LP-based explanations.

• Problems/algorithms that are either a fundamental piece of background, a
useful technique for solving other problems, or an interesting open research
direction.

1.2 The maximum s-t flow problem

We begin with the grandaddy of all network flow problems.

1-9

Maximum s-t Flow Problem

• Input:

– Directed graph G = (V, A)

– Capacities ui,j ≥ 0,∀(i, j) ∈ A, ui,j integer

– Source node s ∈ V , sink node t ∈ V, s 6= t

• Goal: Find an s-t flow that maximizes the net flow out of the source node.

We need to start by defining what we mean by a flow.

Definition 1.1 An s-t flow is a function f : A → R≥0 s.t.

1. fij ≤ uij ∀(i, j) ∈ A (capacity constraints)

2.
∑

k:(i,k)∈A

fik =
∑

k:(k,i)∈A

fki, ∀i ∈ V, i 6= s, t (flow conservation constraints)

The second constraint can be alternatively described as “flow in = flow out” for non-
source, non-sink nodes.

Definition 1.2 The value of a flow f is |f | ≡ ∑
k:(s,k)

fs,k −
∑

k:(k,s)

fk,s

For the following network below, observe that both flow conditions are met and |f | = 7.
(The first number above an arc is the flow along the arc, and the second number is the
capacity of the arc.)

For notational simplicity, we will use an alternative definition of flow. For this alternate
definition, we will assume that if (i, j) ∈ A, then (j, i) ∈ A. In the alternate definition, if
there is a flow fij on arc (i, j) then the flow fji = −fij on the reverse arc (j, i). If (j, i)
not in the original instance, then we set uji = 0; note that since fji = −fij ≤ uji = 0, this
enforces that the flow on the ”original” arc is nonnegative. Pictorially, for each “original”
arc (i, j) ∈ A, we have

0 ≤ fij ≤ uij

⇔

1-10

The original constraint for flow conservation,
∑

k:(i,k)∈A

fik =
∑

k:(k,i)∈A

fki

now becomes ∑

k:(i,j)∈A

fik = 0.

Visually,

⇔

The original expression for the value of the flow of the network,

|f | =
∑

k

fsk −
∑

k

fks

now becomes
|f | =

∑

k

fsk

Visually,

⇔

1-11

To summarize, the alternate definition of network flow is as follows.

Definition 1.3 An s-t flow f : A → R s.t.

1. fij ≤ uij , ∀(i, j) ∈ A (capacity constraints)

2. fij = −fji, ∀(i, j) ∈ A (anti-symmetry)

3.
∑

k:(i,k)∈A

fik = 0, ∀i ∈ V, i 6= s, t (flow conservation constraints)

Definition 1.4 The value of a flow f is |f | ≡ ∑
k:(s,k)

fsk

Example:

Question: Observe that |f | = 4. Is this a maximum flow? One reason for thinking
that perhaps it is a maximum flow is because on every s-t path there is some arc that has
reached its capacity, so we cannot augment flow along some s-t path.

However, it is not a maximum flow, because we can give a flow f where |f | = 5, as below.

1-12

Is this a maximum flow? In this case we can show that this is a maximum flow be
demonstrating an appropriate s-t cut. Intuitively, we can cut the network into one set of
nodes containing the source node and another set of nodes containing the sink node. We
want to send as much flow across this cut. Obviously, the amount of flow we can send is
bounded by the total capacities of arcs that cross some cut. Specifically, the cut in the
example has value 5, so the value of the maximum s-t flow can’t be more than 5. Since we
found a flow of value 5, we’ve found a maximum flow.

First, we need to formalize this intuition of cut and the capacity of a cut bounding the
value of a flow.

Definition 1.5 An s-t cut is a set S ⊆ V s.t. s ∈ S, t 6∈ S.

Definition 1.6 δ+(S) = {(i, j) ∈ A : i ∈ S, j 6∈ S}

Definition 1.7 The capacity of an s-t cut S is u(δ+(S)) ≡ ∑
(i,j)∈δ+(S)

uij .

Lemma 1.1 For any s-t cut S and any flow f , |f | ≤ u(δ+(S)).

Proof:

|f | =
∑

k:(s,k)∈A

fsk + 0

=
∑

k:(s,k)∈A

fsk +
∑

i∈S,i6=s

∑

k:(i,k)∈A

fik (1.1)

=
∑

i∈S

∑

k:(i,k)∈A

fik

=
∑

i∈S


 ∑

k:(i,k)∈A,k∈S

fik +
∑

k:(i,k)∈A,k 6∈S

fik




=
∑

k:(i,k)∈A,k 6∈S,i∈S

fik (1.2)

≤
∑

k:(i,k)∈A,k 6∈S,i∈S

uik = u(δ+(S))

Equality (1.1) follows from the flow conservation constraints. Equality (1.2) follows from
the fact that ∑

i∈S

∑

k:(i,k)∈A,k∈S

fik =
∑

k:(i,k)∈A,i,k∈S

fik = 0.

This follows from the flow conservation constraint and the fact that i, k ∈ S; by anti-
symmetry, fik will be cancelled out by fki = −fik.

1-13

2

Now, back to the question of how to decide whether or not we have a maximum flow.
Did we just get lucky in the example above in which we had a cut whose capacity was equal
to the value of the flow? A famous theorem says no; there is always a cut whose value is
equal to the value of a maximum flow.

Definition 1.8 A minimum s-t cut S∗ is an s-t cut S∗ s.t.

u(δ+(S∗)) = min
S⊆V,s∈S,t6∈S

u(δ+(S))

Theorem 1.2 (Ford, Fulkerson 1955) The value of a maximum s-t flow equals the capacity
of a minimum s-t cut.

Lex Schrijver has written a history of combinatorial optimization that shows that Ford
and Fulkerson’s initial interest in flows was motivated by looking at the total capacity of
railway lines to ship goods between two points. After some digging, Lex discovered that their
work arose from an Air Force application that was in fact interested in finding a minimum
cut: an ”interdiction” of railway lines in Eastern Europe that would cut shipments between
the Soviet Union and its satellite states.

1-14

ORIE 633 Network Flows January 28, 2004

Lecture 2

Lecturer: David P. Williamson Scribe: Sumit Kunnumkal

2.1 The maximum s-t flow problem

We continue our discussion of the max flow problem. Recall that the input is a directed
graph G = (V, A). Each arc (i, j) ∈ A has a capacity uij ≥ 0, which is assumed to be
integer. There is a designated source s and sink t. We assume that ∀(i, j) ∈ A ∃(j, i) ∈ A.
With this assumption, a flow has the following properties:

(i) fij ≤ uij

(ii) fij = −fji

(iii)
∑

k:(i,k)∈A fik = 0 ∀i ∈ V − {s, t}
Our goal is to maximize the net flow out of the source |f | = ∑

k:(s,k)∈A fsk. Also recall that
an s-t cut is a set S ⊂ V such that s ∈ S, t /∈ S, and the capacity of the cut is denoted
u(δ+(S)). We had stated the following theorem in the last lecture:

Theorem 2.1 (Ford, Fulkerson ’55) The value of a maximum s-t flow equals the capacity of
a minimum s-t cut.

We now turn to proving the theorem.

First, we introduce the concept of a residual graph, which will be useful in proving the
theorem.

Definition 2.1 Given a flow f , the residual graph Gf is the graph (V, Af , uf), where Af =
{(i, j) ∈ A : fij < uij} and uf

ij = uij − fij .

We call an arc (i, j) ∈ Af a residual arc and call uf
ij the residual capacity of arc (i, j).

Af is therefore the subset of arcs with positive residual capacity.

Figure 2.1 shows the flow on a network and the associated residual graph. By our
convention that fji = −fij , if a flow uses an arc (i, j) at less than its full capacity, the
residual graph has a residual arc (i, j) of residual capacity uij − fij and a residual arc (j, i)
of residual capacity uji− fji = 0− fji = fij . Intuitively, the residual capacity of (i, j) is the
extra flow we can send forward on arc (i, j), while the residual capacity of (j, i) corresponds
to decreasing the flow on (i, j); one can thinking of “sucking back” the flow on (i, j).

We showed in the last lecture that the flow in Figure 2.1 was not maximum even though
every s-t path in the original graph had an arc with flow at its capacity. However, notice
that there is an s-t path in the residual graph with positive residual capacity. This leads
us to the definition of an augmenting path.

2-15

Figure 2.1: A flow and its associated residual graph.

Definition 2.2 A directed path from s to t in the residual graph Gf is called an augmenting
path.

Given a flow f , residual graph Gf and an augmenting path P , let δ = min(ij)∈P uf
ij – the

smallest residual capacity of arcs in the augmenting path P . In the above example, δ = 1.
Define a new flow f ′ such that:

f ′ij ←−




fij + δ ∀(i, j) ∈ P
fij − δ ∀(j, i) ∈ P
fij o.w.

We now claim the following.

Claim 2.2 f ′ is a valid flow with |f ′| = |f |+ δ.

This is easy to see. f ′ respects the arc capacity constraints since we never increased
the flow beyond the residual capacity of any arc. Flow conservation constraints are still
satisfied since flow is augmented along a path from s to t, and for any node other than s or
t along the path, the flow entering the node, and the flow leaving the node both increase
by δ. Finally, the s-t flow increases by δ since the net flow out of s increases by δ. So,
we see that while there exists an augmenting path in the residual network, it is possible to
increase the s-t flow. Thus, we have the following theorem:

Theorem 2.3 The following are equivalent:

2-16

(i) f is a max-flow;

(ii) There is no augmenting path in Gf ;

(iii) |f | = u(δ+(S)) for some s-t cut S.

Proof:

(i) ⇒ (ii) We showed that ¬(ii) ⇒ ¬(i), since if there is an augmenting path in Gf , then we
can increase the current flow and so it is not maximum.

(ii) ⇒ (iii) Let S be the set of all vertices reachable from the source s in Gf . We know t /∈ S
since otherwise there would be an augmenting path from s to t in Gf . Note that for
any (i, j) ∈ A s.t i ∈ S and j /∈ S, fij = uij . This follows since if fij < uij , then arc
(i, j) would be present in the residual graph as it has positive residual capacity. This
implies that j can be reached from the source, which is a contradiction.

Writing |f | as:

|f | =
∑

k:(s,k)∈A

fsk +
∑

i∈S,i6=s

∑

k:(i,k)∈A

fik

=
∑

i∈S

∑

k:(i,k)∈A

fik

=
∑

i∈S

∑

(i,j)∈A,i∈S,j /∈S

fij

=
∑

i∈S

∑

(i,j)∈A,i∈S,j /∈S

uij
def
= u(δ+(S)).

The first equality follows by flow conservation (
∑

k:(ik) fik = 0). We get the third
equality by noting that ∀(i, j) ∈ A s.t i, j ∈ S ∃(j, i) with fij = −fji (flow property
(ii)). So, such terms cancel out in the summation and we are left with summing flows
over (i, j) ∈ A, i ∈ S, j /∈ S. The last equality is based on the earlier observation that
the flow on each arc in the cut is at its capacity.

(iii) ⇒ (i) Since we showed last time that for any s-t cut S, |f | ≤ u(δ+(S)), the fact that
|f | = u(δ+(S)) implies the flow is maximum.

2

We note that the number of s-t cuts is very large (= 2|V |−2). So, it is not a good idea
to find the max-flow value by calculating all possible cut capacities. The theorem above
motivates the following algorithm for finding the max-flow.

Augmenting path algorithm

f ← 0
while ∃ an augmenting path P in Gf

Push flow along P
Update f

2-17

Figure 2.2: Example of Lemma 2.4.

The correctness of the algorithm immediately follows from Theorem 2.3. Under the
assumption that all capacities are integer, we push an integral amount of flow at each step
of the algorithm. This yields the following result:

Integrality property: If all capacities uij are integers, there is a max-flow f such that all
fij are integers.

Although the above algorithm correctly finds the max-flow, it is not a polynomial-time
algorithm. Later, we will look at ways to obtain a polynomial-time algorithm.

Note that from here on out we will denote |A|, the number of arcs in the graph, by m,
and |V |, the number of vertices in the graph by n.

In order to give our first polynomial-time algorithm for the maximum flow problem, we
first need some lemmas. Here’s one.

Lemma 2.4 Given an s-t flow f , ∃ a set P of s-t paths and a set C of cycles, with weights
w : P ∪ C → <+ s.t.

(i) fij =
∑

P∈P∪C:(i,j)∈P w(P) ∀(i, j) ∈ A, fij > 0.

(ii) |f | = ∑
P∈P w(P).

(iii) |P|+ |C| ≤ m.

In words, the lemma states that any flow can be decomposed into weighted s-t paths
and cycles so that the flow on an arc is the sum of weights on paths and cycles using the
arc, and the value of the s-t flow is the sum of weights along all s-t paths. The example in
Figure 2.2 further illustrates this.

Proof: By induction on the number of (i, j) ∈ A s.t fij > 0.

Base case: fij = 0∀(i, j) ∈ A. Then P, C = ∅ and the lemma is trivially true.

2-18

Inductive step: Consider an arc (i, j) with fij > 0. If j 6= t, by flow conservation at node j,
there is a k s.t. fjk > 0. Similarly, if i 6= s, there is an h s.t. fhi > 0. Proceeding in this
manner, we either find a cycle or an s-t path. Denote it by P . Let w(P) = min(i,j)∈P fij .
Update the flow:

f ′ij ←−




fij − w(P) ∀(i, j) ∈ P
fij + w(P) ∀(j, i) ∈ P
fij o.w.

Now, the number of paths/cycles with positive weight increases by 1, while the number of
arcs with positive flow decreases by at least 1 and the proof follows. 2

2-19

ORIE 633 Network Flows January 30, 2004

Lecture 3

Lecturer: David P. Williamson Scribe: Stefan Wild

3.1 Applications of the maximum flow problem

3.1.1 Carpool fairness

Description: n people are sharing a carpool for m days. Each announces their schedule in
advance.

Ex.- (4 People, 5 Days)

Person Days: 1 2 3 4 5
1 X X X
2 X X
3 X X X X X
4 X X X X

Problem: Every day someone has to drive... We want to allocate driving responsibilities
‘fairly.’

A possible approach/objective is to split the responsibilities equally among the people
using the car on a given day. Thus on a day with k people using the carpool, each driver is
responsible for a share of 1

k .

Ex.- (Responsibilities)

Person Days: 1 2 3 4 5
1 1

3
1
3

1
4

2 1
3

1
4

3 1
3

1
3

1
4

1
2

1
2

4 1
3

1
4

1
2

1
2∑

1 1 1 1 1

We use these shares to calculate a driving obligation, oi for person i. In the example,
we have o1 = 1

3 + 1
3 + 1

4 = 11
12 . We can then require that person i drives no more than doie

times every m days. To see if this can even be done, we formulate the problem as a network
in Figure 3.1.1.

Claim 3.1 If flow of value |f | = 5 exists, then a fair driving schedule exists.

3-20

Proof: Observe that because the flow is integer:

• All arcs from the sink t have flow 1 which implies that exactly one arc from some
person to each day has flow value 1. That person is assigned to drive on that day.

• No one will have to drive more than their obligation (by flow conservation at the
person’s node and the capacity on their incoming arcs).

2

Claim 3.2 Such a flow always exists and a fair driving allocation always exists.

Proof: We can give a fractional flow of value using the oi’s. Therefore, because the
capacities are all integers, there exists an integer flow of value 5. 2

3.1.2 Baseball elimination

Ex.- (4 team division)

Team Wins Remaining Games Games Against
NYY Bos Tor Bal

NY Yankees 93 8 - 1 6 1
Boston Red Sox 89 4 1 - 0 3
Toronto Blue Jays 88 7 6 0 - 1
Baltimore Orioles 86 5 1 3 1 -

3-21

Definition 3.1 A team wins their division if it wins more games than the other teams in the
division.

Definition 3.2 A team is eliminated if they can’t finish first given any outcome of the remain-
ing games.

Ex.- Baltimore is clearly eliminated because they will end the season with at most 91
wins while the Yankees already have 93 wins.

Claim 3.3 Boston is also eliminated.

Proof: Boston can still win 93 games but: either the Yankees win one more game and
have 94 wins, or Toronto wins all 6 of their games versus the Yankees giving them 94 wins.

2

Letting T denote the set of teams in the division, we adopt the following notation for
each i ∈ T :

wi = number of wins for team i

gi = number of games left to play for team i

gij = number of games left for team i to play team j.

For subsets R ⊆ T and S ⊆ T , we also define:

w(R) =
∑

i∈R

wi

g(R, S) =
∑

i∈R

∑

j∈S

gij

a(R) =
w(R) + g(R, R)

|R| .

Claim 3.4 Some team i ∈ R wins at least a(R) games.

Proof: w(R) is the number of wins of the teams in R and g(R, R) represents the number
of games in which some team in R must win. Therefore, the average number of wins by
teams in R is a(R), which some team surely obtains. 2

Corollary 3.5 If i ∈ T , R ⊆ T − {i}, a(R) > wi + gi, then team i is eliminated.

Ex.- Let R = {Yankees, Toronto} and i = Boston. Then a(R) = (93+88)+6
2 = 93.5 > 93.

So Boston is eliminated.

3-22

Now let xij be the number of times team i defeats team j (in the remaining games).
Then team k is not eliminated if:

∃xij

such that:
xij + xji = gij ∀i, j ∈ T

wk +
∑

j∈T

xkj ≥ wi +
∑

j∈T

xij ∀i ∈ T

xij ≥ 0, xij integer

If such xij exist, then there exist x′ij such that team k wins all its remaining games.
Therefore we only need to check that:

wk + gk ≥ wi +
∑

j∈T−{k}
xij ∀i ∈ T − {k}.

3-23

ORIE 633 Network Flows February 2, 2004

Lecture 4

Lecturer: David P. Williamson Scribe: Anke van Zuylen

4.1 Applications of the maximum flow problem

4.1.1 Baseball elimination (cont.)

Recall the problem from last time. We want to decide, based on the outcomes of the games
played so far and the games that are still to be played, whether or not a specific team has
been eliminated. Team i is eliminated if no possible outcome of the remaining games results
in it winning the most games.

Recall the notation we set up last time.

T := teams
i ∈ T : wi := # of wins

gi := # of games team i has left to play
gij := # of games team i has left to play against team j

Let xij denote the number of times team i defeats team j. Then, team k is not eliminated
if there exist xij such that

xij + xji = gij ∀i, j ∈ T

wk + gk ≥ wi +
∑

j∈T−{k}
xij ∀i ∈ T − {k}

xij ≥ 0, xij integer ∀i, j ∈ T

Recall that we also defined the following notation.

w(R) =
∑

i∈R

wi

g(R) =
∑

i,j∈R,i<j

gij

a(R) =
w(R) + g(R)

|R|
Remark by DPW: g(R) is what was intended by g(R, R) as used in class. As Anke has pointed
out, in the original notation g(R,R) counted every game played twice.

As was shown in the previous lecture, a(R) is a lower bound on the average number of
games won by teams in R. Therefore some team in R will win at least a(R) games, and the
lemma below follows.

4-24

i,j

i

j

g_{ij}

infty

w_k + g_k − w_i

w_k + g_k − w_j

infty

Team nodes for each team in T−{k}Pair nodes for each pair i,j in T−{k}

s
t

.

Figure 4.1: Flow instance for deciding if team k is not eliminated.

Lemma 4.1 If there exists R ⊆ T −{k} such that a(R) > wk +gk, then team k is eliminated.

We can use the maximum flow instance shown in Figure 4.1to decide if team k has not
been eliminated. Note that we can assume that the capacities on the arcs going from the
team nodes to the sink t are non-negative, since if wk + gk − wj < 0, then wj > gk + wk,
and we know that team k is eliminated.

Lemma 4.2 If a flow of value g(T − {k}) =
∑

i,j∈T−{k},i<j gij exists, then team k is not
eliminated.

Proof: If a flow of value g(T − {k}) =
∑

i,j∈T−{k},i<j gij exists, then the arcs from s to
the pair nodes are at capacity. Let xij denote the flow from pair node {i, j} to team node
i. Then xij + xji = gij by flow conservation at the pair node {i, j}.

By the integrality property of flow, we know that the xij are integer.

Flow conservation and capacity constraints for team node i give:
∑

j∈T−{k}
xij ≤ wk + gk − wi ⇒ wk + gk ≥ wi +

∑

j∈T−{k}
xij .

So xij satisfies the conditions given above, and k is not eliminated. 2

Now we can show the opposite direction; if a flow of this value does not exist, then we
can prove that the team is eliminated.

Lemma 4.3 If a flow of value g(T − {k}) does not exist, then team k is eliminated.

4-25

Proof: Let S be a minimum s− t cut, and let R be the set of team nodes in S. We can
give the following expression for the capacity of S:

u(δ+(S)) =
∑

Pairs {i,j}6∈S

gij +
∑

i∈R

(wk + gk − wi)

=
∑

Pairs {i,j}6∈S

gij + |R|(wk + gk)− w(R).

Since there exists no flow of value g(T − {k}), we know that

g(T − {k}) > u(δ+(S)) =
∑

Pairs {i,j}6∈S

gij + |R|(wk + gk)− w(R).

Since g(T − {k}) =
∑

All pairs {i,j} gij , we can rewrite the inequality as
∑

All pairs {i,j}
gij −

∑

Pairs {i,j}6∈S

gij > |R|(wk + gk)− w(R),

or as ∑

Pairs {i,j}∈S

gij > |R|(wk + gk)− w(R).

If pair node {i, j} is in S, then both team nodes i and j are in R, otherwise the cut has
infinite capacity. So the sum of gij for pair nodes {i, j} in S cannot be more than g(R); in
other words, ∑

Pairs {i,j}∈S

gij ≤ g(R).

Thus we have that
g(R) > |R|(wk + gk)− w(R),

or, rearranging terms once again,

w(R) + g(R)
|R| > wk + gk.

By Lemma 4.1, team k is eliminated. 2

In the problem set, the class is asked to show the following.

Lemma 4.4 If team k is eliminated, then for any team ` such that

wk + gk ≥ w` + g`

team ` is also eliminated.

Proof: See problem set 1, problem 2(a). 2

This will lead to the following corollary.

Corollary 4.5 O(log |T |) flow computations determine all eliminated teams.

Proof: See problem set 1, problem 2(b). 2

4-26

4.2 Preliminaries for a polynomial-time algorithm for the
maximum flow problem

We’ve now shown some applications of the maximum flow problem. Let’s turn back now
to considering polynomial-time algorithms for computing a maximum flow. We’ll need the
following lemma for our first algorithm.

Lemma 4.6 Let f be a flow, f∗ be a maximum flow in G. Then the maximum flow in the
residual graph Gf has value |f∗| − |f |.

Proof: Given a flow f ′ in Gf , let

f̃ij = fij + f ′ij ∀(i, j) ∈ A.

Then f̃ is a flow on G, and |f̃ | = |f |+ |f ′| ≤ |f∗| ⇒ |f ′| ≤ |f∗| − |f |. Thus the value of any
flow in Gf is bounded above by |f∗| − |f |.

Also define
f̂ij = f∗ij − fij ∀(i, j) ∈ A.

Then f̂ is a flow on Gf , since f̂ij = f∗ij − fij ≤ uij − fij ≡ uf
ij , and f̂ is a maximum flow

since |f̂ | = |f∗| − |f |. 2

4-27

ORIE 633 Network Flows February 4, 2004

Lecture 5

Lecturer: David P. Williamson Scribe: Yun Shi

5.1 Polynomial-time algorithms for the maximum flow prob-
lem

5.1.1 Augmenting path algorithms

We now turn to giving polynomial-time algorithms for the maximum flow problem. Recall
the augmenting path algorithm:

Augmenting path

f ← 0
While ∃ s-t path in Gf

Pick some augmenting path P
Augment flow on P
Update f .

As we will see in the problem set, this does not necessarily lead to a polynomial-time
algorithm because it is possible that there will be too little progress made for each augmen-
tation. However, if one picks a path to make substantial progress in each augmentation,
then we can give a polynomial-time algorithm. One natural choice is to pick P with largest
possible capacity; i.e. maxP min(i,j)∈P {uf

ij}. Then the algorithm above becomes:

Maximum capacity augmenting path

f ← 0
While ∃ s-t path in Gf

Pick augmenting path P that attains maxP min(i,j)∈P {uf
ij}

Augment flow on P
Update f .

To analyze the algorithm, we will need to recall two lemmas from earlier classes:

Lemma 5.1 Any flow can be decomposed into at most m s-t paths.

Lemma 5.2 The value of the max flow in the residual graph Gf is |f∗| − |f |, where f∗ is a
max flow in G.

These two lemmas indicate that some augmenting path P will have capacity at least
|f∗|−|f |

m . Let’s consider 2m iterations of loop in the above algorithm; either

5-28

(i) all 2m iterations augment flow value by ≥ |f∗|−|f |
2m . Or

(ii) at least one iteration augments flow by < |f∗|−|f |
2m .

If (i) happens, we are done, since we have a flow of value at least |f∗|. If (ii) happens,
then the capacity of the maximum capacity augmenting path has dropped by factor of
2. The upper bound of the capacity of P is U ≡ max(i,j)∈A uij . The lower bound of the
capacity of P is 1. Therefore, there can be at most O(log U) decreases of the capacity of
the maximum capacity augmenting path by factor of 2. Since every 2m iterations either
the algorithm terminates with a maximum flow or the capacity drops by a factor of 2, there
are at most O(m log U) iterations of the main loop overall. This gives a polynomial-time
algorithm.

To get the exact running time, we would have to determine the time needed to find the
maximum capacity augmenting path. Rather than get into this, we will consider a variation
of the algorithm above in which we only need to find a path in a network. The idea of the
this algorithm is to look for paths in which each edge is ’big’. If such a path exists, then we
can increase the flow by a significant amount. If there is no such path, then we will show
that we must be closer to the maximum flow value. We first need the following definition.

Definition 5.1 A δ-capacity augmenting path P is an augmenting path s.t. ∀(i, j) ∈ P ,

uf
ij ≥ δ.

The algorithm is as follows:

Capacity scaling

f ← 0,
δ = 2blog2 Uc

While ∃ s-t path in Gf

If ∃ δ-capacity augmenting path P
Augment flow on P , update f .

Else
δ ← δ/2

Theorem 5.3 The capacity scaling algorithm runs in O(m2 log U) time.

Proof: Clearly if a δ-augmenting path exists, we can increase the value of the flow by
at least δ. Now we need to see why the non-existence of δ-augmenting paths is helpful.
Suppose there does not exist a δ-capacity path in Gf . Let δ′ ← δ/2. We know the max flow
in Gf can be decomposed into at most m paths. The non-existence of δ-augmenting paths
implies that each such path has capacity < δ. Thus the flow in Gf has value < mδ = 2mδ′.

Thus at the beginning of the while loop in the algorithm we can find at most 2m δ-
augmenting paths until either we have found a maximum flow or the value of δ is halved.

5-29

We know δ can be halved at most O(log U) times, which implies that there are at most
O(m log U) augmentations overall. Each augmentation requires finding a path in the graph
Gf in which only edges with capacity at least δ are retained. Thus finding a δ-augmenting
path takes at most O(m) time. Therefore capacity scaling is an O(m2 log U) time algorithm.

2

If the graph is dense (m = O(n2)), this is a O(n4 log U) algorithm, which is not very
good. We now turn to an algorithm for finding a maximum flow that takes O(n3) time,
and with fancy data structures takes O(mn log n2

m) time. The best known running time for
finding a maximum flow is O(min (m1/2, n2/3)m log n2

m log U) (Goldberg, Rao ’98).

5.1.2 The push-relabel algorithm

So far we have considering augmenting path algorithms. These algorithms are primal feasi-
ble, because capacity constraints are obeyed and flow conservation constraints are obeyed.
We maintain a feasible flow and work towards finding a maximum flow. But the next al-
gorithm we will consider, Push-Relabel, is primal infeasible, because it does not obey flow
conservation constraints. Here we will maintain a flow that has value at least that of the
maximum, and work towards finding a feasible flow. The algorithm will maintain a preflow.

Definition 5.2 A preflow is a function f : A → < that obeys capacity constraints, antisym-
metry constraints (i.e. fij = −fji) and

∑

j:(j,i)∈A

fji ≥ 0

for all i ∈ V − {s, t}.

That is, in a preflow, instead of flow in equalling flow out for every vertex other than
the source and the sink, we have that total flow in is at least total flow out. We define the
excess to be the difference between the flow in and flow out.

Definition 5.3 We define the excess at node i to be ei ≡
∑

j:(j,i)∈A fji.

If every node (aside from the source and sink) have zero excess, then the preflow is a
flow. Given a preflow, we try to reach a feasible flow by pushing excess ei to sink t and the
remainder to source s along shortest paths.

Maintaining shortest path lengths is expensive, so instead we maintain a distance la-
belling di which gives us estimates on the shortest path to the sink.

Definition 5.4 A distance labelling is a set of di for all i ∈ V such that:

• di is a non-negative integer;

5-30

• dt = 0

• ds = n

• di ≤ dj + 1 ∀ (i, j) ∈ Af

The intuition is that di < n gives a lower bound on distance to t, and di ≥ n gives a
lower bound on distance to s.

Claim 5.4 di is a lower bound on the distance from i to t.

To see this, consider the shortest path P from i to t. Any arc (i, j) on this path has the
relation di ≤ dj + 1. Thus, di ≤ |P |, and is the lower bound on distance of i to t.

5-31

ORIE 633 Network Flows February 6, 2004

Lecture 6

Lecturer: David P. Williamson Scribe: Yun Shi

6.1 Polynomial-time algorithms for the maximum flow prob-
lem

6.1.1 The push/relabel algorithm (cont.)

Recall from the previous lecture that the push/relabel algorithm will maintain both a preflow
and a distance labelling, as defined below.

Definition 6.1 A preflow is a function f : A → < that obeys capacity constraints, antisym-
metry constraints (i.e. fij = −fji) and

∑

j:(j,i)∈A

fji ≥ 0

for all i ∈ V − {s, t}.

Definition 6.2 A distance labelling is a set of di for all i ∈ V such that:

• di is a non-negative integer;

• dt = 0

• ds = n

• di ≤ dj + 1 ∀ (i, j) ∈ Af

We also need the concept of the excess at a node, which tells us by how much the flow
conservation constraint is violated at that node.

Definition 6.3 We define the excess at node i to be ei ≡
∑

j:(j,i)∈A fji.

Recall that in the previous lecture we showed that di is a lower bound on the distance
from i to the sink t (the source s with ds = n is an anomaly that we will come back to later).
If we want to push flow along shortest paths, then an edge (i, j) is in the shortest path if
di = dj + 1. So we will only modify flow on edges where this condition holds. What if we
have excess at a node i, and the condition does not hold for any edge (i, j) ∈ Af? Then
our distance estimates for i must not be correct, since di ≤ dj for all (i, j) ∈ Af . So we will
update the label of i to maintain a distance labelling by setting di ← min(dj +1, (i, j) ∈ Af).

After one more definition, we can give the push/relabel algorithm.

6-32

Definition 6.4 If ei > 0 for i ∈ V − {s, t}, call i active.

Push/Relabel(Goldberg, Tarjan ’88)

f ← 0, e ← 0
fsj ← usj ; fjs ← −fsj ; ej = usj

ds ← n; dt ← 0; di ← 0 ∀ i ∈ V − {s, t}
While ∃ active i

If ∃j, s.t. uf
ij > 0 and di = dj + 1

Push δ ← min(ei, u
f
ij)

fij ← fij + δ; fji ← fji − δ
ei ← ei − δ; ej ← ej + δ

Else Relabel di ← min(dj + 1, (i, j) ∈ Af).

Let’s first worry about whether the algorithm is correct, and then turn to determining
the running time.

Lemma 6.1 The algorithm maintains a valid distance labeling d.

Proof: By induction on algorithm.

Base case: This is trivial for i 6= s. For s, there is no condition on ds, because there is no
edge out of s in Af .

Inductive step: Note that relabelling does not invalidate it the distance labels. What about
pushes? If we push on arc (i, j), then two things might happen to cause the distance
labelling to be invalid. First, (j, i) might enter Af . In that case, dj = di − 1 ≤ di + 1, so
the distance labelling is valid. Second, (i, j) might be deleted from Af . This is fine since
then there is one less condition to worry about. 2

Now we show that if the algorithm terminates, it will find a maximum flow.

Theorem 6.2 If algorithm terminates and all di are finite, then f is a maximum flow.

Proof: If algorithm terminates, then f is a flow, since there will not be any excess at
any node other than the source and sink. Suppose f is not a max flow. Then there exists
an augmenting path P in Gf . By the properties of a distance labelling, this implies that
ds ≤ n− 1, which contradicts ds = n. 2

Now we prove the following lemma, which will be useful in showing that the distance
labels stay finite.

Lemma 6.3 If f is a preflow and i is active, then s is reachable form i in Gf .

6-33

Proof: Let S be vertices reachable from i in Gf . Suppose s /∈ S.
Clearly, for j ∈ S, k /∈ S, fkj ≤ 0, because (j, k) reaches its capacity.
Thus,

∑

j∈S

ej =
∑

j∈S

∑

k:(k,j)∈Af

fkj =
∑

j∈S,k/∈S
(k,j)∈Af

fkj ≤ 0

⇒ ej = 0 ∀j ∈ S

⇒ ei = 0 ⇒ i is not active,

which causes a contradiction. 2

Lemma 6.4 At any point in algorithm, di ≤ 2n− 1 ∀i ∈ V

Proof: ds, dt never change. di increases only when i is active.
i is active implies there exists a path P in Gf from i to s by last lemma. The path in Gf

has the length of at most n-1. So di ≤ ds + n− 1 = 2n− 1. 2

Lemma 6.5 At most 2n2 executions of relabel.

Proof: 0 ≤ di ≤ 2n − 1, di is integer, di never decreases, and relabel increases it by at
least 1. So each vertice need at most 2n−1 executions and there are n vertices. Thus there
are at most n(2n− 1) ≤ 2n2 executions of relabel. 2

In the algorithm, there are two types of pushes:

(i) push is saturating if δ = uf
ij

(ii) push is nonsaturating if δ < uf
ij , i.e δ = ei

Lemma 6.6 At most mn saturating pushes.

Proof: Pick an edge (i, j) ∈ A, need di = dj +1 to push from i to j; to do it again, need
to push back from j to i and dj = di + 1 ⇒ need dj to increase at least by 2
⇒ at most n− 1 saturating pushes from i to j by lemma 4.
There are at most m edges ⇒ at most m(n− 1) saturating pushes. 2

Lemma 6.7 At most 4n2m nonsaturating pushes.

Proof: Let
Φ ≡

∑

active i

di

At the start of algorithm Φ = 0. At the end of algorithm Φ = 0 too, since there is no active
vertex then. So Φ must decrease by the amount Φ increases.

6-34

What makes Φ increase? Relabel will increase it by at most 2n2. One saturating push may
create a new active vertex and increase it by at most 2n. So Φ can increase by at most
2n2 + 2n(mn)
What makes Φ decrease? Only nonsaturating push has Φ decrease, because it make i
inactive.
⇒ no more than 4n2m nonsaturating pushes. 2

Theorem 6.8 Push/Relabel takes O(n2m) push/relabel operations.

The proof of this theorem follows from the above 3 lemmas.

6-35

ORIE 633 Network Flows February 9, 2004

Lecture 7

Lecturer: David P. Williamson Scribe: Christina Tavoularis

7.1 Polynomial-time algorithms for the maximum flow prob-
lem

7.1.1 The push/relabel algorithm (cont.)

Recall from the previous lecture the Push/Relabel algorithm:

Push/Relabel

f ← 0
Saturate edges out of source
ds ← n, di ← 0, ∀i ∈ V − {s}
While ∃ active i (ei > 0)
If ∃j : uf

ij > 0 and di = dj + 1
Push δ = min{ei, u

f
ij} flow on (i, j)

else Relabel di ← min(dj + 1 : (i, j) ∈ Af).

Notice that this algorithm is typically able to find the min s-t cut before the max flow,
since the excess flow must be pushed back to the sink before the maximum flow is revealed.
We claim that to find the min s-t cut only, one can simply change the definition of active:
Let i be active if ei > 0 and di < n. When the algorithm terminates, any node with excess
will have di ≥ n. By arguments from the previous class, this implies that such a node has
no path to the sink. Let S be the set of all nodes that cannot reach the sink. Then it must
be the case that all arcs in δ+(S) are at capacity. We claim that S must then be a min s-t
cut; if the algorithm were to continue to run, it would push all remaining excesses back to
the source, and all arcs in δ+(S) continue to be at capacity.

Recall the following lemmas, which we proved last time about the execution of the
Push/Relabel algorithm.

Lemma 7.1 If f is a preflow and ei > 0, then i can reach s in Gf .

Lemma 7.2 di ≤ 2n− 1,∀i ∈ V .

Lemma 7.3 There can be at most 2n2 relabels.

Lemma 7.4 There can be at most nm saturating pushes.

7-36

Lemma 7.5 There can be at most 4n2m non-saturating pushes.

From these we derived the following theorem.

Theorem 7.6 Push/Relabel takes O(n2m) push/relabel operations.

It can be shown that this leads to an O(n2m) time algorithm.

We now turn to improving the running time of Push/Relabel. From the analysis above,
it is the bound on the number of non-saturating pushes that determines the running time of
the algorithm. In the algorithm above, we did not specify how pushes and relabels should
be executed. We now show that if we are a little more careful, we can obtain a better bound
on the non-saturating pushes.

FIFO Push/Relabel

f ← 0
Saturate edges out of source
ds ← n, di ← 0, ∀i ∈ V − {s}
Put all active vertices in queue Q
While Q 6= ∅

Let i be vertex at front of Q

While ei > 0 and ∃j : uf
ij > 0 and dj = di + 1

Push(i, j)
If j becomes active

Add j to end of Q
If ei > 0

Relabel i and add it to end of Q.

Lemma 7.7 The number of passes over the queue in FIFO push-relabel is at most 4n2.

Corollary 7.8 The number of non-saturating pushes in FIFO push-relabel is O(n3). Thus,
the algorithm runtime is O(n3).

Proof: This follows since there is at most one non-saturating push per vertex per pass.
2

Proof of Lemma 7.7: Use the potential function Φ = max{di : i active}. Divide the
passes into two types: passes in which some distance label increases, and passes in which
no distance label changes.

By our previous argument that each di ≤ 2n − 1, the total number of passes in which
some distance label increases is at most 2n2.

If no distance label changes during the pass, then each vertex has excess moved to
lower-labeled vertices, and Φ decreases by at least 1 during the pass.

7-37

Let ∆Φ` be the change in Φ from the beginning of pass ` until the end of pass `.
When ∆Φ` > 0, we know that some distance label has increased by at least ∆Φ`. Thus∑

`:∆Φ`>0 ∆Φ` ≤ 2n2.

Because Φ is initially zero, stays non-negative, and is zero at the end of the algorithm,
the total number of passes in which Φ decreases cannot be more than

∑
`:∆Φ`>0 ∆Φ` ≤ 2n2;

that is, since we know that the total increase in Φ over all passes in which it increases is at
most 2n2, the total number number of passes in which it decreases is also at most 2n2.

Thus the total number of passes can be bounded by 4n2: 2n2 for the passes in which
no distance label changes (and thus Φ decreases), and 2n2 for the passes in which some
distance label increases. 2

By using fancy data structures, Push/Relabel can be implemented even more efficiently.

Theorem 7.9 (Goldberg, Tarjan, 1988) Push/Relabel implemented in O(nm log(n2/m)) time.

7.2 Polynomial-time algorithms for the global min-cut prob-
lem

We now turn to the following problem.

Global Min-cut

• Input:

– directed graph G=(V,A)

– capacities uij ≥ 0 ∀(i, j) ∈ A, integer

• Goal: Find S ⊂ V, S 6= ∅ that minimizes u(δ+(S))

We will make use of the minimum s-cut when solving for the global min-cut.

Definition 7.1 The minimum s-cut for a specified s ∈ V is a cut S ⊂ V that minimizes
u(δ+(S)) such that s ∈ S.

Lemma 7.10 We can find the global min-cut by running a min s-cut algorithm twice.

Proof: Pick any v ∈ V and set s = v. Obviously if we find a min s-cut, we find the
minimum cut among all those such that s ∈ S. We now need to find the minimum cut
among all those such that s /∈ S. To do this, we construct G′ from G by reversing all
its arcs; that is, for each (i, j) in G with capacity uij , add arc (j, i) to G′ with the same
capacity. Now find a minimum s-cut in G′. Note that any cut S in G′ with s ∈ S has the
same capacity as the cut V − S in G. Thus the min s-cut in G′ has the same value as the
minimum cut in G that does not contain s. We take the smaller of the two cuts to obtain
the global min-cut. 2

7-38

Lemma 7.11 We can find min s-cut in n− 1 max flows.

Proof: Observe that there must exist some i /∈ S. Thus if we find minimum s-i cuts for
all possible i 6= s, one of these must also be the minimum s-cut; we just take the s-i cut
that has the smallest value. 2

Next time we’ll see an algorithm that finds a min s-cut in the time needed to run a
single Push/Relabel computation.

7-39

ORIE 633 Network Flows February 11, 2004

Lecture 8

Lecturer: David P. Williamson Scribe: Christina Tavoularis

8.1 Polynomial-time algorithms for the global min-cut prob-
lem

8.1.1 The Hao-Orlin algorithm

Recall from the previous lecture the global min-cut problem and the claim:

Global Min-cut

• Input:

– directed graph G=(V,A)

– capacities νij ≥ 0 ∀(i, j) ∈ A, integer

• Goal: Find S ⊂ V, S 6= ∅ that minimizes ν(δ+(S))

Definition 8.1 Min s-t cut: Input s, t ∈ V . Find S : s ∈ S, t /∈ S that minimizes u(δ+(S)).

Definition 8.2 Min s-cut: Input s, t ∈ V . Find S : s ∈ S that minimizes u(δ+(S)).

We showed last time the following two lemmas.

Lemma 8.1 We can find the min global cut by running a min s-cut algorithm twice.

Lemma 8.2 We can find the min s-cut with n− 1 max flows.

In fact, we can also find the min s-cut by finding something more exotic, called a
minimum X-t cut.

Definition 8.3 The min X-t cut: Input X ⊂ V,X 6= ∅, t ∈ V . Find S : X ⊆ S, t /∈ S that
minimizes u(δ+(S)).

Claim 8.3 If we can find the min X-t cut for any X and t, we can find the min s-cut.

8-40

Proof: Number the nodes S ← 1, 2, 3, . . . , n. For i ← 2, . . . , n let X = {1, . . . , i−1} and
find min X-i cut. We claim that one of these X-i cuts is the min s-cut. To see this, let S
be a min s-cut. Let j be the smallest vertex not in S. So {1, 2, . . . , j − 1} ⊆ S. Therefore,
S is a min X-j cut for X = 1, . . . , j − 1 and the algorithm will find it. 2

We will now show how we can implement the algorithm given in the proof above to find
a minimum s-cut. First we need a few definitions.

Definition 8.4 A distance level k, Dk, is the set {i ∈ V : di = k}.

Definition 8.5 Distance level k is empty if Dk = ∅.

Definition 8.6 Distance level k is called a cut level if |Dk| = 1 and for i ∈ Dk,∀(i, j) ∈
Af , di < dj .

We will now establish why cut levels are useful when finding min cuts.

Lemma 8.4 If the distance level k is a cut level, then for S = {i : di ≥ k}, all arcs in δ+(S)
are saturated.

Proof: Pick any (i, j) ∈ δ+(S). By definition of S, di ≥ k, dj < k. If di = k, then
by definition of cut level (i, j) /∈ Af which implies that (i, j) is saturated. If di > k, then
di > dj + 1, and thus (i, j) /∈ Af , which again implies that (i, j) is saturated. 2

The intuition is that the min cut can be found when there are no active nodes strictly
below the cut level. Here is the implementation of the push/relabel algorithm to find the
min s-cut.

Push/relabel min s-cut (Hao and Orlin, 1993)

X ← {s}; Pick any vertex in V −X as t
ds ← n, dt ← 0, di ← 0,∀i ∈ V − {s}
cutval ←∞, cut ← ∅
While X 6= V

Run Push/Relabel which selects only active nodes i with di < k
for lowest cut level k (or di < n− 1 if no cut level)

Let k be lowest cut level (n− 1 if no cut level)
Note that there are no active nodes i with di < k.

S ← {i : di ≥ k}
If u(δ+(S)) < cutval

cutval ← u(δ+(S)) and cut ← S
Pick t′ 6= t : dt ≤ di,∀i ∈ V −X − {t}
Let X ← X

⋃{t}
Let dt ← n and saturate all arcs out of t
Set t ← t′

Return cutval, cut.

8-41

Lemma 8.5 The non-empty distance levels k for k < n are consecutive.

Proof: This is clearly true at the beginning of the algorithm. If some distance level Dl

with l < n becomes empty, let i be the last node in Dl. We will consider two cases for i to
leave Dl.

• Case (1): i is relabelled. This happens if ei > 0 and di < k for lowest cut level k.
Consequently, di ≤ dj∀(i, j) ∈ Af . This is a contradiction since |Dl| = 1, implying
that l is the lowest cut level, not k.

• Case (2): i is sink t and di ← n at the end of the execution of that loop. Then, in the
previous iteration i had the minimum distance di. Also, since i is a sink, its distance
has not increased. Therefore, i is still the minimum di and setting di to n does not
contradict the lemma.

2

The following lemmas will be proved in the next lecture:

Lemma 8.6 If i /∈ X, di ≤ n− 2.

Lemma 8.7 Each time through the while loop, S is the min X-t cut.

Lemma 8.8 There are at most O(n2) relabels.

Lemma 8.9 There are at most O(nm) saturating pushes.

Lemma 8.10 There are at most O(n3) non-saturating pushes.

The lemmas above go through as before, although we need to modify the definition of
Φ slightly for the last one.

Theorem 8.11 (Hao, Orlin 1993) The push/relabel min s-cut finds the min s-cut in O(n3)
time.

8-42

ORIE 633 Network Flows February 13, 2004

Lecture 9

Lecturer: David P. Williamson Scribe: Sumit Kunnumkal

9.1 Polynomial-time algorithms for the global min-cut prob-
lem

9.1.1 The Hao-Orlin algorithm

In this lecture, we will complete the analysis of the algorithm by Hao and Orlin, which can
be used to find a global min-cut in directed graphs. Then, we will look at the problem of
finding a global min-cut in undirected graphs. Recall from last time:

Definition 9.1 Distance level k, Dk = {i ∈ V : di = k}. Distance level k is said to be empty
if Dk = ∅. It is said to be a cut-level if |Dk| = 1 and for i ∈ Dk and all (i, j) ∈ Af , di ≤ dj .

Push/Relabel min s-cut (Hao and Orlin, 1993)

X ← {s}; Pick any vertex in V −X as t
ds ← n, dt ← 0, di ← 0,∀i ∈ V − {s}
cutval ←∞, cut ← ∅
While X 6= V

Run Push/Relabel which selects only active nodes i with di < k
for lowest cut level k (or di < n− 1 if no cut level)

Let k be lowest cut level (n− 1 if no cut level)
Note that there are no active nodes i with di < k.

S ← {i : di ≥ k}
If u(δ+(S)) < cutval

cutval ← u(δ+(S)) and cut ← S
Pick t′ 6= t : dt ≤ di,∀i ∈ V −X − {t}
Let X ← X

⋃{t}
Let dt ← n and saturate all arcs out of t
Set t ← t′

Return cutval, cut.

We showed the following lemma last time

Lemma 9.1 The non-empty distance levels k for k < n are consecutive.

We stated the following lemmas last time:

9-43

Figure 9.1: Consecutive non-empty distance levels.

Lemma 9.2 If i /∈ X, di ≤ n− 2.

Lemma 9.3 Each time through the while loop (While X 6= V), the cut S that the algorithm
finds is a min X-t cut.

Before we prove the two lemmas let us first take a look at their implications.

Lemma 9.4 At most O(n2) relabels.

Lemma 9.5 At most O(mn) saturating pushes.

Lemma 9.6 At most O(n3) non-saturating pushes.

Lemma 9.4 is true since each time a node other than the sink is relabelled, its distance
label increases by at least 1 and the total increase is bounded by n − 2 (by Lemma 9.2).
The distance label of the sink is set to n at the end of the iteration and it is not relabelled
further. Lemma 9.5 holds since between 2 saturating pushes on an arc, the distance labels
of its end nodes must have increased by 2. Again, as the distance labels are bounded,
the number of saturating pushes is O(n) for any arc and O(mn) overall. Lemma 9.6 can
be shown using the FIFO implementation of the push/relabel algorithm and a modified
potential function.

Lemma 9.7 Cut returned at the end of the algorithm is a min s-cut.

Proof: Let S∗ be a min s-cut with capacity u(δ+(S∗)). Consider the first iteration of
the while loop for which the current sink is not in the min s-cut, i.e., t /∈ S∗. Then, in
this iteration X ⊆ S∗. The min X-t cut found in this execution (by Lemma 9.3) can have
capacity at most u(δ+(S∗)). This is because S∗ is also an X-t cut. Also since any X-t cut

9-44

is an s-cut, its capacity is at least u(δ+(S∗)). The above statements imply that the min
X-t cut found at the end of this iteration is a min s-cut. 2

Recall that we also showed last time that two executions of a min s-cut algorithm can
be used to find a global min cut. Then the above lemmas lead to the following theorem:

Theorem 9.8 (Hao, Orlin ’94) The algorithm finds a min s-cut and also a global min-cut in
O(n3) time.

In fact, it can be shown that algorithm can run in O(mn log n) time. We contrast
this running time with the earlier “crude” estimates of (n − 1) and n(n − 1) max flow
computations required to find a min s-cut and global min-cut, respectively.

Now, we return to the proofs of Lemmas 9.2 and 9.3.

Proof of Lemma 9.2: By induction on |X|. Let i /∈ X have the max distance label.
Noting that at each iteration the current sink t has the lowest distance label, Lemma 9.1
implies that the distance levels between dt and di are all non-empty.

Initially, X = {s}, dt = 0, and since each distance level between di and dt must contain
at least one vertex from the remaining n− |X| − 1 vertices,

di ≤ dt + (n− |X| − 1) ≤ n− 2

Now assume that di ≤ dt + (n − |X| − 1) ≤ n − 2 at the start of an iteration. At the
end of this iteration, |X| increases by 1 as the current sink t is added to X. The distance
label of the new sink t

′
increases by at most 1. This is because even if the lowest distance

level becomes empty after t has been added to X, there must be a node in the next higher
distance level (by the property that the non-empty distance levels are consecutive). Letting
d
′
denote the distance labels in the next iteration and X

′
= X ∪ {t},

d
′
i ≤ d

′
t + (n− |X ′ | − 1) ≤ dt + 1 + (n− (|X|+ 1)− 1) ≤ n− 2

The first inequality follows from Lemma 9.1, while the last one comes from the inductive
hypothesis. 2

Proof of Lemma 9.3: We know that di = n ∀i ∈ X, di ≤ n − 2 ∀i /∈ X and the
sink t has the minimum distance label. Now, the way in which S is chosen implies that
X ⊆ S while t /∈ S. Also, since any node with an excess is inside S and all arcs in δ+(S)
are saturated (proved in last lecture), S is a min X-t cut. 2

So, in directed graphs an algorithm for finding a global min-cut is based on a max-flow
computation. Next, we look at an algorithm for finding a global min-cut in undirected
graphs which has almost nothing to do with flows.

9-45

Figure 9.2: Example of δ(A,B).

9.1.2 Global min-cut in undirected graphs

Global min-cut in an undirected graph

• Input:

– Undirected graph G = (V, E)

– Arc capacities uij > 0 ∀(i, j) ∈ E

• Goal: Find S ⊂ V, S 6= ∅ that minimizes u(δ(S)) =
∑

(i,j)∈δ(S) uij .

We define δ(S) for S ⊂ V as

Definition 9.2 δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S}

We also define δ(A,B) for two vertex sets A, B ⊂ V , A ∩B = ∅ as

Definition 9.3 δ(A,B) = {(i, j) ∈ E : i ∈ A, j ∈ B or i ∈ B, j ∈ A}

Let us now consider the following greedy algorithm:

MA (max adjacency) ordering

S ← {v1}
For i ← 2 to n

Choose vi to maximize u(δ(S, {v})) ∀v ∈ V − S
S ← S ∪ {vi}

9-46

Given some arbitrarily chosen vertex v1, the algorithm returns an ordering of the ver-
tices. In each iteration, the algorithm looks at all vertices not in the set S and picks the
one which maximizes the capacity of arcs connecting it to nodes in S. We will prove the
following claim in the next lecture, which at first glance looks very surprising.

Claim 9.9 For MA ordering v1, . . . , vn, {vn} is a minimum vn−1-vn cut (or vn-vn−1 cut, the
order doesn’t matter in an undirected graph).

Remarks

1. We don’t know in advance what the nodes vn−1 and vn will be.

2. The minimum vn−1-vn cut is special in that one side of the cut just consists of a single
vertex.

3. The MA ordering algorithm can be used as a subroutine to find a global min-cut. To
see this, let S be a global min-cut. Consider 2 cases:

Case 1: vn ∈ S, vn−1 /∈ S. Then, since (S, V -S) is a vn-vn−1 cut, u(δ(S)) ≥ u(δ({vn})).
Also, since S is a global min-cut, u(δ(S)) ≤ u(δ({vn})). So, the given vn-vn−1

cut is a global min-cut and we are done.

Case 2: vn, vn−1 are on the same of side of the global min-cut. Then we “contract” vn

and vn−1 to a single vertex and repeat MA ordering on a graph with one fewer
vertex.

We end with the following claim:

Claim 9.10 After n− 1 runs of MA ordering, we will have found a global min-cut.

9-47

Figure 9.3: Illustration of cases 1 and 2.

9-48

ORIE 633 Network Flows February 16, 2004

Lecture 10

Lecturer: David P. Williamson Scribe: Retsef Levi

10.1 Polynomial-time algorithms for the global min-cut prob-
lem

10.1.1 MA Orderings

Last class, we returned to discuss undirected graphs. Given an undirected graph G = (V, E),
let δ(A,B) = {(i, j) ∈ E : i ∈ A, j ∈ B or j ∈ A, i ∈ B}, we have defined the following
notion of what we called MA ordering on the nodes of G.

Recall that an MA ordering is any ordering on the nodes that is computed in the
following way.

MA (max adjacency) ordering

S ← {v1}
For i ← 2 to n

Choose vi to maximize u(δ(S, {v})) ∀v ∈ V − S
S ← S ∪ {vi}

Last time we also presented the following claim about one of the properties of any MA
ordering.

Claim 10.1 For MA Ordering v1, v2, . . . , vn, the cut around the node {vn} is a min vn−1-vn

cut.

We then showed how this property can be used to construct an algorithm for computing
the global min cut on an undirected graph. The proof of the claim will follow the algorithm.

Finding MinCut using MA ordering

MC ←∞, S ← ∅
While |V | > 1

Compute MA ordering v1, v2, ..., vn

If u(δ(vn)) < MC
MC ← u(δ(vn)), S ← {vn}
Contract vn−1 and vn into a single node

Return S.

10-49

An example of the above algorithm is presented at the end.

To prove the claim made above, we need the following lemma.

Lemma 10.2 Let λ(G, s, t) denote value of the min s-t cut in G. Then for any three vertices
p, q, r ∈ V , λ(G, p, q) ≥ min(λ(G, r, q), λ(G, p, r)).

Proof: Let S be the min p-q cut of the graph and p ∈ S. Now suppose r ∈ S. Then,
λ(G, p, q) ≥ λ(G, r, q), since S is also an r-q cut. If r /∈ S, then λ(G, p, q) ≥ λ(G, p, r) since
S is also a p-r cut. In either case, the result holds. 2

Proof of Claim 10.1: We know that by the definition of the min cut λ(G, vn−1, vn) ≤
u(δ(vn)). We need to show that λ(G, vn−1, vn) ≥ u(δ(vn)). We do this through an induction
on the number of nodes and edges, |E|+ |V |.

- The base case, i.e. when either |E| = 0 or |V | = 2, holds trivially.

- For the inductive case, there are two possibilities

(i) (vn−1, vn) ∈ E:
Let (vn−1, vn) = e, G′ ← G− e, δ′ ← δ. Now, observe that v1, v2, ..., vn is still an
MA ordering of G′, and

u(δ(vn)) = u(δ′(vn)) + ue

= λ(G′, vn−1, vn) + ue

= λ(G, vn−1, vn).

The second equality is by induction and the final equality is because for each any
vn−1-vn cut in G′ has the same value in G (adding in edge e) and vice versa.

(ii) (vn−1, vn) /∈ E:
In this case, we need to apply the inductive hypothesis twice. First, let
G′ ← G − vn−1. Note that v1, v2, . . . , vn−2, vn is an MA ordering in G′, and by
the inductive hypothesis,

u(δ(vn)) = u(δ′(vn))
= λ(G′, vn−2, vn)
≤ λ(G, vn−2, vn).

The last inequality follows since the cut in G separating vn−2 and vn has no
greater value in G′.
Now, let G′ ← G − vn. Again, v1, v2, . . . , vn−1 is an MA ordering in G′, and by
the construction of the ordering, and the inductive hypothesis,

u(δ(vn)) ≤ u(δ(vn−1))
= u(δ′(vn−1))
= λ(G′, vn−2, vn−1)
≤ λ(G, vn−2, vn−1).

10-50

Again, the last inequality follows since the cut in G separating vn−2 and vn−1

has no greater value in G′ (we could just delete edges touching vn−1).
Now using Lemma 10.2,

λ(G, vn−1, vn) ≥ min(λ(G, vn−2, vn−1), λ(G, vn−2, vn)) ≥ u(δ(vn)).

Therefore by the principle of mathematical induction, λ(G, vn−1, vn) ≥ u(δ(vn))
holds for any number of vertices and edges. This proves the claim.

2

A note: Using Fibonacci heaps, an MA ordering of a graph can be computed in O(m+
n log n) time. Thus, the algorithm to compute a global min-cut in an undirected graph
using MA orderings presented above has a time complexity of O(n(m+n log n)). The fastest
known algorithm for finding a global min-cut in an undirected graph runs in O(m log3 n)
randomized time.

10-51

4

2 1 5

3

d c

ba

5
bcda

4

2 1 5

3

d c

ba

cd

a b
3

2 6

cd

a b
3

2 6

5
bcda

MA Ordering={v1=a,v2=b,v3=c,v4=d} S={d}, u(d)=7, MC=7

Merge ‘c’ and ‘d’

MA Ordering={v1=a,v2=b,v3=cd} S={cd}, u(cd)=8, MC=7

Merge ‘cd’ and ‘b’

MA Ordering={v1=a,v2=bcd } S={bcd}, u(bcd)=5, MC=5

MinCut=5, S={b,c,d}

Step1:

Step2:

Step3:

Figure 10.1: An example of the min-cut algorithm via MA orderings.

10-52

ORIE 633 Network Flows February 18, 2004

Lecture 11

Lecturer: David P. Williamson Scribe: Christina Peraki

11.1 More polynomial-time algorithms for the maximum flow
problem

11.1.1 Blocking flows

Starting today, we’ll work toward yet one more algorithm for computing a maximum flow;
it’s based on the concept of a blocking flow. Although we’ve covered several different types
of flow algorithms, the algorithm we will eventually present is the theoretically fastest
algorithm out there, and it seems negligent to leave it out.

Definition 11.1 A flow f in G is blocking if every s-t path in G, the original graph, has
some arc saturated.

Every maximum flow is obviously also a blocking flow. Is every blocking flow a maxi-
mum flow? No, we’ve seen a counterexample in Lecture 1. However, it is useful in order to
compute maximum flows. We give an algorithm below.

Dinic’s Algorithm (Dinic 1970)

f ← 0
while ∃s-t path in Gf

Compute distances di to sink t in Gf ∀i ∈ V

Find blocking flow f̃ in graph G̃ with arcs Ã = {(i, j) ∈ Af : di = dj + 1}
capacity uf

ij

f ← f + f̃ .

In the problem set, we considered an augmenting path algorithm in which we sent flow
down the shortest path in the residual graph each time. In Dinic’s algorithm we effectively
saturate all the shortest paths at the same time.

Definition 11.2 An arc in Ã = {(i, j) ∈ Af : di = dj + 1} is called admissible.

The easier part of the following theorem is a bonus problem on the current problem set.

Theorem 11.1 Blocking flows in acyclic graphs can be found in O(mn) time, but if fancy
data structures are used, then they can be found in O(m log n) time.

11-53

Note that the efficient algorithms for computing blocking flows are for acyclic graphs.
The set of admissible arcs is acyclic, otherwise we would have an inconsistency of the
di = dj + 1 equation as is shown in Figure 11.1.

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

l j

k

i

d =d 1+i j

Figure 11.1: Inconsistency of distances equation if the graph has a cycle.

The following lemma is the key to proving a bound on the running time of Dinic’s
algorithm.

Lemma 11.2 The distance to the sink ds strictly increases in each iteration of the algorithm.

Clearly this implies that the algorithm takes at most n iterations. Given the two blocking
flow algorithms mentioned above, we get the following results.

Theorem 11.3 (Dinic 1970): Maximum flow via blocking flows can be computed in O(mn2)
time.
(Sleator, Tarjan 1980): Maximum flow via blocking flows can be computed in O(mn log n)
time.

Now we turn to the proof of the lemma.

Proof of Lemma 11.2: Let di be distance labels in one iteration, d′i in the next. Let
f be the flow in one iteration, f ′ in the next one.

To begin, we claim that the di is a valid distance labelling for the flow in the next
iteration; that is, di ≤ dj + 1 for all (i, j) ∈ Af ′ . To see this, first consider how an arc (i, j)
can be in the residual graph of the flow in the next iteration. It could be because it was
in the residual graph of the previous iteration; that is (i, j) ∈ Af ′ , because (i, j) ∈ Af , in
which case the statement holds. Or it could be that the arc is in the residual graph of the
next iteration because we pushed flow along the reverse of the arc; that is, (i, j) ∈ Af ′ since
(j, i) ∈ Af . In this case, we know that dj = di + 1, which implies that di = dj − 1 ≤ dj + 1.
Thus the claim holds.

We want to show that d′s > ds. Look at any s-t path P in Af ′ . By the properties of a
blocking flow, there exists an arc (i, j) ∈ P that was not admissible in the previous iteration;

11-54

(i, j) /∈ Ã. In other words, di 6= dj + 1, which implies that di ≤ dj since di ≤ dj + 1. Since
di is a distance labelling for the arcs in Af ′ , this implies that |P | > ds, which implies that
d′s > ds. The reason for this can also be seen in Figure 11.2. Recall our definition of a
distance level Dk = {i ∈ V : di = k}. After one iteration, any path you take will have to use

�
�
�
�

�
�
�

�
�
�s t

D D12
Figure 11.2: s-t paths with respect to distances di before and after a blocking flow.

an arc that stays at the same distance level or goes backwards with respect to the distances
di; this implies that the distance from the source to the sink must be larger than ds. 2

11.1.2 Blocking flows in unit capacity graphs

In some cases, we can show that blocking flow algorithms give a much better result. We
consider the special case of unit capacity graphs.

Definition 11.3 A graph has unit capacity if uij ∈ {0, 1} for all arcs (i, j) ∈ A.

In this case, we can give the following result.

Lemma 11.4 For unit capacity graphs, Dinic’s algorithm takes O(min(m
1
2 , n

2
3)) iterations.

Proof: We define a number of s-t cuts Sk = {i : di ≥ k}; note that for k > 0, s ∈ Sk

and t /∈ Sk.

Suppose first that ds ≥ m
1
2 . Then there exists a distance level Dk such that there are

at most m
1
2 arcs in Sk. As can be seen in Figure 11.3, arcs from Dk to Dk−1 are disjoint for

all available distance levels and there are at most m arcs. By the Pigeonhole Principle, this
implies that if there are at least m

1
2 distance levels, then there exists a Dk such that there

are at most m
1
2 arcs from Dk to Dk−1. Therefore, the residual capacity of the cut Sk is at

most m
1
2 since the graph is unit capacity (that is, uf (δ+(Sk)) ≤ m

1
2). Thus we know that

only m
1
2 more augmentations will be required until the algorithm finds a maximum flow.

The algorithm takes
√

m iterations until the distance from the source is ds ≥ m
1
2 , and

√
m

more iterations until the flow is maximum, for a total of O(
√

m) iterations.

11-55

�
�
�

�
�
�

�
�
�
� t

D1D2

s

S cut

DDD
k k −1m1/2

Figure 11.3: Apply pigeonhole principle by considering all arcs from Dk to Dk−1.

Let us now suppose that ds ≥ 2n
2
3 . Then, there exists Dk, Dk−1 such that |Dk| ≤ n

1
3

and |Dk−1| ≤ n
1
3 , again by the pigeonhole principle. Since there are n vertices that are

partitioned into the distinct distance levels, we can’t have 2n
2
3 distance levels such that

every Dk with |Dk| ≤ n
1
3 is followed by |Dk−1| > n

1
3 . If we now consider all possible arcs

�
�
�

�
�
�

�
�
�
� t
s

S cut

<= n
1/3

D k Dk−1
D 2 D1

<= n
1/3

Figure 11.4: Second case of Theorem.

from Dk to Dk−1 (as in Figure 11.4), there can be at most n
2
3 arcs. Thus the residual

capacity of the cut Sk is uf (δ+(Sk)) ≤ n
2
3 , since all arcs have unit capacity. This proves

that only n
2
3 more iterations are needed to find the maximum flow. Thus as in the previous

case, after 2n
2
3 iterations, ds ≥ 2n

2
3 and after n

2
3 iterations, the maximum flow is achieved,

for a total of O(n
2
3) iterations. 2

We claim without proof that in unit capacity graphs, it is easy to find a blocking flow.

Claim 11.5 In unit capacity graphs, the blocking flow can be found in O(m) time.

Because the quantities in the proof above will come up so frequently in following lectures,
let’s set aside a special symbol for them.

Definition 11.4
Λ = min(m

1
2 , 2n

2
3).

11-56

Thus combining the above, we obtain the following.

Theorem 11.6 In unit capacity graphs, the maximum flow can be found in O(Λm) time.

In the next lecture, we will consider how to apply the ideas of this algorithm to graphs
with general capacities. Here’s an idea to start with. Suppose we can somehow make sure
that the arcs from Dk to Dk−1 have residual capacity at most ∆. Then we know that after
Λ iterations, we know (by the proof above) that the remaining residual capacity is Λ∆.
This somehow seems useful. How can we obtain such a property? The basic idea we will
consider is that of altering the distance function. Up until now, the distance of a vertex to
the sink has been the number of arcs on the shortest path. But of course we could have
general lengths on the arcs. If we change the length of each arc to be the following:

lij ←
{

1 if uf
ij < ∆

0 otherwise

then we will get the property that we want, namely, the arcs from Dk to Dk−1 will have
residual capacity at most ∆. In the next lecture we will see how this idea plays out.

11-57

ORIE 633 Network Flows February 20, 2004

Lecture 12

Lecturer: David P. Williamson Scribe: Stefan Wild

12.1 More polynomial-time algorithms for the maximum flow
problem

12.1.1 Blocking flows (cont.)

Recall the algorithm from last time:

Dinic’s blocking flow algorithm

f ← 0
while ∃s− t path in Gf

Compute distances di to t in Af .
Compute a blocking flow f̃ on admissible arcs (i, j) ∈ Af (i.e. di = dj + 1).
f ← f + f̃ .

Definition 12.1 Define Λ = min{m 1
2 , 2n

2
3 }.

We then had the following theorem:

Theorem 12.1 If uij ∈ {0, 1} for all (i, j) ∈ A, then we can find a max flow in O(Λ) blocking
flows.

Proof: (Sketch of proof from last time:) Define the kth distance level Dk = {i ∈ V :
di = k}; let the s-t cut be Sk = {i ∈ V : di ≥ k}. Then observe that for any (i, j) ∈ Af ,
there is at most one k such that (i, j) ∈ δ+(Sk) ∩ Af ; namely, the value of k such that
di = k, dj = k − 1. Now:

(i) If ds ≥ m
1
2 , then by the Pigeonhole Principle we showed that there exists a Dk such

that there are at most m
1
2 arcs in Af going from Dk to Dk−1. This implies that

|δ+(Sk)∩Af | ≤ m
1
2 and hence uf (δ+(Sk)) ≤ m

1
2 because the arcs have unit capacity.

Thus we only need m
1
2 more augmentations to get a max flow. Note that it takes

only m
1
2 iterations until ds ≥ m

1
2 , so that it takes O(m

1
2) iterations overall to find a

maximum flow.

12-58

(ii) If ds ≥ 2n
2
3 , then by the Pigeonhole Principle we also showed that there exist Dk, Dk−1

such that |Dk| ≤ n
1
3 and |Dk−1| ≤ n

1
3 . Therefore there are at most n

2
3 arcs in Af

going from Dk to Dk−1. This implies that uf (δ+(Sk)) ≤ n
2
3 and so we only need n

2
3

more augmentations to get a max flow. Note that it takes only 2n
2
3 iterations until

ds ≥ 2n
2
3 , so that it takes O(n

2
3) iterations overall to find a maximum flow.

2

12.1.2 The Goldberg-Rao algorithm

How can we use this to help us in the case of general capacities?

Idea: Suppose that the arcs from Dk to Dk−1 all have residual capacity no more than ∆
for all k. Then after Λ blocking flows we’ll have a cut with residual capacity no more than
∆Λ. This seems like it is useful; the amount of remaining flow is reduced significantly with
a relatively few blocking flow computations. Then we will reduce ∆ and repeat.

Problem 1: How do we get manage to get all arcs from Dk to Dk−1 to have residual
capacity at most ∆?

Solution 1: Change our notion of distance. For all (i, j) ∈ Af , set:

l′ij ←
{

1 if uf
ij < ∆

0 otherwise,

and revise our definitions:

d′i = distance to t using edge lengths l′ij
D′

k = {i : d′i = k}
Arc (i, j) ∈ Af Admissible ⇔ d′i = d′j + l′ij .

Note that this does exactly what we want: now any arc from distance level k to distance
level k− 1 must in fact have length 1, and therefore it must have residual capacity no more
than ∆.

This new idea of lengths causes its own set of problems, however. In particular we have:

Problem 2: The graph of admissible arcs might have cycles (since some l′ij may equal 0).
This is an issue since the efficient algorithms we know for blocking flows only run on acyclic
graphs.

Problem 3: In order for the blocking flow style proof to work, we need to have d′s increase
in each iteration, and it’s not obvious that it will under the new definitions.

We will table Problem 3 for the time being, and attempt to address Problem 2.

12-59

Figure 12.1: A set of strongly-connected components of admissible arcs to be contracted.

Solution 2: Suppose the graph of admissible arcs has cycles. Then we will “shrink” (con-
tract) each strongly-connected component of admissible arcs to a single node and then run
the blocking flow algorithm. See Figure 12.1.

But then we have a new problem:

Problem 4: How do we route flow in the “unshrunken” arcs? The arcs inside the strongly
connected components have capacity at least ∆ (since they had length zero), but it is
possible that the total flow going in and coming out of a strongly connected component
overwhelms the capacity of those arcs.

Solution 4: Limit the flow so that flow in/ flow out (the dotted arcs in Figure 12.1) is less
than ∆

4 . We can do this by changing the basic step in each iteration from “find a blocking
flow” to “either find a flow of value ∆

4 or find a blocking flow of value at most ∆
4 .” Then

given a flow on the graph with shrunken components, we can easily route the flow on the
graph with unshrunken components as follows:

(i) For each of the unshrunken strongly-connected components, pick some root node, r;

(ii) Build 2 trees: an intree to r, and an outtree from r (see Figure 12.2);

(iii) Use the intree to route incoming flow to r and the outtree to route outgoing flow from
r.

Each edge is then used at most twice (at most once in the intree and at most once in the
outtree) so by routing at most ∆

4 flow on each of these trees, we’re only using ∆
2 capacity

of the the arcs, each of which by definition has capacity at least ∆. We are now ready to
present the algorithm:

12-60

r r

"In Tree" "Out Tree"

Figure 12.2: In and out trees.

[Almost] Goldberg-Rao (1998)

f ← 0
F ← mU where U = max(i,j)∈A uij

While F ≥ 1
∆ ← F

2Λ
Repeat 5 Λ times:

l′ij ←
{

1 if uf
ij < ∆

0 otherwise,
∀(i, j) ∈ Af

Compute distances d′i to sink t;
Shrink strongly-connected components of admissible arcs;
Find f̃ in the shrunken graph:

either a flow of value ∆
4

or a blocking flow of value ≤ ∆
4 ;

f̂ ← f̃ with flows routed in the shrunken components;
f ← f + f̂

F ← F
2

We now prove a lemma that we will need to bound the running time.

Lemma 12.2 F is an upper bound on the flow value in Gf .

Proof: We prove the statement by induction on the algorithm. First note that it’s true
initially; F = mU is an upper bound on the total amount of flow.

Now consider the repeat loop. After 5Λ times, either:

• d′s ≥ Λ (i.e. we compute a blocking flow at least Λ times). By the blocking flow
arguments used in unit capacity graphs, this implies that there is a cut in Gf of
residual capacity at most Λ∆ = F

2 and hence the remaining flow in Gf is less than or
equal to F

2 .

12-61

• Flow has increased by Λ∆ = F
2 (i.e. we found a ∆

4 flow at least 4Λ times). This
implies that there will be no more than F

2 units of flow remaining in Gf , since there
were at most F initially.

In either case, we can legitimately reduce F by a factor of 2 after we have repeated the
main step of the algorithm 5Λ times. 2

Next time we will come back to Problem 3, and show that in fact d′s does strictly increase
each time we compute a blocking flow; however, we will need to make a slight change to
the algorithm to get this to work out.

12-62

ORIE 633 Network Flows February 23, 2004

Lecture 13

Lecturer: David P. Williamson Scribe: Patrick Kongsilp

13.1 More polynomial-time algorithms for the maximum flow
problem

13.1.1 The Goldberg-Rao algorithm (cont.)

Recall from last time the Goldberg-Rao maximum flow algorithm.

[Almost] Goldberg-Rao (1998)

f ← 0
F ← mU where U = max(i,j)∈A uij

While F ≥ 1
∆ ← F

2Λ
Repeat 5 Λ times:

l′ij ←
{

1 if uf
ij < ∆

0 otherwise,
∀(i, j) ∈ Af

Compute distances d′i to sink t;
Shrink strongly-connected components of admissible arcs;
Find f̃ in the shrunken graph:

either a flow of value ∆
4

or a blocking flow of value ≤ ∆
4 ;

f̂ ← f̃ with flows routed in the shrunken components;
f ← f + f̂

F ← F
2

The last bit of analysis left over from last time is to show that under the new definitions
of distances d′ given the lengths l′, the blocking flow analysis goes through as before; namely,
if we compute a blocking flow, then the distance from the source to the sink has strictly
increased.

Lemma 13.1 If we compute a blocking flow, then d′s strictly increases.

Proof: Let Ã be the set of admissible arcs. (Ã = {(i, j) ∈ Af : d′i = d′j + l′ij}) Let d′i
be distance labels in one iteration, d′′i the next iteration. Let l′ij be length labels in one
iteration, l′′ij the next iteration. Let f ′ be the flow in one iteration, f ′′ the next iteration.

13-63

The proof structure we want to follow is the same that we used for Dinic’s algorithm: we
first show that the distances d′i are a valid distance labelling for arcs in the residual graph
of the flow in the next iteration: that is, we show that for all (i, j) ∈ Af ′′ it is the case that
d′i ≤ d′j + l′′ij . Then we observe that by the properties of a blocking flow, in any s-t path
in the residual graph of f ′′, there must be some arc that wasn’t admissible in the previous
iteration; that is, there is some arc (i, j) in any s-t path of Af ′′ such that d′i < d′j + l′ij .
From this we hope to infer that the length of the path must in fact be greater than d′s.

First, we show that d′i is a valid distance labelling for Af ′′ . If (i, j) is in the residual
graph for f ′′, then it must be the case that either (i, j) was in the residual graph for f ′, or
that (j, i) was in the residual graph for f ′ and (j, i) was admissible. In the latter case, if
(j, i) was admissible, then d′j = d′i + l′ji, which implies that d′i = d′j − l′ji ≤ d′j + l′′ij and we’re
done. If on the other hand (i, j) ∈ Af ′ and d′i ≤ d′j + l′ij , the only bad case is if d′i = d′j + l′ij ,
l′ij = 1, and l′′ij = 0. Suppose we run into this case. But, d′i = d′j + l′ij = d′j + 1 implies
that (j, i) is not admissible. Thus we can’t have pushed any flow on (j, i), so the residual
capacity of (i, j) in f ′ must be no less than that of (i, j) in f ′′. Therefore, uf ′

ij ≥ uf ′′
ij ≥ ∆,

since l′′ij = 0. But this contradicts our assumption that l′ij = 1.

Now by the properties of a blocking flow, we know that for any s-t path P in Af ′′ there
exists (i, j) ∈ P such that (i, j) was not admissible; that is, d′i < d′j + l′ij . We want to show
that d′i < d′j + l′′ij . This will imply that the length of P under lengths l′′ij must be strictly
greater than d′s.

Suppose it is not the case that d′i < d′j + l′′ij , and thus d′i = d′j + l′′ij . What could happen
so that this occurs? This can happen if l′ij = 1, l′′ij = 0, and d′i = d′j . However, the case that
l′ij = 1 and l′′ij = 0 can only happen if flow was sent from j to i. This implies that (j, i) is
admissible, which further implies that l′ji = 0, since d′i = d′j .

Unfortunately, nothing in the algorithm so far prevents this bad case from happening.
So we make one final change to the algorithm to ensure that this case cannot happen. We
change the definition of edge lengths as follows:

l′ij =

{
0, if uf

ij ≥ ∆
1, if uf

ij < 0

as before. However, if d′i = d′j and ∆/2 ≤ uf
ij < ∆ and uf

ji ≥ ∆, then (i, j) is considered to
be a “special arc”, and we set l′ij = 0.

Before continuing with the proof, we first quickly observe that this change does not
break the rest of the algorithm. What changes?

• Note that special arcs are admissible; since d′i = d′j for special arc (i, j), and l′ij = 0,
we have that d′i = d′j + l′ij .

• Note also that distances do not change, since for special arcs it is already the case
that d′i = d′j .

• Finally, since l′ij = 0, special arcs could be in shrunken strongly connected components.
But we will still be able to route flow through them in the way that we mentioned

13-64

earlier since the total amount of flow routed through an arc in a shrunken component
was at most ∆/2, and the capacity of any special arc is at least ∆/2.

Now let’s finish the proof, taking into account the “fix”. We have a bad case when (i, j)
is not admissible, l′ij = 1, l′′ij = 0, and d′i = d′j . In order to have l′ij = 1 and l′′ij = 0 (i.e.
the capacity increasing from one iteration to the next), it must have been the case that we
pushed flow across (j, i) and that (j, i) is admissible. Since d′i = d′j , (j, i) admissible implies
that l′ji = 0. Since (i, j) is not admissible, it cannot be a special arc. Thus, uf

ij < ∆/2.

To make l′′ij = 0 (i.e. uf ′′
ij ≥ ∆), more than ∆/2 units of flow must have been pushed

across (j, i). But this cannot happen, since in one iteration flow is never increased by more
than ∆/2 on any arc. 2

We can now give the running time of the algorithm. Observe that the main loop is
executed log mU times; in each execution of the loop we execute a blocking flow algorithm
O(Λ) times; and we can run a blocking flow algorithm in O(m log n) time.

Theorem 13.2 (Goldberg, Rao 1998) Max flow can be computed in O(Λm log n log(mU))
time.

Note that for reasonable values of U this is o(mn). It is a big open question if this
algorithm can be made to have a strongly polynomial running time that is also o(mn).

13-65

ORIE 633 Network Flows February 25, 2004

Lecture 14

Lecturer: David P. Williamson Scribe: Christina Peraki

14.1 Types of polynomial time

There are different flavors of polynomial-time algorithms that we have mentioned in passing;
now we will formalize the definitions.

Definition 14.1 An algorithm runs in polynomial time if the number of basic operations
(arithmetic operations, compares, branches, etc) can be bounded above by a polynomial in the
size of the input with data items encoded in binary (e.g. capacities, costs, etc). This is also
known as weakly polynomial time.

If data items such as capacities u are coded in binary, then to run in time bounded by a
polynomial in the input size, we must run in time bounded by a polynomial in log u. As an
example, the capacity scaling algorithm for the maximum flow problem runs in O(m2 log U)
time, and is a weakly polynomial-time algorithm.

Definition 14.2 An algorithm runs in pseudopolynomial time if the number of basic op-
erations (arithmetic operations, compares, branches, etc) can be bounded above by a polynomial
in the size of the input with data items encoded in unary.

By “unary”, we mean that we write down u bits for the data item u. The augmenting
path algorithm for maximum flow is a pseudopolynomial-time algorithm since it runs in
O(m2U) time.

Definition 14.3 An algorithm runs in strongly polynomial time if the number of basic
operations (arithmetic operations, compares, branches, etc) can be bounded above by a poly-
nomial in the number of data items that were input and is not dependent on the size of the
input.

For example, shortest augmenting path algorithm for the maximum flow problem runs
in O(m2n) time, and the FIFO push-relabel algorithm runs in O(n3) time.

14.2 Minimum-cost flows

We now turn to flow problems that include costs.

14-66

Minimum-cost circulation problem

• Input:

– A directed graph G = (V, A).

– Integer costs cij ≥ 0, ∀(i, j) ∈ A.

– Integer capacities uij ≥ 0, ∀(i, j) ∈ A.

– Integer demands 0 ≤ lij ≤ uij , ∀(i, j) ∈ A.

• Goal: Find a circulation f that minimizes
∑

(i,j)∈A cijfij .

Now we define a circulation.

Definition 14.4 A circulation f : A → R ≥ 0 such that

lij ≤ fij ≤ uij , ∀(i, j) ∈ A∑
k:(i,k)∈A fik −

∑
k:(k,i)∈A fki = 0, ∀i ∈ V.

We will show below that this is equivalent to the more commonly studied minimum-cost
flow problem. In the minimum-cost flow problem the input is the same (a directed graph
G = (V, A) with integer costs cij ≥ 0 and integer capacities uij ≥ 0 for each edge (i, j) ∈ A).
The difference is that there are no demands lij but instead, there are integer demands bi

∀i ∈ V , such that the sum of demands over all the vertices is zero:
∑

i∈V bi = 0. The goal
of the minimum-cost flow problem is to find a flow that minimizes the cost

∑
(i,j)∈A cijfij

such that

0 ≤ fij ≤ uij , ∀(i, j) ∈ A,∑
k:(k,i)∈A fki −

∑
k:(i,k)∈A fik = bi, ∀i ∈ V.

Theorem 14.1 The minimum-cost flow problem and the minimum-cost circulation problem
are equivalent.

Proof: (flow ⇒ circulation) Given an instance of the minimum-cost flow problem, add
a node s to the graph. For i ∈ V such that bi > 0 then attach an arc (i, s) with cost 0,
and lis = uis = bi. For i ∈ V such that bi < 0 we attach an arc (s, i) of cost 0 such that
lsi = usi = |bi| (See Figure 14.1). Note that given a feasible flow in the original problem
we can get a circulation of the same cost in the modified instance since the flow coming
into each node is equal to the flow going out of each node (including the node s, since∑

i:bi>0 bi =
∑

i:bi<0 |bi|). The reverse is also true – given a circulation in the modified
instance, the flow on the arcs of the original problem is a feasible flow of the same cost. So
by finding a minimum-cost circulation in the modified instance we can find a minimum-cost
flow in the original instance.

(circulation ⇒ flow) For this part, we change variables. Set f ′ij = fij − lij , and u′ij =
uij − lij . Set bi =

∑
k:(i,k)∈A lik −

∑
k:(k,i)∈A lki. This provides a direct transformation

14-67

bi > 0bi <0

G

s

cis = 0c is = 0

l si = usi =−bi l is = uis = bi

Figure 14.1: Transformation of minimum-cost flow instance to minimum-cost circulation
instance.

between the two problems. Given a feasible circulation f in the original problem, we have
a feasible flow f ′ in the modified problem of the same cost, and vice versa. Thus by finding
a minimum-cost flow in the modified instance we can find a minimum-cost circulation in
the original instance. 2

From here on we will consider only the minimum-cost circulation problem.

We will now change our notation slightly for the problem, as we did for the maximum
flow problem, since it will make our algorithms and proofs simpler. Replace each arc by
two arcs of opposite orientations. If fij is the flow in (i, j), then force fji = −fij . This is
called antisymmetry. Also set uji = −lij . This removes the lower bound constraints, since
fji ≤ uji ⇒ −fij ≤ −lij ⇒ fij ≥ lij . We make the costs antisymmetric, too: cji = −cij .
Thus the total cost for the two edges with flow f is cjifji+cijfij = 2cijfij . Hence optimizing
for the total cost for this new graph is the same as optimizing for the total cost for the
original graph. Thus our definition of a feasible circulation becomes the following.

Definition 14.5 A circulation f : A → R such that

fij ≤ uij , ∀(i, j) ∈ A

fij = −fji, ∀(i, j) ∈ A∑
k:(i,k) fik = 0, ∀i ∈ V

We will use the following claim frequently.

Claim 14.2 Via one max flow computation, we can tell if the circulation problem is feasible
and find a feasible circulation if one exists.

Proof: See Problem Set 1 solutions. 2

In the case of the maximum flow problem, we had conditions that told us when a flow
was optimal; i.e. we knew a flow was maximum if and only if there was no augmenting path.
We would like to give similar conditions for the minimum-cost circulation problem, but we
need a few definitions first.

14-68

Definition 14.6 A residual graph for a circulation f is Gf = (V,Af) where Af = {(i, j) ∈
A : fij < uij} with residual capacity uf

ij = uij − fij .

Definition 14.7 Let p : V → R. Then p are called node potentials (or sometimes node
prices). The reduced cost of (i, j) with respect to potentials p is cp

ij = cij + pi − pj . If Γ is a
cycle, let c(Γ) =

∑
(i,j)∈Γ cij .

Observe that the cost of a cycle Γ and the reduced cost of a cycle Γ is the same for any
set of potentials p; that is, c(Γ) = cp(Γ), since the potentials cancel out (see Figure 14.2).

3

1 2

+ p3 p
3

p+ 2

p
2

p
1

+

p1

−

−

−

Figure 14.2: Example showing cost of cycle is same as the reduced cost of the cycle.

We can now state the theorem giving us conditions under which a circulation is optimal.
Next time we will prove the theorem.

Theorem 14.3 The following are equivalent:

1. f is a minimal cost flow,

2. there are no negative cost cycles in Gf , and,

3. there exist potentials p such that cp
ij ≥ 0 for all (i, j) ∈ Af .

14-69

ORIE 633 Network Flows February 27, 2004

Lecture 15

Lecturer: David P. Williamson Scribe: Alice Cheng

15.1 Minimum-cost circulations

Recall the minimum-cost circulation problem, introduced in the previous lecture:

Minimum-cost circulation problem

• Input:

– A directed graph G = (V, A).

– Integer costs cij ≥ 0, ∀(i, j) ∈ A.

– Integer capacities uij ≥ 0, ∀(i, j) ∈ A.

– Integer demands 0 ≤ lij ≤ uij , ∀(i, j) ∈ A.

• Goal: Find a minimum-cost circulation.

The goal is to find a flow f : A → R≥0 that minimizes
∑

(i,j)∈A cijfij such that

lij ≤ fij ≤ uij , ∀(i, j) ∈ A∑
k:(i,k)∈A fik −

∑
k:(k,i)∈A fki = 0, ∀i ∈ V

In the previous lecture, we defined a notation change for circulations similar to the one we
defined for s-t flows.

Definition 15.1 A circulation f satisfies the following:

1. fij ≤ uij ∀ (i, j) ∈ A

2. fij = −fji, ∀ (i, j) ∈ A

3.
∑

k:(k,i)∈A fki = 0

In the new definition, flow in the original arc fij satisfies the constraints lij ≤ fij ≤ uij ,
and each unit of flow incurs cost cij . Flow on the reverse arc fji satisfies fji ≤ uji = −lij
and incurs cost cji = −cij per unit of flow. The total cost for the two edges with flow f is
cjifji + cijfij = 2cijfij . Hence optimizing for the total cost for this new graph is the same
as optimizing for the total cost for the original graph.

15-70

15.1.1 Residual graph

Given a flow f on G, define the residual graph Gf = (V, Af) where the new arc set

Af := {(i, j) ∈ A : fij < uij}.

Note that we are using the new notation here. Impose the upper bounds uf
ij = uij − fij .

Then clearly uf
ij > 0 for all (i, j) ∈ Af .

15.1.2 Potentials

Definition 15.2 A potential is a function p : V → R.

Definition 15.3 Given a potential p, define the reduced cost cp
ij := cij + pi − pj . Then

cp
ji = −cp

ij .

The potential plays the role of the dual variable. We shall show this formally in another
lecture.

Definition 15.4 The cost of a cycle Γ is c(Γ) =
∑

(i,j)∈Γ cij

Observe that if Γ is a cycle and c(Γ) :=
∑

(i,j)∈Γ cij , and cp(Γ) is defined similarly, then
cp(Γ) = c(Γ).

Definition 15.5 If f is a circulation, let c · f =
∑

(i,j)∈A cijfij

We can then prove the following.

Theorem 15.1 c · f = cp · f .

Proof:

cp · f = c · f +
∑

(i,j)∈A

(pi − pj)fij

= c · f +
∑

i∈V

pi

(∑

k:(i,k)∈A

fik −
∑

k:(k,i)∈A

fki

)

= c · f.

This follows since the term in parentheses is zero because of flow conservation. 2

15-71

15.1.3 Optimality conditions

We now characterize the minimum-cost circulation.

Theorem 15.2 The following are equivalent:

1. f is a minimal cost circulation,

2. There are no negative cost cycles in Gf , and,

3. There exists a potential p such that cp
ij ≥ 0 for all (i, j) ∈ Af .

Proof:

[¬(2) ⇒ ¬(1)] Let Γ be a negative cost cycle in Af . Define

δ = min
(i,j)∈Γ

uf
ij .

Then δ > 0. Let

f ′ij =





fij + δ, (i, j) ∈ Γ,

fij − δ, (j, i) ∈ Γ,

fij , otherwise.

Thus, f ′ij = −f ′ji and f ′ is a feasible circulation if f is. Also, f ′ij ≤ uij . Furthermore,

c · f ′ = c · f + 2δc(Γ) < c · f,

since Γ is a negative cost cycle. Therefore, f is not of minimum cost.

Note: In Gf ′ , Γ does not exist. This is so because f ′ij = uij for some (i, j) ∈ Γ. Then
(i, j) 6∈ Af ′ , and so Γ 6⊆ Af ′ . We say that Γ has been cancelled.

[(2) ⇒ (3)] Add a node s to Gf , and add arcs of cost 0 from s to each i ∈ V . Then let
pi be the length of the shortest path from s to i using costs cij as the edge lengths. These
paths are well defined since there are no negative-cost cycles, by assumption. Moreover, by
properties of shortest paths, for any (i, j) ∈ Af , pj ≤ pi + cij , so that cp

ij = cij +pi−pj ≥ 0.

[(3) ⇒ (1)] Suppose f∗ is any other valid circulation. We want to show that c · f ≤ c · f∗.
Consider the circulation f ′, where f ′ij = f∗ij − fij . f ′ is a feasible circulation. Let p be a
potential such that cp

ij ≥ 0 for all (i, j) ∈ Af . Note that if f ′ij > 0 then fij < f∗ij ≤ uij . This
implies (i, j) ∈ Af and cp

ij ≥ 0. Consider the following.

c · f ′ = cp · f ′ =
∑

(i,j)∈A

cp
ijf

′
ij =

∑

(i,j)∈A,f ′ij>0

cp
ijf

′
ij +

∑

(i,j)∈A,f ′ij<0

(−cp
ji)(−f ′ji)

= 2


 ∑

(i,j)∈A,f ′ij>0

cp
ijf

′
ij


 ≥ 0.

Thus, c · f∗ = c · (f ′ + f) ≥ c · f . Therefore f is a min-cost circulation.

2

15-72

15.1.4 A cycle-cancelling algorithm

This theorem yields a natural algorithm for computing a min-cost circulation:

Cycle-Cancelling Algorithm (Klein ’67)

Let f be a feasible circulation.
While Af contains a negative cycle Γ

Cancel Γ, update f .

The correctness of the algorithm follows immediately from the above theorem. Note that
we can always find a feasible circulation, if one exists, by running one max flow computation
(see Problem Set 1, # 3). Furthermore, we can find a negative cycle, if one exists, in O(mn)
time (Problem Set 3).

Also, notice that the algorithm implies that min-cost circulations, like max-flows, sat-
isfies an integrality property: If uij and cij are integer for all (i, j) ∈ A, then if a
feasible circulation exists, there is always integer-valued minimum-cost circulation. This
is true, since we can always cancel a cycle with integer flow during each iteration of the
cycle-cancelling algorithm.

To get a bound on the running time of the algorithm, define

U = max
(i,j)∈A

uij C = max
(i,j)∈A

|cij |.

Then any feasible circulation can cost at most mCU and must cost at least −mCU . There-
fore, since a cycle cancellation improves the cost of a circulation by at least 1, at most
O(mCU) cancellations are needed in order to find an optimal circulation. This gives us a
pseudopolynomial running time of O(m2nCU).

As with the augmenting path algorithm for the maximum flow problem, we can obtain
a polynomial-time algorithm by a better choice of cycle at each iteration. Consider the
following.

Definition 15.6 Let the mean cost of a cycle Γ be c(Γ)
|Γ| where c(Γ) is the cost of the cycle.

Definition 15.7 Given a circulation f , let µ(f) be the minimum mean-cost cycle in Gf :

µ(f) = min
cycle Γ⊆Af

c(Γ)
|Γ|

We will show next time that cancelling the minimum mean-cost cycle in each iteration
gives a polynomial-time algorithm.

15-73

ORIE 633 Network Flows March 1, 2004

Lecture 16

Lecturer: David P. Williamson Scribe: Dhruv Bhargava

16.1 Polynomial-time algorithms for minimum-cost circula-
tions

16.1.1 Minimum mean-cost cycle cancelling

Recall that last class we proved the following theorem:

Theorem 16.1 The following are equivalent:

1. f is a min cost circulation

2. There are no negative cost cycles in the residual graph Gf

3. ∃ potentials p such that cp
ij ≥ 0 for all (i, j) ∈ Af .

Then we suggested an algorithm for cancelling negative-cost cycles. As in the case of the
maximum flow algorithm, the naive algorithm prompted by the optimality theorem does not
lead immediately to a polynomial-time algorithm. To obtain a polynomial-time algorithm,
we must carefully select which negative cost cycle to cancel. It turns out we can get a
polynomial-time algorithm by cancelling the minimum mean-cost cycle, defined below.

Definition 16.1 The mean cost of a cycle Γ is

c(Γ)
|Γ|

Definition 16.2 The minimum mean cost cycle in Af is given by

µ(f) = min
cycles Γ in Af

c(Γ)
|Γ|

We can now give the following algorithm.

Minimum mean-cost cycle cancelling algorithm (Goldberg-Tarjan ’89)

Let f be any circulation
While µ(f) < 0

Cancel min-mean cycle Γ, update f

16-74

Observe that the condition µ(f) < 0 is equivalent to having a negative-cost cycle in Af .

To have a polynomial-time algorithm, we need to be able to find the minimum mean-cost
cycle in polynomial-time.

Claim 16.2 We can compute µ(f) and find the corresponding cycle in O(mn) time.

Proof: See Problem Set 3. 2

To begin our analysis, we need to introduce a few terms.

Definition 16.3 A circulation f is ε-optimal if there exist potentials p s.t. cp
ij ≥ −ε for all

(i, j) ∈ Af .

Clearly f is 0-optimal if and only if f is a min cost circulation, by the third equivalence
in Theorem 16.1. Further, if we have

C = max
(i,j)∈A

|cij |

then for any circulation, f is C−optimal, since if we assign pi = 0 for all i ∈ V , cp
ij ≥ −C

for all (i, j) ∈ Af .

Definition 16.4 Define ε(f) to be the minimum ε such that f is ε-optimal.

Interestingly, the two values of ε(f) and µ(f) are closely related.

Theorem 16.3 For a circulation f , µ(f) = −ε(f).

Proof: We first show that µ(f) ≥ −ε(f). Since cp
ij ≥ −ε(f) for all (i, j) ∈ Af , by

summing over all arcs in cycle Γ we obtain that cp(Γ) ≥ −ε(f)|Γ|. Thus

µ(f) =
c(Γ)
|Γ| =

cp(Γ)
|Γ| ≥ −ε(f).

for a minimum mean-cost cycle Γ.

We now show that µ(f) ≤ −ε(f). Set cij= cij − µ(f). Then for any cycle Γ in Af ,
c(Γ) = c(Γ)− |Γ|µ(f). As µ(f) ≤ c(Γ)

|Γ| , we have c(Γ) ≥ 0. We introduce a source vertex s,
connected to all vertices i with arcs of cost csi = 0, and define the potential pi of node i to
be the length of shortest path from s to i using costs cij . By the definition of shortest path,
for all (i, j) ∈ Af , pj ≤ pi + cij = pi + cij −µ(f) which implies cp

ij = cij + pi− pj ≥ µ(f) for
all (i, j) ∈ Af , which implies that ε(f) ≤ −µ(f). 2

Given circulation f , let f (i) denote the circulation i iterations later. The following
theorems, which we will prove later, will show that the Goldberg-Tarjan algorithm runs in
polynomial time.

16-75

Theorem 16.4 ε(f (1)) ≤ ε(f)

Theorem 16.5 ε(f (m)) ≤ (1− 1/n)ε(f)

where m,n are the number of arcs and nodes in the graph, respectively.

We will also need the following.

Theorem 16.6 When ε(f) < 1/n then circulation f is optimal.

Proof: Since ε(f) < 1/n, this implies that there exist potentials p such that cp
ij > −1/n

for all (i, j) ∈ Af . Thus for all cycles Γ ∈ Af , cp(Γ) > −1, which implies c(Γ) > −1. By
the integrality of costs, this gives c(Γ) ≥ 0. 2

We shall now prove using the previous three results that the Goldberg-Tarjan algorithm
terminates in time bounded by a polynomial in the input size.

Theorem 16.7 (Goldberg-Tarjan ’89) The Goldberg-Tarjan minimum mean-cost cycle can-
celling algorithm requires at most O(mn log(nC)) iterations.

Proof: Any initial circulation is C-optimal. After k = mn log(nC) iterations, we have
that

ε(f (k)) ≤ (1− 1/n)n log(nC)C < e− log(nC)C = 1/n,

using the fact that (1− 1/n)n < e−1. This proves the optimality of f (k) by Theorem 16.6.
2

The running of the Goldberg-Tarjan algorithm is O(m2n2 log(nC)) time as min-mean
cycle computations take O(mn) time. Note that this algorithm is not strongly polynomial.
A strongly polynomial algorithm will be presented in the next lecture along with the proof
of Theorem 16.5. For now, we return and prove Theorem 16.4.

Proof of Theorem 16.4: We know there exist potentials p such that

cp
ij ≥ −ε(f) for all (i, j) ∈ Af

For the minimum-mean cost cycle Γ, µ(f) = −ε(f). Since µ(f) = cp(Γ)/|Γ|, it follows that
for all (i, j) ∈ Γ, cp

ij = −ε(f). We now claim that cp
ij ≥ −ε(f) for all (i, j) ∈ Af (1) . We have

(i, j) ∈ Af (1) if either (i, j) was in Af , or if (j, i) ∈ Γ. In the first case, cp
ij ≥ −ε(f). In the

latter case, cp
ij = −cp

ij = ε(f) ≥ 0. In both cases, it follows that f (1) is ε(f)-optimal, so the
theorem statement follows. 2

16-76

ORIE 633 Network Flows March 3, 2004

Lecture 17

Lecturer: David P. Williamson Scribe: Dhruv Bhargava

17.1 Polynomial-time algorithms for minimum-cost circula-
tions

17.1.1 Minimum mean-cost cycle cancelling algorithm (cont.)

Recall that,

Theorem 17.1 For a circulation f the following are equivalent:

1. f is of minimum cost

2. There are no negative cost cycles in Gf

3. There exist potentials p such that cp
ij ≥ 0 ∀(i, j) ∈ Af .

Recall also that we defined the minimum-mean cost cycle of the residual graph as

Definition 17.1 µ(f) = min
cycles Γ∈Gf

c(Γ)
|Γ|

We presented an algorithm for finding a minimum cost circulation.

Min cost circulation

Find initial circulation f
While µ(f) < 0

Cancel mean-min cycle Γ, update f

Definition 17.2 A circulation f is ε-optimal if ∃ potentials p such that cp
ij ≥ −ε ∀(i, j) ∈ Af .

Further, we define ε(f) as the minimum ε such that f is an ε-optimal circulation.

Given a circulation f we denote by f (i) the circulation after i cancellations. Last time
we stated the following theorems:

Theorem 17.2 ε(f (1)) ≤ ε(f)

Theorem 17.3 ε(f (m)) ≤ (
1− 1

n

)
ε(f)

17-77

Theorem 17.4 If ε(f) < 1
n then f is a minimum cost circulation.

Theorem 17.5 Let C = maxi,j |cij |. Then the above algorithm terminates after at most
O(mn log nC) iterations. This gives the overall running time of O(m2n2 log nC).

Last time we showed that Theorem 17.5 follows from Theorems 17.2, 17.3, and 17.4,
and gave a proof for Theorems 17.4 and 17.2. We now complete the proof of Theorem 17.5
by proving Theorem 17.3. Recall that last time we also proved the following.

Theorem 17.6 µ(f) = −ε(f).

Proof of Theorem 17.3: We know there exist potentials p such that cp
ij ≥ −ε(f) for

all (i, j) ∈ Af . Suppose that in some iteration k we cancel cycle Γ such that ∃(i, j) ∈ Γ
with cp

ij ≥ 0 Then:

−ε(f (k)) = µ(f (k)) =
cp(Γ)
|Γ|

≥ |Γ| − 1
|Γ| (−ε(f))

≥
(

1− 1
n

)
(−ε(f)).

Thus

ε(f (k)) ≤
(

1− 1
n

)
ε(f).

How many consecutive iterations can there be the case that cycle Γ that is cancelled has
cp
ij < 0 for all (i, j) ∈ Γ ? Cancelling the cycle removes one edge with cp

ij < 0 from the
residual graph and creates only edges with cp

ij ≥ 0. So we need no more than m iterations
before we cancel such a cycle Γ. 2

17.1.2 Strongly polynomial time analysis

Definition 17.3 An algorithm runs in strongly polynomial time if the number of basic oper-
ations (e.g. additions, subtractions, multiplications, comparisons, etc.) can be bounded by a
polynomial in the number of data items that were input and is not dependent on the size of
data inputs (e.g. bits to encode cost, lower bounds, etc).

If an algorithm is strongly polynomial for minimum-cost circulations, its running time
depends only on m and n. The first such algorithm is due to Professor Éva Tardos of Cornell
in 1985. She won the Fulkerson Prize for it in 1988.

Definition 17.4 An arc (i, j) ∈ A is ε-fixed if the flow on it is the same for all ε-optimal
circulations f .

17-78

Before we begin discussing conditions under which an arc becomes ε-fixed, we give a
lemma that we will need.

Lemma 17.7 For any circulation f , any ∅ 6= S ⊆ V , we have that

∑

i∈S,j /∈S,(i,j)∈A

fkl = 0

Proof: For any set S we know:
∑

i:(i,j)∈A

fij = 0 =⇒
∑

j∈S

∑

i:(i,j)∈A

fij = 0

We also have the antisymmetry conditions:

fij + fji = 0, ∀(i, j) ∈ S

Combining the two, we conclude: ∑

i∈S
j 6∈S

(i,j)∈A

fij = 0

2

Theorem 17.8 Let ε > 0, let f be a circulation, and let p be potentials such that f is
ε-optimal with respect to p. If |cp

ij | ≥ 2nε then (i, j) is ε-fixed.

Proof: Suppose that f ′ is an ε-optimal circulation such that f ′ij 6= fij . Assume that
cp
ij ≤ −2nε; this is without loss of generality since costs are antisymmetric. The idea is that

f ′ij 6= fij will imply that there exists a cycle Γ ∈ Af ′ containing (i, j). The cost of (i, j) is
so negative that

c(Γ)
|Γ| < −ε,

contradicting the ε-optimality of f ′.

First, we show that there exists a cycle Γ in Af ′ such that (i, j) ∈ Γ. Since cp
ij ≤ −2nε

we know that (i, j) 6∈ Af because of ε-optimality of f . Therefore fij = uij . Thus we must
have f ′ij < fij = uij .

Let E< = {(k, l) ∈ A : f ′kl < fkl}. Observe that E< ⊆ Af ′ since f ′kl < fkl ≤ ukl. Let
S be the set of nodes reachable from j in E<. We will show that i ∈ S therefore a cycle Γ
exists as claimed. Note that E< ⊆ Af ′ . Suppose by contradiction that i 6∈ S. Lemma 17.7
tells us that ∑

k∈S
l 6∈S

fkl = 0 and
∑

k∈S
l 6∈S

f ′kl = 0

17-79

These together imply that ∑

k∈S
l 6∈S

(fkl − f ′kl) = 0

But f ′ij < fij ⇒ f ′ji > fji. Therefore there is a term in the sum that is negative. Then
there must be a term that is positive. So ∃(k, l), k ∈ S, l 6∈ S such that f ′kl < fkl. By then
(k, l) ∈ E< and since k ∈ S, it must be that l ∈ S, which is a contradiction.

Therefore we know that if |cp
ij | ≥ 2nε then (i, j) is part of a cycle Γ in the set of edges

(k, l) for which f ′kl < fkl. Note that this implies that the reverse cycle Λ = {(l, k) : (k, l) ∈ Γ}
exists in the set of arcs (l, k) for which f ′lk > flk, which implies that Λ exists in Af since
flow on the edges in this cycle cannot be at their upper bounds. Since f is ε-optimal we
know that for (l, k) ∈ Af , cp

lk ≥ −ε. Therefore for any (k, l) ∈ Γ we know that cp
kl ≤ ε.

We know that µ(f ′) = −ε(f ′) ≥ −ε. Thus:

c(Γ)
|Γ| =

cp(Γ)
|Γ|

=
1
|Γ|


cp

ij +
∑

(k,l)∈Γ:(k,l) 6=(i,j)

cp
kl




≤ 1
|Γ|(−2nε + (|Γ| − 1)ε)

<
1
|Γ|(−|Γ|ε)

= −ε

Therefore there exists a cycle in Af ′ whose mean cost is less than −ε, which is a contradic-
tion. Therefore the flow on the arc (i, j) must be fixed. 2

Next time we will show that this analysis gives a strongly polynomial-time algorithm.

17-80

ORIE 633 Network Flows March 5, 2004

Lecture 18

Lecturer: David P. Williamson Scribe: David P. Williamson

18.1 Polynomial-time algorithms for minimum-cost circula-
tions

18.1.1 Minimum mean-cost cycle cancelling algorithm (cont.)

Recall that last time we defined the notion of an ε-fixed arc.

Definition 18.1 A circulation f is ε-optimal if ∃ potentials p such that cp
ij ≥ −ε ∀(i, j) ∈ Af .

Further, we define ε(f) as the minimum ε such that f is an ε-optimal circulation.

Definition 18.2 An arc (i, j) ∈ A is ε-fixed if the flow on it is the same for all ε-optimal
circulations f .

We then proved the following theorem.

Theorem 18.1 Let ε > 0, let f be a circulation, and let p be potentials such that f is
ε-optimal with respect to p. If |cp

ij | ≥ 2nε then (i, j) is ε-fixed.

We now show that this leads to a strongly polynomial-time algorithm.

Theorem 18.2 The minimum mean-cost cycle cancelling algorithm terminates afterO(m2n log n)
iterations.

Proof: Once an arc is fixed, it will always remain fixed since ε(f) is non-increasing. We
now claim that a new arc will be fixed after at most k = mn log(2n) iterations. Let f be
the current circulation and Γ be the cycle cancelled in this iteration. Then

ε(f (k)) ≤
(

1− 1
n

)n log 2n

ε(f)

< e− log 2nε(f)

=
ε(f)
2n

Let pk be the potentials associated with the flow f (k) such that the flow is ε(f (k))-optimal.
Then

−ε(f) =
cpk

(Γ)
|Γ| < −2nε(f (k))

18-81

Therefore, ∃(i, j) ∈ Γ such that cpk

ij < −2nε(f (k)). Therefore (i, j) is fixed.

Further, note that (i, j) was not ε(f)-fixed since (i, j) ∈ Γ and the flow on it changed
when we cancelled Γ. But if it was ε(f)-fixed, the flow on it would not have changed.
Therefore we fixed a new edge. 2

18.1.2 A primal-dual algorithm

So far, the algorithm for the minimum-cost circulation problem that we have studied has
been a primal algorithm. The algorithm starts with some feasible circulation and moves
towards optimality. One could also consider a dual algorithm, which maintains a dual
feasible solution, and moves towards optimality. Today we will start discussions of a special
case of dual algorithms known (in combinatorial optimization) as primal-dual algorithms.
They start with some dual feasible solution and a primal infeasible solution. The algorithm
moves to reduce the infeasibility of the primal and increase the value of the dual while
maintaining complimentary slackness.

To have a primal-dual method, we need first a primal and a dual. Let’s go back to the
original notation for the circulation problem in which we had lower bounds on the flows
for each arc and didn’t have the antisymmetry condition. A primal LP for the min-cost
circulation problem is as follows.

Min
∑

(i,j)∈A

cijfij

subject to: ∑

k:(k,i)∈A

fki −
∑

k:(i,k)∈A

fik = 0 ∀i ∈ V

lij ≤ fij ≤ uij .

We then take the dual of this LP to obtain the following:

Max
∑

(i,j)∈A

lijwij −
∑

(i,j)∈A

uijzij

subject to:
pj − pi + wij − zij = cij ∀(i, j) ∈ A

wij ≥ 0
zij ≥ 0.

Now, suppose that the node potentials p are given. The reduced cost cp
ij = cij + pi− pj ,

and cij+pi−pj = wij−zij in the dual LP. If we know the potentials, then we can compute the
best possible setting of the dual variables w and z (that is, the ones that will maximize the
objective function) by setting wij = max(cp

ij , 0) ≡ (cp
ij)

+ and −zij = min(cp
ij , 0) ≡ (cp

ij)
−.

18-82

Therefore, finding potentials p yields a solution to the dual and the following LP is equivalent
to the dual LP:

Max
∑

(i,j)∈A

lij(c
p
ij)

+ +
∑

(i,j)∈A

uij(c
p
ij)
−

subject to:
cij + pi − pj = cp

ij ∀(i, j) ∈ A

Then by complementary slackness we have

cp
ij > 0 ⇔ wij > 0 ⇒ fij = lij

cp
ij < 0 ⇔ zij > 0 ⇒ fij = uij

In general, the primal-dual method works as follows. We start with some dual feasible
solution. We then check whether or not we can find a feasible primal solution that obeys
the complementary slackness conditions with respect to the current dual. If so, then we
have a feasible primal and feasible dual that obey complementary slackness with respect to
each other, and thus must be optimal. If not, then we claim that we can find some way
to modify the dual so that the dual objective function increases, and we repeat the step of
checking for a feasible primal solution that obeys complementary slackness with respect to
the current dual.

Our primal-dual algorithm for the minimum-cost circulation problem will start with a
dual feasible solution by setting all potentials equal to 0. We will then determine whether
there exists a primal feasible solution that obeys complimentary slackness by defining a new
circulation problem with modified upper and lower bounds ũ and l̃.

cp
ij > 0 ⇒ l̃ij = ũij = lij

cp
ij < 0 ⇒ l̃ij = ũij = uij

cp
ij = 0 ⇒ l̃ij = lij , ũij = uij

As with most primal dual approaches, we have reduced a problem with cost to a problem
without cost where we only need to check for feasibility. If we can find a feasible circulation in
the problem with bounds l̃ij and ũij , we are finished, since then we will have a primal feasible
solution and a dual feasible solution that obey the complementary slackness conditions, and
thus are optimal.

If not, then by Hoffman’s circulation theorem (on Problem Set 1) we can find a cut S
such that l̃(δ+(S)) > ũ(δ−(S)). We also showed on Problem Set 1 that we could check for
feasibility and find such an S with one maximum flow computation. We will modify the
dual to increase the dual objective function. To do this, we will increase the potentials of
nodes in the cut S by a value β. We will show next time that this will lead to an increase
in the dual objective function.

18-83

ORIE 633 Network Flows March 8, 2004

Lecture 19

Lecturer: David P. Williamson Scribe: Stefan Wild

19.1 Polynomial-time algorithms for minimum-cost circula-
tions

19.1.1 A primal-dual algorithm (cont.)

From last lecture, recall the new form of the dual for a min-cost circulation:

Max
∑

(i,j)∈A

lij(c
p
ij)

+ +
∑

(i,j)∈A

uij(c
p
ij)
−

subject to:
cij + pi − pj = cp

ij ∀(ij) ∈ A,

where (cp
ij)

+ ≡ max(cp
ij , 0) and (cp

ij)
− ≡ min(cp

ij , 0). The corresponding complementary
slackness conditions are:

cp
ij > 0 ⇔ wij > 0 ⇒ xij = lij ,

cp
ij < 0 ⇔ zij > 0 ⇒ xij = uij .

We then had the following algorithm:

Primal-Dual Algorithm

Find feasible dual (p ← 0)
While current primal doesn’t obey complementary slackness conditions
with respect to the current dual,

Get a direction of dual increase and update.

Our primal-dual algorithm then starts with a dual feasible solution and we must deter-
mine whether there exists a primal feasible solution that obeys complementary slackness by
defining a new circulation problem with modified upper and lower bounds ũ and l̃.

cp
ij > 0 ⇒ l̃ij = ũij = lij

cp
ij < 0 ⇒ l̃ij = ũij = uij

cp
ij = 0 ⇒ l̃ij = lij , ũij = uij

If we can find a feasible circulation in the problem with bounds l̃ij and ũij , we are
finished, since then we will have a primal feasible solution and a dual feasible solution that
obey the complementary slackness conditions, and thus are optimal.

19-84

If not, by Problem Set 1, we can find a cut S ⊂ V such that l̃(δ+(S)) > ũ(δ−(S)). Note
that by Problem Set 1, we could either find a feasible solution to the circulation problem
or find such a cut S in a single max flow computation.

We will now use this set S to prove the following lemma.

Lemma 19.1 If there is no feasible circulation with respect to bounds l̃, ũ, then we can increase
the dual objective function.

Proof: We want to adjust the reduced cost cp
ij so that the cp

ij don’t flip sign for all
(i, j) ∈ A. We do this by increasing pi by β for all i ∈ S, where S is the cut that has
l̃(δ+(S)) > ũ(δ−(S)). We then have:

cp
ij =





cp
ij + β if (i, j) ∈ δ+(S)

cp
ij − β if (i, j) ∈ δ−(S)

cp
ij otherwise.

So in order to preserve the signs of cp
ij , we set:

β = min
(
min

{
|cp

ij | : (i, j) ∈ δ+(S), cp
ij < 0

}
,min

{
cp
ij : (i, j) ∈ δ−(S), cp

ij > 0
})

,

where this definition implies that β > 0.

We now consider the change, ∆, in the dual objective function:

∆ = β




∑

(i,j)∈δ+(S)
cp
ij≥0

lij −
∑

(i,j)∈δ−(S)
cp
ij>0

lij +
∑

(i,j)∈δ+(S)
cp
ij<0

uij −
∑

(i,j)∈δ−(S)
cp
ij≤0

uij


 .

Now observe that
∑

(i,j)∈δ+(S)
cp
ij≥0

lij +
∑

(i,j)∈δ+(S)
cp
ij<0

uij =
∑

(i,j)∈δ+(S)

l̃ij = l̃(δ+(S)),

and ∑

(i,j)∈δ−(S)
cp
ij>0

lij +
∑

(i,j)∈δ−(S)
cp
ij≤0

uij =
∑

(i,j)∈δ−(S)

ũij = ũ(δ−(S)).

Therefore ∆ = β
(
l̃(δ+(S))− ũij

)
> 0 and hence we have a dual objective function increase.

2

Since the costs and initial potentials are integral, we have that β is integral and so the
next potentials will remain integral. Furthermore, if the bounds l and u are integral, then
the dual objective function increase will also be integral. This will give a pseudo-polynomial
time algorithm that requires O(mCU) max-flow computations, where m is the number of
arcs, C is the value of the largest (in magnitude) edge cost, and U is the value of the largest
capacity. In fact, clever analysis will give an algorithm that requires O(min(nC, nU)) max-
flow computations.

19-85

19.1.2 A cost scaling algorithm

We now turn to another non-primal algorithm for the minimum-cost circulation problem.

Cost Scaling (Goldberg, Targan ’90)

Let f be any feasible circulation
Initialize ε ← C, pi ← 0 ∀i ∈ V
while ε ≥ 1

n
(?)
ε ← ε

2
(f, p) ← Run Subroutine: find ε-optimal circulation given input (f, ε, p)

The idea is that given a 2ε-optimal circulation f with respect to potentials p, the sub-
routine will find an ε-optimal circulation f ′ with respect to potentials p′. Since the initial
circulation is C-optimal and the final f is < 1

n -optimal (and hence optimal by the proof in
the previous lecture), we will require log(nC) iterations of the while loop.

We can also show that the number of iterations is strongly polynomial by tweaking one
of our previous theorems. Recall the following definition and result.

Definition 19.1 An arc (i, j) is ε-fixed if the flow on (i, j) is the same for all ε-optimal
circulations.

Theorem 19.2 For ε > 0 and circulation f with respect to potentials p, if |cp
ij | ≥ 2nε, then

(i, j) is ε-fixed.

We then have the following theorem:

Theorem 19.3 For circulation f and ε′ < ε(f)
2n , the set of ε′-fixed arcs strictly contains the set

of ε(f)-fixed arcs.

Proof: Clearly if an arc is ε′-fixed, then it is also ε(f)-fixed. We now want to show
that there exists an arc that is ε′-fixed, but not ε(f)-fixed. Let p be the potentials such
that f is ε(f)-optimal. Then there exists a cycle Γ ∈ Af such that −ε(f) = cp(Γ)

|Γ| by
a previous theorem. We also know that cp

ij ≥ −ε(f)∀(i, j) ∈ Af by definition. Hence
cp
ij = −ε(f)∀(i, j) ∈ Γ.

If we cancel cycle Γ, the resulting circulation, f̂ , is still ε-optimal. Thus no arc in Γ
is ε-fixed. Now let f ′ be any ε′-optimal circulation with respect to potentials p′. Then

−ε(f) = cp′ (Γ)
|Γ| < −2nε′ and thus ∃(i, j) ∈ Γ such that cp′

ij ≤ −2nε′. Therefore (i, j) is
ε′-fixed (but not ε(f)-fixed). 2

We now want to claim the following corollary.

Corollary 19.4 Every log(2n) iterations of the while loop, a new arc is fixed.

19-86

But note that the lemma states that ε′ must be a factor of 2n less than ε(f), not just
any ε such that f is ε-optimal. In order to make this true, at step (?) in the Cost Scaling
algorithm, we must now add a subroutine to find potentials p such that f is ε(f)-optimal
and then set ε ← ε(f). This will only decrease ε as the procedure continues. Then we can
claim the corollary above.

Since we can fix at most m arcs, we have the following theorem.

Theorem 19.5 After min(m log(2n), log(nC)) iterations, Cost Scaling finds a min-cost cir-
culation.

19-87

ORIE 633 Network Flows March 10, 2004

Lecture 20

Lecturer: David P. Williamson Scribe: Patrick Kongsilp

20.1 Polynomial-time algorithms for minimum-cost circula-
tions

20.1.1 A cost-scaling algorithm (cont.)

In the last lecture, the cost scaling algorithm was introduced but the subroutine find-ε-opt-
circ(f, ε, p) wasn’t given.

Cost Scaling (Goldberg, Tarjan ’90)

Let f be any feasible arc
ε ← C
pi ← 0,∀i ∈ V
While ε ≥ 1/n

ε ← ε/2
(f, p) ← find-ε-opt-circ(f, ε, p)

Recall the following theorem from last lecture.

Theorem 20.1 After min(log(nC),m log(2n)) iterations, cost scaling finds an optimal circu-
lation.

Today, we’ll given an algorithm for the subroutine find-ε-opt-circ(f, ε, p) based on the
ideas from the push/relabel algorithm that we saw for the maximum flow problem.

find-ε-opt-circ

• Input: 2ε-opt circulation f , potentials p s.t. cp
ij ≥ −2ε, ∀(i, j) ∈ Af

• Goal: 2ε-opt circulation f ′, potentials p′ s.t. cp
ij ≥ −ε,∀(i, j) ∈ Af ′

The basic idea of the algorithm is that we will first convert the 2ε-optimal circulation
to an ε-optimal pseudoflow, and then convert the ε-optimal pseudoflow to an ε-optimal
circulation.

Definition 20.1 A pseudoflow f : A → R satisfies the following:

• fij = −fji, for all (i, j) ∈ A

20-88

• fij ≤ uij , for all (i, j) ∈ A.

Note that a pseudoflow obeys antisymmetry and capacity constraints but not flow con-
servation.

Definition 20.2 For pseudoflow f , the excess at node i ∈ V is

ef
i =

∑

k:(k,i)∈A

fki

Note that this quality may be negative. If so, then negative excess is sometimes called
a deficit.

How can we convert a 2ε-optimal circulation to an ε-optimal pseudoflow? It’s easy; we
just saturate every edge with negative cost. That is, for (i, j) ∈ A such that cp

ij < 0, set fij

to uij . Then f is a 0-optimal pseudoflow.

To use a push/relabel scheme, we need to specify the conditions needed (and actions
taken) for doing a push operation and a relabel operation. Obviously, in order to get from
a pseudoflow to a circulation, we’d like to get rid of all excesses; following the idea of the
push/relabel algorithm for maximum flow, we’ll do a push on nodes with positive excess.
Recall that in the maximum flow case, we only pushed along admissible arcs that met some
criterion with their distance label. What should be the concept of an admissible arc in this
case? Here we say an arc (i, j) is admissible if cp

ij < 0. Thus we push from node i with

ef
i > 0 if there exists j such that uf

ij > 0 and cp
ij < 0. As in the maximum flow case, we

will push δ = min(ef
i , uf

ij) units of flow along (i, j).

Observe that ε-optimality is maintained during a push operation on (i, j) since if (j, i)
is created in the residual graph, it will have reduced cost cp

ji = −cp
ij > 0.

What happens during a relabel operation? We need to relabel if there is excess at a node
i, but there are no admissible arcs leaving i. In this case, all arcs with residual capacity
must have non-negative reduced cost. To create some admissible arc, we will simply alter
the potential pi at node i. In particular, we set

pi ← max
(i,j)∈Af

(pj − cij − ε).

Note that after a relabel operation, we have

• cij + pi − pj ≥ −ε, ∀(i, j) ∈ Af

• cij + pi − pj = −ε for some (i, j) ∈ Af

Therefore, pi is decreased by at least ε, and f maintains ε-optimality.

Putting these together, we obtain the following algorithm.

20-89

Push/relabel find-ε-opt-circ(f, ε, p)

∀(i, j) ∈ Af if cp
ij < 0, fij ← uij

While ∃ active i ∈ V (ef
i > 0)

If ∃j s.t. uf
ij > 0 and cp

ij < 0
Push δ = min(ef

i , uf
ij) flow on (i, j)

Else
Relabel pi ← max

(i,j)∈Af

(pj − cij − ε)

Return (f, p)

We now want to show that the algorithm is correct and bound its running time. Recall
the following lemma from previous lectures.

Lemma 20.2 For any circulation f , any S ⊆ V, S 6= ∅,
∑

i∈S,j 6∈S,(i,j)∈A

fij = 0.

We will need the following lemma for our proof.

Lemma 20.3 Let f be a pseudoflow, f ′ a circulation. For any i such that ef
i > 0, there exists

j such that ef
j < 0 and there exists a path P from i to j with (k, l) ∈ Af , (l, k) ∈ Af ′ for all

(k, l) ∈ P .

Proof: We first claim that we can find P in set of arcs

A< = {(i, j) : fij < f ′ij}
Note A< ⊆ Af since fij < f ′ij implies fij < uij . Further note that if (i, j) ∈ A<, then
(j, i) ∈ Af ′ since then f ′ji < fji ≤ uji. Thus given a vertex i such that ef

i > 0, it will be
sufficient to find a path in A< to some j such that ef

j < 0.

To do this, let S be all vertices reachable from i using arcs in A<. Then,
∑

k∈S

ef
k =

∑

k∈S

∑

j:(k,j)∈A

fkj

=
∑

k∈S,j 6∈S,(k,j)∈A

fkj

≥
∑

k∈S,j 6∈S,(k,j)∈A

f ′kj = 0.

The inequality holds because (k, j) 6∈ A<. The last equality holds because f ′ is a circulation.

Since ef
i > 0, then there must be j ∈ S such that ef

j < 0. Furthermore, j is reachable
from i using arcs of A<. 2

Using the lemma above, we can now bound the amount that the potential of any node
changes during the course of algorithm.

20-90

Lemma 20.4 For any i, pi decreases by at most 3nε during the algorithm.

Proof: Let f ′ be the initial 2ε-optimal circulation, and p′ initial potentials. We consider
the last point in the algorithm during which pi is relabelled. Note that if pi is relabelled,
then ef

i > 0. By Lemma 20.3, we know there is j ∈ V such that ef
j < 0 and there is a path

P from i to j in Af , with the reverse of the path in Af ′ .

First, observe that f being ε-optimal implies

−|P |ε ≤
∑

(k,l)∈P

cp
kl =

∑

(k,l)∈P

(ckl + pk − pl) =


 ∑

(k,l)∈P

ckl


 + pi − pj

Next, observe that since f ′ is 2ε-optimal and the reverse of P from j to i is in Af ′ implies
that

−2ε|P | ≤
∑

(k,l)∈P

cp′
lk =

∑

(k,l)∈P

clk + p′j − p′i

Finally, observe that by our definition of costs
∑

(k,l)∈P ckl =
∑

(k,l)∈P clk. Thus by
adding the previous inequalities, we get

−3ε|P | ≤ (pi − p′i) + (p′j − pj).

Because ef
j < 0, the node j must not have been relabelled to this point in the algorithm,

and thus pj = p′j . Therefore we have that

−3nε ≤ pi − p′i.

Since we assumed that this was the last point in the algorithm during which i was relabelled,
the lemma statement follows. 2

The corollary below follows immediately from the fact that every relabelling decreases
the potential at a node by at least ε.

Corollary 20.5 The number of relabels per vertex is at most 3n, and there are at most 3n2

relabels total.

As with the push/relabel algorithm for maximum flows, the bounds on the remaining
push operations follow almost immediately from this; we will discuss this next time.

20-91

ORIE 633 Network Flows March 12, 2004

Lecture 21

Lecturer: David P. Williamson Scribe: Ed Hua

21.1 Polynomial-time algorithms for minimum-cost circula-
tions

21.1.1 A cost-scaling algorithm (cont.)

Recall from the previous lectures that we had shown that min(m log(2n), log(nC)) iterations
of a subroutine find-ε-opt-circ was sufficient for computing a minimum-cost circulation.
This subroutine takes a 2ε-optimal circulation and computes from it an ε-optimal circulation.
Last time we gave an implementation of the subroutine based on ideas from the push/relabel
algorithm for the maximum flow problem. We repeat the algorithm below.

Push/Relabel find-ε-opt-circ(f,ε,p)

Input: 2ε–optimal circulation f , pricess p
Output: ε–optimal circulation f ′, prices p′

∀(i, j) ∈ A If Cp
ij < 0, fij ← uij

while ∃ active i ∈ V , (ef
i > 0)

If ∃j such that uf
ij > 0 and cp

ij < 0

Push δ = min
(
ef
i , uf

ij

)
flow on (i, j)

Else
Relabel pi ← max(i,j)∈Af

(pj − cij − ε)
Return (f, p)

In dealing with maximum flow problems, we said that an arc (i, j) is admissible if
di = dj + 1. For minimum-cost circulation problems, we gave the following definition.

Definition 21.1 In a minimum-cost circulation problem, for some set of prices pi, ∀i ∈ V , an
arc (i, j) is admissible if cp

ij < 0.

Last time we also proved the following lemma.

Lemma 21.1 For all i ∈ V , pi decreases by at most 3nε during the algorithm.

We now give the following corollary.

21-92

Corollary 21.2 The total number of relabels is at most 3n2.

Proof: Since pi decreases by at least ε in each relabel operations, there can be at most
3n relabels of i. This implies that there are at most 3n2 relabel operations in total. 2

Recall that a Push operation is said to be saturating if δ = uf
ij , or non-saturating

otherwise (in which case δ = ef
i). As in the case of the push/relabel algorithm for the

maximum flow problem, we now bound the number of push operations by considering the
two types of pushes separately.

Lemma 21.3 The number of saturating pushes in the above algorithm is at most 3nm.

Proof: Pick any arc (i, j). Initially, cp
ij ≥ 0 if uf

ij > 0. Therefore, we have to relabel
i before we can push on (i, j), since for (i, j) to be admissible, we need cp

ij < 0. Having
had a saturating push on (i, j), in order to push flow again on it, we must first push flow
back on (j, i), which implies cp

ji < 0, which in turn implies cp
ij ≥ 0. Therefore, we need to

relabel i once more to push flow on (i, j) again. This leads directly to a bound of at most
3n saturating pushes on (i, j). Thus for all m arcs in the graph, there can be at most 3nm
saturating pushes. 2

Now we wish to find an upper bound for the total number of non-saturating pushes in
this algorithm. We need the following lemma to help us with this bound.

Lemma 21.4 The set of admissible arcs is acyclic.

Proof: We prove this lemma by induction on the algorithm. The base case of the
algorithm is simple since initially no admissible arcs exist. Now suppose that the claim
holds in the middle of the algorithm. Each time a push is executed, it can only remove
admissible arcs from the residual graph, but cannot add them, so the claim holds. Each
time a relabel is executed, it adds admissible outgoing arcs of vertex i, but removes all of i’s
admissible incoming arcs because all of the reduced costs of the arcs entering i are increased
by at least ε. Thus no cycles can be created by the new admissible arcs coming out of vertex
i. 2

Now we can bound the number of non-saturating pushes.

Lemma 21.5 The number of non-saturating pushes in the algorithm is O(n2m).

Proof: Define Φi to be the number of vertices reachable from i via the admissible arcs,
and let Φ =

∑
active i Φi. Initially Φ ≤ n (since every vertex can reach only itself); when

the algorithm terminates, Φ = 0, since there are no active vertices i.

What makes Φ increase? A saturating push on the arc (i, j) could result in a new active
node j, and therefore Φ can increase by at most n. In addition, a relabel can increase Φi

by at most n, but for a vertex j such that j 6= i, the relabel does not increase Φj , since
all arcs entering i are no longer admissible. So, the amount that Φ increases is at most
n

(
3nm + 3n2

)
.

21-93

What then makes Φ decrease? From the algorithm above, we see that a non-saturating
push decreases Φ by at least 1: after such a push, i has turned inactive, and even if some
other vertex j became active as a result of the non-saturating push, it would still reach
fewer vertices than i by the acyclicity of the admissible arcs.

So, the total number of non–saturating pushes in this algorithm has to be at most
n

(
3nm + 3n2

)
= 3n2m + 3n3 = O

(
n2m

)
. 2

From the above lemmas, we see that the total number of push/relabel operations of the
algorithm is at most O(n2m). Given an implementation with O(1) time per operation (which
we will not discuss), we may obtain the overall computational time of the Push/Relabel find-
ε-opt-circ subroutine:

Theorem 21.6 The Push/Relabel find-ε-opt-circ subroutine takes O(n2m) time. Further-
more, with a FIFO implementation of Push/Relabel, the subroutine runs in O

(
n3

)
time.

Combining this with the bound on the number of iterations of the cost-scaling algorithm,
we obtain the following.

Theorem 21.7 (Goldberg, Tarjan ’90) The cost-scaling algorithm for the minimum-cost cir-
culation problem can be implemented in O(n3 min(log(nC),m log n)) time.

Note that if we replace Push/Relabel find-ε-opt-circ with a subroutine based on blocking
flows, the cost-scaling algorithm can be shown to run in O(mn log n ·min (m log n, log(nC)))
time.

We close our performance analysis of the cost-scaling algorithm with two open ques-
tions. First, is a minimum-cost circulation problem solvable with O(min(m log n, log(nC)))
iterations of any maximum flow algorithm? It looked like the push/relabel algorithm could
be used as the find-ε-opt-circ subroutine with only minor modifications; this is also the case
for the blocking flow variant of this subroutine.

More to the point, can the Goldberg-Rao maximum flow algorithm be used for this
subroutine? This would then give us a minimum-cost circulation algorithm that runs in
O(Λm log n(log(mU))(log(nC))) time, which would be the fastest known algorithm.

To these questions we have no definitive answers. The current best strongly polynomial
time bound is due to Orlin, whose minimum-cost circulation algorithm runs in O(m log n ·
(m + n log n)) time.

21.2 An application of minimum-cost flows

We look at a problem on the optimal loading of a hopping aircraft. Consider an airplane
that makes stops at LaGuardia, Elmira, Ithaca, and Rochester, at each stop picking up
some passengers. Our goal is to maximize the revenue while obeying the airplane’s seating
capacity constraints.

To solve this problem we first make some definitions as follows:

21-94

• bij = number of passengers who want to travel from i to j;

• fij = the fare for passengers travelling from i to j

• u = the capacity of the airplane

The figure below shows how we may transform this problem into a minimum-cost flow
problem. In the figure, Vertex 1 is LaGuardia, Vertex 2 Elmira, Vertex 3 Ithaca, and
Vertex 4 Rochester. We create arcs from vertex i to vertex i + 1 of capacity u for each i;
this corresponds to the capacity of the aircraft. For each value bij , we create a node with
a supply bij at the node; each node has two arcs, one pointing to node i and one pointing
to node j. The cost of the arc to node i is −fij ; this corresponds to the revenue we get
for each passenger traveling from i to j. The cost of the arc to node j is zero; we get no
revenue from passengers we do not transport to node j in the aircraft. We put demands at
each of the four city nodes corresponding to the number of passengers who want to end up
there; that is b1 = 0; b2 = −b12; b3 = −b13 − b23; and b4 = −b14 − b24 − b34.

21-95

1 2 3 4

b12

b14

b13

b24

b23

b34

0

-f14

-f13

0 -f12

-f24

0
-f23

0

-f34

0

u u u

0

21-96

ORIE 633 Network Flows March 15, 2004

Lecture 22

Lecturer: David P. Williamson Scribe: Ed Hua

22.1 The market-clearing pricing problem

In this lecture, we consider a problem from economics: that of finding prices that will cause
a market to clear. We refer to this problem as the Market-Clearing Pricing Problem. This
turns out to be a nice application of maximum flow techniques.

Market-Clearing Pricing Problem

• Input:

– Set B of buyers

– Set A of unit amounts of divisible goods (|A| = n)

– Integer amount of money mi ∀i ∈ B

– Integer utilities uij ∀i ∈ B, ∀j ∈ A
(utility uij specifies the happiness buyer i derives from one unit of good j)

• Goal: Find prices pj ∀j ∈ A such that the market clears:

– All buyers buy only goods that maximize happiness

– All money is spent

– No goods remain unpurchased

It has been long known that prices exist that clear the market. A result of Arrow
and Debreu from 1954 implies the existence of market-clearing prices, though this may not
be earliest work that establishes the existence of such prices. The previous proofs that
market-clearing prices exist, however, were non-constructive.

The Market-Clearing Pricing Problem was defined in 1891 by Fisher, who invented a
hydraulic machine to solve it (in the case of three goods). Recently, in 2002, a polynomial-
time algorithm was given for the problem, demonstrating that there still exist nice problems,
which are solvable in polynomial time, for which no polynomial-time algorithm was previ-
ously known. We present this algorithm for computing market-clearing prices, which was
developed by Devanur, Papadimitriou, Saberi, and Vazirani.

22-97

22.1.1 Characterizing market clearance using maximum flow

First, we formalize the notion that all the buyers must buy only goods that maximize their
happiness in order for the market to clear. Given prices pj , the “bang per buck” that a
buyer i derives from a good j is the ratio of the utility uij to the price pj . Figure 22.1(a)
depicts sample data and the corresponding bang per buck ratios. Buyers try to maximize
the bang per buck they get for the goods that they buy, and so we define αi as follows to
represent the best bang per buck that a buyer i can obtain.

αi = max
j∈A

uij

pj

A buyer i will only buy goods j such that uij

pj
= αi. We define a graph that represents

the goods that each buyer may purchase.

Definition 22.1 The equality subgraph G = (A, B,E) is a bipartite graph (with vertex sets
A and B) where (i, j) ∈ E if and only if αi = uij

pj
.

Given a particular set of prices pj ∀j ∈ A, we can determine whether the prices clear
the market by performing a maximum flow computation. We add a source vertex s and
a sink vertex t to the equality subgraph. For each good j ∈ A, we add an arc (s, j) with
capacity pj . For each buyer i ∈ B, we add an arc (i, t) with capacity mi. We orient each
edge (i, j) corresponding to a buyer i ∈ B and a good j ∈ A in the equality subgraph as
a directed arc (j, i) with capacity ∞. Figure 22.1(b) shows an example of this graph for a
particular collection of buyers and goods.

60

10

buyers goods

t s

140

20

60

100 20

40

(b)(a)

$100

buyers

$60

$20

$140

bang per buck
1010

20
$20

$40

$10

$60

goods

4

2

40

20

20

60

2

10

4

Figure 22.1: (a) An example of the computation of the bang per buck that a buyer obtains
from different goods. The amounts of money the buyers have are shown on the left, the
prices of the goods are shown on the right, and the label for an edge (i, j) indicates the
utility uij . (b) A graph in which we can compute a maximum flow to determine whether a
set of prices clears a market. The arcs from goods to buyers have infinite capacity.

In this graph, flow from the source to the sink represents the transfer of money in the
market. A unit of flow on an arc (j, i) from a good j to a buyer i represents a dollar spent

22-98

by buyer i on good j. The total amount of flow from the source to the sink is the total
amount of money spent by the buyers on goods. Therefore, the market clears (the buyers
spend all their money) if and only if the maximum flow value is

∑
i∈B mi.

22.1.2 A polynomial-time algorithm

The idea behind this algorithm for the Market-Clearing Pricing Problem is to start with
small prices, and to raise the prices over the course of the execution of the algorithm. We
will keep the prices sufficiently low to ensure that all the goods are sold, but the buyers
have left-over money (a surplus). We will maintain the invariant that the singleton set {s}
is a minimum s-t cut; this corresponds to all goods being sold. The goal will be to find
prices such that V −{t} is also a minimum s-t cut, because the capacity of the arcs crossing
this cut is the total amount of money the buyers have. When this cut becomes a minimum
s-t cut, the value of the maximum flow is

∑
i∈B mi, and the market clears. We raise the

prices gradually, decreasing the surplus of the buyers until it reaches zero.

Initialization of prices

We want to assign small initial values to the prices to ensure that {s} is a minimum s-t cut.
To initialize the prices, we set pj = 1

n ∀j ∈ A. Under these prices, {s} is a minimum s-t
cut with value 1. We also need at least one buyer for each good. If there are no buyers for
good j, we compute αi = maxj∈A

uij

pj
for all buyers i. Then, we reduce the price pj to the

value maxi∈B
uij

αi
.

Raising prices

When we raise the prices to decrease the surplus of the buyers, we would like to ensure
that all edges remain in the equality subgraph. Consider a buyer i for which the edges (i, j)
and (i, k) are both in the equality subgraph. By the definition of the equality subgraph, we
have uij

pj
= uik

pk
, which implies that pk

pj
= uik

uij
. Multiplying both pj and pk by the same factor

will leave this ratio unchanged. As such, we increase the prices from pj to p′j by setting
p′j = pjx ∀j ∈ A for some factor x.

To determine the factor x that we will use to raise the prices, we consider the different
ways in which the equality subgraph may change when we raise the prices.

• Event type (1): By increasing x, the invariant that {s} is a minimum s-t cut becomes
violated.

In the previous example, multiplying the prices by the factor x = 2 causes another
minimum s-t cut to emerge, as shown in Figure 22.2(a). If we multiply the prices by
a factor x > 2, then we violate the invariant, because {s} is no longer a minimum s-t
cut.

22-99

t

(a) (b) buyers

100

140

buyers goods

40

80

20

120

s
20

60

140
s

50

100

20

120

goodsactive

frozen

t
20

60

100

Figure 22.2: (a) An example of event type (1). If the prices are multiplied by a factor
x > 2, then the cut shown becomes the minimum s-t cut. (b) An example of event type
(2). Multiplying the prices of the active goods in (a) by a factor x = 1.25 causes the dashed
edge shown between an active buyer and a frozen good to enter the equality subgraph.

Note that in the example, the emergence of the new minimum s-t cut when the
prices are raised creates a desirable scenario for the last buyer, because all the money
available to that buyer can be spent on goods. In general, the market clears in the
subgraph involved in the new minimum s-t cut. As a result, we can “freeze” the
subgraph involved in the cut, and consider only the remaining graph when we raise
the prices again. At any point in the algorithm, we refer to the subgraph in which we
are increasing the prices as active, and to the rest of the graph as frozen.

• Event type (2): A new edge from an active buyer to a frozen good enters the equality
subgraph.

Continuing the example from above, if we take the prices that caused the event of
type (1) to occur and multiply the prices for the active goods by x = 1.25, then an
edge between an active buyer and a frozen good is created in the equality subgraph, as
shown in Figure 22.2(b). To address this type of event, we unfreeze the good incident
on the new edge, and the connected component containing the good.

Analysis and description of algorithm

We now state the algorithm for the Market-Clearing Pricing Problem.

22-100

Market-Clearing Prices

pj ← 1
n ∀j ∈ A

Compute αi = maxj∈A
uij

pj
∀i ∈ B

For each j ∈ A such that 6 ∃i ∈ B : (i, j) ∈ E, pj ← maxi∈B
uij

αi

(F, F ′) ← (∅, ∅) (frozen graph)
(H, H ′) ← (A, B) (active graph)
While H 6= ∅

Raise prices pj ← pjx ∀j ∈ H until either:
(1) S ⊆ H becomes tight

Move (S, Γ(S)) from (H,H ′) to (F, F ′)
Remove edges from F ′ to H

(2) For i ∈ H ′, j ∈ F αi = uij

pj

Add (i, j) to E
Move connected component containing j from (F, F ′) to (H, H ′)

Return pj ∀j ∈ A.

There are several outstanding issues that we must address. First, can we implement
the steps of the algorithm? Second, how long does the algorithm take? More details of the
algorithm are presented in the next lecture.

22-101

ORIE 633 Network Flows March 17, 2004

Lecture 23

Lecturer: David P. Williamson Scribe: Mateo Restrepo

23.1 The market-clearing pricing problem

Recall from the previous lecture that the Market-Clearing pricing problem receives as input
a set B of buyers, a set A of n divisible goods (in unit amounts), integer amounts of money
mi for each buyer i ∈ B, and integer utilities uij ∀i ∈ B,∀j ∈ A. Each uij specifies the
happiness that buyer i derives from one unit of good j. For a given set of prices and each
user i we defined the best bang-per-buck ratio of user i to be αi = maxj∈A

uij

pj
. The goal

of the problem is to find prices pj such that the market clears, that is, such that all money
is spent, no goods remain unpurchased and every buyer i buys items j that maximize his
happiness, that is, goods j with uij

pj
= αi.

In this setting, it was natural to define the equality subgraph G = (A,B,E), a bipartite
(directed) graph. An edge (j, i), going from a good j ∈ A to a buyer i ∈ B, is included in
the graph if and only if item j maximizes i’s happiness.

We showed how, given a set of prices, we can determine whether or not the market will
clear by means of a simple flow computation. This max-flow computation is carried out in
a flow network G′ obtained from G by adding a source and sink, denoted by s and t, edges
(s, j) of capacity pj , ∀j ∈ B, and edges (i, t) of capacity mi, ∀i ∈ A. The edges previously
in G are assigned capacity ∞. The basic result was that the market clears iff both {s} and
V −{t} are min s-t cuts (here V = A∪B∪{s, t}); that is, all goods are sold, and all money
is spent.

Last time we started to discuss an (exponential time) algorithm for finding market-
clearing prices. The algorithm raises prices on subsets of the goods while maintaining
the invariant that {s} is a min s-t cut in G′. Thus along the algorithm all goods can be
completely allocated while buyers have money left over (surplus).

The algorithm begins by setting prices for all goods in such a way that every single
buyer can buy the totality of the goods and every single good is bought by at least one
buyer. In each iteration the algorithm proportionally raises prices of all goods in a certain
set H (the active set), p′j ← pj · x, for some x > 1, until one of the following two events
occurs:

• Event (1): For some x > 1 there is another min cut besides {s}. In this event we
freeze this part of the graph.

• Event (2): An edge from some active buyer i to a frozen good j enters the equality
subgraph. In this event we unfreeze the portion of the frozen graph connected to j.

23-102

23.1.1 Formal statement of the algorithm and analysis

Definition 23.1 For a subset S ⊂ A of the goods we define Γ(S) to be the set of all buyers
that are interested in some good in S, formally Γ(S) := {i ∈ B : j ∈ S, (i, j) ∈ E}.

Definition 23.2 The total price p(S) of a set of goods S ⊂ A is naturally defined as p(S) :=∑
j∈S pj . In the same way, for a subset of buyers T ⊂ B the total money they have is denoted

by m(T) =
∑

i∈T mi.

The notation being set, we state and prove the following crucial result.

Lemma 23.1 The invariant ({s} is a minimum cut in G′) holds if and only if p(S) ≤ m(Γ(S))
for every S ⊂ A.

Proof: ⇒. Suppose the invariant holds. Then the value of the min cut is p(A) and
every edge (s, j) of capacity pj carries flow at full capacity. Thus, given any S ⊂ A, p(S)
units of flow are shipped from the nodes of S to the nodes of B connected to them, that is,
to Γ(S). Hence, there must be enough capacity among the buyers in Γ(S) to ship this flow
to the sink. Thus P (S) ⊂ m(Γ(S)), as desired.

⇐. Suppose p(S) ≤ m(Γ(S)) for every S ⊂ A. Let {s} ∪ A1 ∪ B1 be any cut, with
A1 ⊂ A and B1 ⊂ B. We will prove that its capacity is at least that of {s}. For this let
A2 = A \A1 and B2 = B \B1. The edges coming out of this cut can be classified into three
groups: edges going from s to A2, edges going from A1 to B2, edges going from B1 to t.
Notice that if there are any edges of the second type then the capacity of the cut is infinite
and there is nothing to prove. So we may assume there are no edges of this type. This also
implies that B1 ⊃ Γ(A1), and correspondingly, m(B1) ≥ m(Γ(A1)). The capacity of the
remaining edges of the first and third types is clearly p(A2) + m(B1). The inequality just
deduced and the hypothesis then give

p(A2) + m(B1) ≥ p(A2) + m(Γ(A1)) ≥ p(A2) + p(A1) = p(A),

as desired. This finishes the proof. 2

The last lemma implies that the algorithm’s invariant is near violation if for some factor
x and some set S we have x · p(S) = m(Γ(S)). This motivates the following definition.

Definition 23.3 We call a set S tight (with respect to a set of prices) if p(S) = m(Γ(S)).

It is easy to see that S is tight if the market clears in the part of the graph determined
by (S, m(Γ(S)).

With this terminology we then present (a high level description of) the algorithm:

23-103

Market-Clearing Prices (Devanur, Papadimitriou, Saberi, Vazirani 2002)

Price initialization:
pj ← 1

n ∀j ∈ A
Compute αi = maxj∈A

uij

pj
∀i ∈ B

For each j ∈ A such that 6 ∃i ∈ B : (i, j) ∈ E, pj ← maxi uij/αi

Recompute G
(F, F ′) ← (∅, ∅) (frozen graph)
(H, H ′) ← (A,B) (active graph)
While H 6= ∅

Raise prices pj ← pjx for j ∈ H for the minimal x > 1 such that either:
(1) S ⊂ H becomes tight

Move (S, Γ(S)) from (H,H ′) to (F, F ′)
Remove edges from F ′ to H.

(2) For i ∈ H ′, j ∈ F , αi = uij

pj

Add (i, j) ∈ E
Move connected com of j from (F, F ′) to (H, H ′). Return pj , ∀j ∈ A.

We have not yet specified how to determine the minimal value of x such that either
event (1) or event (2) occurs. Determining the minimum x such that event (2) occurs is
not very difficult. For this, we just have to consider all pairs (i, j) of a buyer in H ′ and a
product in F and determine xij = pjαi

uij
is the minimal factor x for which the bang-per-buck

factor of a good j∗ 6∈ H ′ maximizing the happiness of i equals the bang-per-buck factor of
the frozen good j:

uij∗

xpj∗
=

αi

x
=

uij

pj

The minimum of these xij values is clearly the minimum x for which event (2) occurs.
The discussion above implies that it can be calculated in O(N2) time where N = |A|+ |B|.

The following lemma, whose proof we defer until next lecture, assures us that we can
efficiently determine the minimum x for which event (1) occurs.

Lemma 23.2 The minimum x for which event (1) occurs can be determined by means of n
max-flow computations.

Proof: COMING SOON (next lecture). 2

But, how can we be sure that the algorithm finishes at all? The fact that the prices
never decrease gives us a hint. Nevertheless, in order to guarantee that every time a price is
raised we are making some non-negligible amount of progress is made, we need something
like the following lemma:

23-104

Lemma 23.3 For any item j in a tight set S, pj has denominator no greater than ∆ ≡ nUn

(where U ≡ maxij uij).

Proof: We begin with the observation that if S is a tight set, then every connected
component1 of S is also a tight set.

For this, suppose K1,K2, . . . Kc are the connected components of S. Then Γ(S) =⋃
p Γ(Kp) where the union is disjoint (by the definition of connected components). This

implies m(Γ(S)) =
∑

p m(Γ(Kp)) ≥
∑

p p(Kp) = p(S), since m(Γ(Kp)) ≥ p(Kp). If it where
the case that m(Γ(Kp)) > p(Kp) for any connected component then the latter inequality
would be strict and S wouldn’t be tight.

Now, going back to our problem, consider any j ∈ S and let S′ be the minimal connected
component of S containing j. Then for every other k ∈ K there is path going from j to
k. This path has the form 〈j, i1, j1, i2, j2, . . . , k〉, that is, it goes back and forth between
A and B. For each time the path touches a buyer i between two goods j′ and j∗ we can
write

uij′
pj′

= uij∗
pj∗

, or pj∗ = uij∗
uij′

pj′ . Iterating this relation along the path we can show that
pk = pj

ak
bk

where each ak and bk is a product of at most n utilities.

Since we can do the same for at every k in S′, we get.

m(Γ(S′)) = p(S′) =
∑

k∈S′
pk = pj

∑

k∈S′

ak

bk

which implies that

pj =
m(Γ(S′))∑

k∈S′
ak
bk

.

This shows that pj can be written in the form of a fraction where the denominator is a sum
of at most n products of n utilities, and therefore is bounded by ∆ = nUn. 2

Before we proceed to the main result of this section, we note that if the price pj in
iteration i + k is strictly greater than the price pj in iteration i, then the difference must
be at least 1/∆2. This result follows from the fact that for any positive integers a, b, c, d, if
a/b > c/d and b, d ≤ ∆, then (a/b)− (c/d) ≥ 1/∆2.

Now we are ready to bound the overall running time of the algorithm

Theorem 23.4 The algorithm runs in O(m(B)n2∆2MF) time, where MF is the time re-
quired by a max flow computation.

Proof: First, we observe that, by Lemma 23.2, the time per iteration is no more than
that of n max flows, or O(n ·MF). We proceed to bound the number of iterations.

By the Lemma and observation above, each time good j is frozen because of event (1),
its price pj has increased by 1/∆2. Each time event (1) happens, some good’s price has

1We here abuse of the terminology a bit and call S ⊂ A a connected component if S results from the
intersection of a connected component of the bipartite graph G with A

23-105

increased, so we assign it to this freezing. Thus after k executions of event (1), the total
surplus is at most m(B)−(k/∆2). Thus event (1) can occur at most m(B)∆2 times. On the
other hand, there can be at most n consecutive iterations of the main loop in which event
(2) occurs instead of event (1), simply because there are at most n goods, and each time
event (2) occurs one good gets unfrozen. We conclude that the total number of iterations
is at most (n + 1)m(B)∆2 = O(n ·m(B)∆2) and the total time is O(n ·m(B)∆2 · nMF),
as desired. 2

23-106

ORIE 633 Network Flows March 19, 2004

Lecture 24

Lecturer: David P. Williamson Scribe: Ivan Lysiuk

24.1 The market-clearing pricing problem

24.1.1 Analysis of the algorithm (cont.)

Recall the market-clearing pricing problem we introduced last time:

Market-Clearing Pricing Problem

• Input:

– Set B of buyers

– Set A of unit amounts of divisible goods (|A| = n)

– Integer amount of money mi, ∀i ∈ B

– Integer utilities uij , ∀i ∈ B, ∀j ∈ A
(uij = happiness for buyer i from one unit of good j)

• Goal: Find prices pj , ∀j ∈ A such that the market clears:

– All buyers buy only goods that maximize happiness

– All money is spent

– No good remains unpurchased

Let αi denote the maximum “bang-per-buck” that the buyer i can receive, i.e.

αi = max
j∈A

uij

pj
.

The buyer i will purchase only goods j such that αi = uij/pj . Given the prices of the
goods, we can define an equality subgraph that represents the goods that each buyer may
purchase.

Definition 24.1 The equality subgraph G = (A,B,E) is a bipartite graph (with vertex set A
and B) where (i, j) ∈ E if and only if αi = uij/pj .

Given a particular set of prices pj , j ∈ A, we can determine whether the prices clear the
market by performing a maximum flow computation. We add a source vertex s and a sink

24-107

vertex t to the equality subgraph. For each good j ∈ A, we add an arc (s, j) with capacity
pj . For each buyer i ∈ B, we add an arc (i, t) with capacity mi. We orient each edge (i, j)
corresponding to a buyer i ∈ B and a good j ∈ A in the equality subgraph as a directed
arc (j, i) with capacity ∞. In the previous lecture, we showed that the market clears if and
only if the maximum flow value is m(B) ≡ ∑

i∈B mi.

Our algorithm maintains the invariant that {s} is a minimum s-t cut. We showed that
the following.

Lemma 24.1 The invariant that {s} is a minimum s-t cut holds if and only if for all S ⊆ A,
p(S) ≤ m(Γ(S)), where Γ(S) is the neighborhood of S.

In the Market Clearing algorithm we needed to compute x∗ such that for x ≤ x∗ the
invariant is maintained, and for x > x∗ the invariant is violated. For x∗ there exists a set
S such that x∗ · p(S) = Γ(m(S)).

Lemma 24.2 We can determine x∗ and S using n max-flow computations.

Proof: Without loss of generality, we may assume that (A,B) is active. The same
argument applies to arbitrary active subgraph. To determine such x, we need to determine

x∗ ≡ min
∅6=S⊆A

m(Γ(S))
p(S)

.

Let S∗ denote the set that minimizes the above ratio.

We will start with x ≡ m(B)/p(A) ≥ x∗, and compute max-flow for prices x · pj . If {s}
turns out to be a min s-t cut, then by Lemma 24.1 we know that x = x∗ and we’re done.
Furthermore, we can determine S∗ by taking the maximum minimum cut (i.e., the largest
set S such that S is an s-t min cut). The maximum minimum cut can easily be determined
from the residual graph produced by maximum s-t flow algorithms.

If x > x∗ and {s} is not a min s-t cut, let {s} ∪ A1 ∪ B1 be the min s-t cut. If we can
show that S∗ ⊆ A1 ⊂ A, then the lemma is proven because we can recurse on (A1, Γ(A1)).

Claim 1: A1 ⊂ A. If A1 = A, then we must have B1 = B because the edges between A
and B have infinite capacity. But, the cut {s} ∪ A ∪ B has value m(B) while the cut {s}
has value x · p(A), and we have x · p(A) ≤ m(B). This implies that {s} is a min s-t cut,
contradicting our assumption. Therefore, A1 ⊂ A.

Claim 2: S∗ ⊆ A1. Let S1 = S∗ ∩ A1 and S2 = S∗ ∩ A2. Note that we must have
Γ(S1) ⊆ B1 since otherwise the cut will have infinite capacity. Note that the value of the
cut {s} ∪A1 ∪B1 is x · p(A2) + m(B1).

First observe that it cannot be the case that m(Γ(S2) ∩ B2) < x · p(S2). Otherwise
consider the cut {s}∪A1 ∪S2 ∪B1 ∪ (Γ(S2)∩B2). It has value x(p(A2)− p(S2))+m(B1)+
m(Γ(S2) ∩ B2) < x · p(A2) + m(B1), which contradicts the fact that {s} ∪ A1 ∪ B1 is a
minimum cut.

24-108

Note that this observation implies that it cannot be the case that S∗ = S2 since then
x∗ < x implies that m(Γ(S∗) ∩B2) ≤ m(Γ(S∗)) < x · p(S∗).

Thus S1 6= ∅. Furthermore, we have that

m(Γ(S2) ∩B2) ≥ x · p(S2) > x∗ · p(S2).

By the definition of x∗,

m(Γ(S2) ∩B2) + m(Γ(S1)) ≤ m(S∗) = x∗(p(S1) + p(S2)).

Subtracting the first inequality from the second we obtain that

m(Γ(S1)) < x∗ · p(S1),

which contradicts the definition of x∗.
Thus, it must be the case that S2 = ∅ ⇒ S∗ ⊆ A1. 2

24-109

ORIE 633 Network Flows March 29, 2004

Lecture 25

Lecturer: David P. Williamson Scribe: Ivan Lysiuk

25.1 Generalized flows

In this lecture we return to discussing algorithms on (generalized) flows. We already intro-
duced a generalization of flows when we considered adding costs to the edges. Today we
will consider a model in which the edges are also “lossy”, so the flow is no longer conserved,
but transformed along edges. This models leaks, theft, taxes, etc.

80•
γ=3/4

,, •
γ=1/2

,, •30

In the above graph, if we start with 80 units of flow, we obtain 60 units after following
the first arc and 30 units after the second arc. We call the parameter γ the “gain” of the
edge.

Another application for this model would be converting currency. Consider, for instance,
the graph below in which we want to convert, say, $1000 into Hungarian forints. Besides the
“gain” factor we can also add, as before, capacity constraints to (some) edges, for example
we can convert at most $800 directly into forints. Note that some paths lead better rates
than others; for example, the $ → euro → forint path gives an exchange rate of 6 forints/$
as opposed to the direct path for which the rate is just 5.

¥
$

€

Forints

�
=125

�
=9/5

v=400

�
=10/3

�
=5

v=800

�
=1/21

�
=1/70

�
=68

Figure 25.1: Currency conversion

25-110

25.1.1 Definitions

In this section we will define the generalized circulation problem. We state the problem
first, then we give additional definitions to clarify the notation/meaning of our goal.

Generalized Circulation Problem

• Input:

– A symmetric directed graph G = (V, A), i.e. (i, j) ∈ A ⇒ (j, i) ∈ A

– Designated sink t ∈ V

– Integer capacities uij ∀(i, j) ∈ A

– Gains γij : γji = 1/γij for all (i, j) ∈ A

– All γ’s are ratios of integers

– All input integers are bounded by B.

• Goal: Find a circulation g that maximizes the excess eg
t , denoted by |g|, and also

called the value of the flow.

The following definitions will help us clarify what we mean by excess of a flow in the
context of the generalized circulation problem.

Definition 25.1 A flow g : A → < is a generalized pseudoflow if:

• gij ≤ uij for all (i, j) ∈ A (capacity constraints)

• gij = −γjigji for all (i, j) ∈ A (anti-symmetry condition)

Definition 25.2 The residual excess of a flow g at a node i is given by

eg
i = −

∑

j:(i,j)∈A

gij .

If eg
i > 0 we say we have an excess at node i. If eg

i < 0 we say we have a deficit at node i.

For example, if the flow on the upper edge of the figure below is 200 units, then the
flow on the lower reverse edge is -40 by antisymmetry. Note that the definition of excess,
although somewhat unintuitive, is capturing the notion of the total amount of flow entering
a node minus that leaving the node.

200•
γ=1/5

,, •40
γ=5

ll

25-111

Definition 25.3 A flow g is a pseudoflow such that eg
i ≥ 0 ∀i ∈ V .

Definition 25.4 A circulation is a flow such that eg
i = 0 ∀i ∈ V, i 6= t.

Thus our goal is to find a circulation that maximizes the excess at the sink vertex t.

We now start defining some concepts we will need to give our optimality conditions for
the generalized circulation problem.

Definition 25.5 Given a pseudoflow g in G, we define the residual graph Gg = (V, Ag):

Ag = {(i, j) ∈ A : gij < uij}
ug

ij = uij − gij

Definition 25.6 A labelling function µ : V → <≥0 ∪ {∞} such that µt = 1, represents the
change in units of measurement of a node. Namely

µi =
new units

old units

For example if we wanted to perform the currency conversion (from Figure 1) in cents
instead of dollars, we would need µ$ = 100. The conversion rates involving the relabelled
node would be affected (5 forints/$ becomes .05 forints/cent), and also the capacity of the
edges incident to the node (800 would become 80000 on the lowest edge, for instance).

In general we would have to perform the following changes for the gains, capacities, and
excess at each relabelled node:

uµ
ij = uijµi

γµ
ij = γij × µj/µi

eµ
i = eiµi

If we already have some pseudoflow g, note that we also have to relabel it: gµ
ij = gijµi.

Note that relabelling does not change the value of |g| since µt = 1 by definition. Thus
|gµ| = |g|.

Definition 25.7 For a path P , we define the gain of the path as follows:

γ(P) =
∏

(i,j)∈P

γij

Similarly for a cycle C, the gain of the cycle is:

γ(C) =
∏

(i,j)∈C

γij .

25-112

We use the following terminology for a cycle C. If γ(C) > 1, then C is a flow-generating
cycle. If γ(C) < 1, then C is a flow-absorbing cycle.

Definition 25.8 We call µ a canonical labelling if

µi = max
path P from i to t

γ(P)

We can find the canonical labels by setting cij = − log(γij), and finding the shortest path
in G using lengths cij . If we set cij = − log(γij), then

cij = − log(γij) = − log(
1

γji
) = − log(γji) = −cji

Then for path P
∑

(i,j)∈P

cij = −
∑

(i,j)∈P

log(γij) = − log
∏

(i,j)∈P

γij = − log(γ(P)).

Therefore, finding the maximum gain path from i to t is equivalent to finding the shortest
path from i to t using costs cij . However, shortest paths are not well-defined if we have
any negative-cost cycles. Here negative-cost cycles are equivalent to having flow generating
cycles, since

∑

(i,j)∈C

cij < 0 ⇔
∑

(i,j)∈C

log(γij) > 0 ⇔ log(γ(C)) > 0 ⇔ γ(C) > 1.

We will use the convention that if we cannot reach t from i then µi = 0.

Definition 25.9 An augmenting path P in Gg is a path from a node with excess to the sink
t.

Definition 25.10 A generalized augmenting path (GAP) is a flow generating cycle in the
residual graph Gg with a (possibly trivial) path from a node on cycle to the sink t.

25.1.2 Optimality conditions

We are now ready to state the optimality conditions for the generalized circulation problem.

Theorem 25.1 The following are equivalent for a generalized circulation g:

1. g is optimal

2. Gg has no generalized augmenting paths (no GAPs).

3. There exist labelling µ such that the relabelled gains satisfy

γµ
ij ≤ 1, ∀(i, j) ∈ Ag

We will prove this theorem in the next lecture.

25-113

ORIE 633 Network Flows March 31, 2004

Lecture 26

Lecturer: David P. Williamson Scribe: Chandrashekhar Nagarajan

26.1 Generalized flows

We have already seen about generalized flows in the last lecture. Let us recollect some of
the definitions required to come up with an algorithm to solve generalized flow problems.

26.1.1 Definitions

In this section we will define the generalized circulation problem. We will state the problem
first, then give additional definition to clarify the notation/meaning of our goal.

Generalized Circulation Problem

• Input:

– A symmetric directed graph G = (V, A), i.e. (i, j) ∈ A ⇒ (j, i) ∈ A

– A sink t ∈ V

– Integer capacities uij ∀(i, j) ∈ A

– Gains γij : γji = 1/γij for all (i, j) ∈ A

– All γ’s are ratios of integers

– All input integers are bounded by B.

• Goal: Find a circulation g that maximizes the excess eg
t , denoted by |g|, and also

called the value of the flow.

The following definitions will help us clarify what we mean by excess of a flow in the
context of the generalized circulation problem.

Definition 26.1 A flow g : A → < is a generalized pseudoflow if:

• gij ≤ uij for all (i, j) ∈ A (capacity constraints)

• gij = −γjigji for all (i, j) ∈ A (anti-symmetry condition)

Definition 26.2 The residual excess of a flow g at a node i is given by

eg
i = −

∑

j:(i,j)∈A)

gij .

26-114

If eg
i > 0 we say we have an excess at node i. If eg

i < 0 we say we have a deficit at node i.

Definition 26.3 A flow g is a pseudoflow such that eg
i ≥ 0 ∀i ∈ V .

Definition 26.4 A circulation is a flow such that eg
i = 0 ∀i ∈ V, i 6= t.

Definition 26.5 Given a pseudoflow g in a graph G = (V, A, u), we define the residual graph
Gg = (V,Ag, u

g) (where the u’s denote the capacities) as follows:

Ag = {h(i, j) ∈ A : gij < uij}
ug

ij = uij − gij

Definition 26.6 A labeling function µ : V → <≥0 ∪ {∞} such that µt = 1, represents the
change in units of measurement of a node. Namely

µi =
new units

old units

In general we would have to perform the following changes for the gains, capacities, and
excess at each relabeled node:

uµ
ij = uijµi

γµ
ij = γij × µj/µi

eg,µ = eg
i µi

gµ
ij = gijµi

Note that the definitions above preserve antisymmetry: namely, gµ
ij = −γµ

jig
µ
ji if and

only if gij = −γgji. Also notice that relabelling does not change the value of |g| since
µt = 1 by definition; thus |gµ| = |g|.

Definition 26.7 For a path P , we define the gain of the path as follows:

γ(P) =
∏

(i,j)∈P

γij

Similarly for a cycle C, the gain of the cycle is:

γ(C) =
∏

(i,j)∈C

γij .

We use the following terminology for a cycle C. If γ(C) > 1, then C is a flow-generating
cycle. If γ(C) < 1, then C is a flow-absorbing cycle. If γ(C) = 1, then C is a unit-gain
cycle.

26-115

Definition 26.8 We call µ a canonical labeling if

µi = max
path P from i to t

γ(P)

We can find the maximum γ(P) by setting cij = − log(γij), and finding the shortest
path in G using lengths cij . This is true because

∑

(i,j)∈P

cij = −
∑

(i,j)∈P

− log(γij) = − log
∏

(i,j)∈P

γij = − log(γ(P)).

So finding the shortest path using lengths cij is equivalent to maximizing the gain from i
to t. However, shortest paths are not well-defined if we have any negative-cost cycles. Here
negative-cost cycles are equivalent to having flow generating cycles, since

∑

(i,j)∈C

cij < 0 ⇔ log(γ(C)) > 0 ⇔ γ(C) > 1.

We will use the convention that if we cannot reach t from i then µi = 0.

Finally we want to define what we would like to detect if we have not yet discovered the
optimal solution (our circulation does not yet produce the maximal excess).

Definition 26.9 A generalized augmenting path (GAP) is a flow generating cycle in the resid-
ual graph Gg with a (possibly trivial) path from a node on cycle to the sink t.

26.1.2 Optimality conditions

We are now ready to state the optimality conditions for the generalized circulation problem.

Theorem 26.1 The following are equivalent for a generalized circulation g:

1. g is optimal

2. Gg has no generalized augmenting paths (no GAPs).

3. There exist labeling µ such that the relabeled gains satisfy

γµ
ij ≤ 1, ∀(i, j) ∈ Ag

Proof:

• (¬2 ⇒ ¬1) Assume that a GAP exists in Gg. Let C be the flow generating cycle,
and P be the path from a node i on the cycle to the sink t. Now consider a flow of δ
coming into i (ignore for now the source of this flow). If we push this flow around the
cycle C we end up back at i with a flow of δγ(C). Since γ(C) > 1 we can pay back
the original δ flow, and still remain with δ(γ(C)−1) > 0 amount of flow at i. Pushing
forward this flow from i to t on the path P , we add an extra δ(γ(C) − 1)γ(P) flow
at t. Set δ such that residual capacities (along C and P) are obeyed, and we get a
circulation g′ such that |g′| > |g|. Thus g was not optimal. Note that flow constraints
are satisfied for every node and hence no nodes with excess are created.

26-116

• (2 ⇒ 3) Let S be the set of nodes that can reach t in Gg. We have no GAPs (by
assumption) in S, thus there are no negative cost cycles in S for costs cij = − log γij .
Set Ci to be the shortest path from i to t with costs cij , and µi = e−Ci . If (i, j) ∈ Ag

then, by definition of the ci’s we have that Ci ≤ cij + Cj . This implies that

µi = e−Ci ≥ e−cij−Cj = µje
−cij = γijµj .

Thus γijµj/µi ≤ 1. By setting µi = 0 for all i ∈ V − S we ensure that our labeling
satisfies the conditions of (3). To see this, note that by the definition of S, there are
no arcs in Ag with i /∈ S and j ∈ S. If i ∈ S and j /∈ S then γµ

ij = 0 ≤ 1. If i, j /∈ S,
then using the convention that 0/0 = 0, we have that γµ

ij = 0 ≤ 1.

• (3 ⇒ 1) Given labelling µ and circulation g, consider any other circulation g̃. Although
we will consider the relabelled circulations gµ and g̃µ, we drop the superscript of µ
for the rest of this proof. Let us focus on an edge (i, j) ∈ A.

– If gij < g̃ij then gij < uij as g̃ij ≤ uij . So (i, j) ∈ Ag ⇒ γµ
ij ≤ 1 (By assumption

of (3)).
– If gij > g̃ij then −γµ

jigji > −γµ
jig̃ji (by anti-symmetry) ⇒ gji < g̃ji ⇒ (j, i) ∈

Ag ⇒ γµ
ji ≤ 1 ⇒ γµ

ij ≥ 1.

So for any arc (i, j) ∈ A
(γµ

ij − 1)(gij − g̃ij) ≥ 0.

Summing over all arcs in A, we obtain
∑

(i,j)∈A

(γµ
ij − 1)(gij − g̃ij) ≥ 0.

We can rewrite this as
∑

(i,j)∈A

γµ
ij(gij − g̃ij)−

∑

(i,j)∈A

(gij − g̃ij) ≥ 0.

By antisymmetry −γµ
ijgij = gji; note here we are really using the relabelled flows so

that antisymmetry holds. We again rewrite the above as
∑

(i,j)∈A

(g̃ji − gji)−
∑

(i,j)∈A

(gij − g̃ij) ≥ 0.

Since in a circulation ei
g = −∑

j:(i,j)∈A gij = 0, for all i 6= t, we can reduce in the
previous expression, for both g and g̃, all arcs that are not leaving t. We obtain,
finally, that

∑

i:(t,i)∈A

g̃ti −
∑

i:(t,i)∈A

gti ≥ 0 ⇔ −
∑

i:(t,i)∈A

gti ≥ −
∑

i:(t,i)∈A

g̃ti.

The last expression is, by definition, |g| ≥ |g̃|, and it is true for any arbitrary circula-
tion g̃. Thus we can conclude that g is optimal, so (1) holds.

2

26-117

ORIE 633 Network Flows April 2, 2004

Lecture 27

Lecturer: David P. Williamson Scribe: Anke van Zuylen

27.1 Generalized flows

Recall the generalized flow problem that we talked about in the last two classes:

Generalized Flow Problem

• Input:

– A symmetric directed graph G = (V, A), i.e. (i, j) ∈ A ⇒ (j, i) ∈ A

– Source s and sink t, s, t ∈ V

– Integer capacities uij ∀(i, j) ∈ A

– Gains γij : γji = 1/γij for all (i, j) ∈ A

– All γ’s are ratios of integers

– All input integers are bounded by B.

• Goal: Find a circulation g that maximizes |g| ≡ eg
t .

In the previous lecture we proved the following theorem.

Theorem 27.1 The following are equivalent for a circulation g

(1) g is optimal,

(2) there are no generalized augmenting paths (GAPs) in Gg,

(3) there exists a labelling µ such that γµ
ij ≤ 1 for all (i, j) ∈ Ag.

Recall that a Generalized Augmenting Path (GAP) is a flow generating cycle with a path
(possibly trivial) from a node on the cycle to the sink t. A labelling function µ : V → R>0,
µt = 1, changes units of measurement in the graph in the following manner:

uµ
ij = uijµi

eg,µ
i = eg

i µi

γµ
ij =

γijµj

µi

27-118

We also made the implicit assumption that gµ
ij = gijµi, so a feasible circulation is still

feasible after relabelling.

27.1.1 Truemper’s algorithm

We’ll look at a primal-dual style algorithm which decouples GAPs by (1) pushing flows
along flow-generating cycles to create excesses at nodes, and (2) pushing these excesses to
the sink.

Idea: Look at costs cij = − log γij . Then flow generating cycles are equivalent to
negative cost cycles with respect to c.

Claim 27.2 By using min-mean cost cycle cancelling, we can cancel all flow generating cycles
in O(m2n3 log(nB)) time, where B is the max integer involved in the gain ratios.

Proof: See problem set 4, problem 3. 2

To identify maximum gain paths, recall the definition of canonical labels.

Definition 27.1 µ is a canonical labelling if

µi = max
paths P from i to t

γ(P)

where γ(P) =
∏

(i,j)∈P γij .

Note that we can compute the canonical labels by finding the shortest path from each
node to the sink t using costs cij = − log γij , since all negative cycles with respect to c have
been cancelled.

Let µ be a canonical labelling. Then

γµ
ij =

γijµj

µi
≤ 1 ∀(i, j) ∈ Ag.

This follows from the following: Let Ci denote the cost of the shortest path from i to t
using costs c. Note that if P is the maximum gain path from i to t, then Ci =

∑
(i,j)∈P cij ⇒

eCi = e
P

(i,j)∈P cij = e− log γ(P) = 1
γ(P) = 1

µi
.

Ci ≤ cij + Cj

⇒ eCi ≤ ecijeCj

⇒ 1
µi
≤ e− log γij

1
µj

(27.1)

⇒ γijµj

µi
≤ 1

27-119

Note that if an edge (i, j) is on the shortest path from i to t, then we have Ci = cij +Cj ,
and its relabelled gain γµ

ij = 1.

The above suggests the following algorithm:

Truemper’s algorithm (1977)

Cancel all flow generating cycles
While ∃eg

i > 0 that can reach t in Gg

Compute canonical labels µ
Compute a max flow f pushing flow from {i : eg

i > 0} to t
in graph (V, {(i, j) ∈ Ag : γµ

ij = 1}), capacities uij = ug,µ
ij

gµ
ij ← gµ

ij + fij .

By the discussion above, the algorithm finds maximum flows from the nodes with excess
along the highest-gain paths to the sink. Note that we will not go into how the algorithm
handles situations where excesses cannot reach the sink; we assume that we can “undo” the
creation of any excess by pushing flow back along the flow-generating cycle that created it.

Lemma 27.3 No flow-generating cycles are created by augmenting gµ by the maximum flow
f .

Proof: All arcs initially have γµ
ij ≤ 1. The maximum flow creates only arcs with γµ

ij = 1,
since it only pushes flow along arcs with γµ

ij = 1, so reverse arcs that appear in the residual
graph have γµ

ji = 1
γµ

ij
= 1. 2

Lemma 27.4 The number of iterations of the main loop is no more than the number of
different possible gains of paths.

Proof: After augmentation, there exists no augmenting path P from a node with excess
to the sink with γµ(P) = 1. So γµ(P) < 1 for any path in the new residual graph. Let µi

be the old canonical label for some node with excess i, and let its new canonical label be
µ′i = γ(P) for some path P . Then

µ′i
µi

=
γ(P)
µi

=
1
µi

∏

(k,l)∈P

γkl =
µt

µi

∏

(k,l)∈P

γklµk

µk
=

∏

(k,l)∈P

γklµk

µl
= γµ(P) < 1 ⇒ µ′i < µi.

Now, since the canonical label of node i is equal to the gain of some path, the fact that the
canonical label of i is strictly decreasing in each iteration implies that there can be no more
iterations than the number of different gains of paths. 2

27-120

27.1.2 A gain-scaling algorithm

How can we make Truemper’s algorithm into a polynomial time algorithm?

Idea Modify the gains so that there are only a polynomial number of different gains of
paths.

Let b = (1 + ε)
1
n . For γij ≤ 1, round γij down to the nearest power of b.

γ̄ij = bblogb γijc

γ̄ji =
1

γ̄ij

How many different gains of paths are there with respect to the scaled gains?

• gain of any path is no more than Bn

• gain of any path is not less than B−n

So at most logb B2n = O(n log B
log b) = O(n2 log B

log(1+ε)) different gain paths. For a reasonable choice
of ε, this will be polynomial.

27-121

ORIE 633 Network Flows April 5, 2004

Lecture 28

Lecturer: David P. Williamson Scribe: Yankun Wang

28.1 Generalized flows

28.1.1 Truemper’s algorithm

In previous lectures, we considered a generalized circulation problem in which arcs (i, j)
are associated with gains γij > 0 which serve as multiplicative transformations of flows
along those edges. We defined pseudoflows g : A → R which met capacity (gij ≤ uij) and
antisymmetry (gji = −γijgij) constraints, and defined the residual excess of a node i in a
pseudoflow g as eg

i = −∑
j:(i,j)∈A gij . A flow is a pseudoflow that has only non-negative

residual excesses. The generalized circulation problem then was to find a pseudoflow that
maximized the residual excess at some sink node t, eg

t ≡ |g|, subject to constraints that
eg
i = 0, ∀i ∈ V, i 6= t.

Truemper’s algorithm (1977)

Cancel flow-generating cycles
While ∃eg

i > 0 that can reach t in Gg

Compute canonical labels µ
Compute max flow f that pushes flow from {i ∈ V : eg

i > 0} in graph
(V, {(i, j) ∈ Ag : γµ

ij = 1}, ug
ij)

gµ
ij ← gµ

ij + fij

We have shown the following lemma.

Lemma 28.1 The number of iterations of the while loop is no more than the possible number
of different gains of paths.

Given this lemma, we just need to make sure that the number of different possible gains
is polynomially bounded. In general, though, this is not the case.

28.1.2 Gain scaling

However, we can force the desired condition by modifying the gains so that there are only
a polynomial number of different gains of paths by rounding the reduced gains as follows.

28-122

Let b = (1 + ε)1/n. Then for γij ≤ 1, define

γij = bblogb γµ
ijc

γji = 1/γij ,

Note that rounding down is consistent for both γij and γji since either γij = 1 (which
then implies that γij = γji = b0 = 1) or only one of γij and γji is greater than 1.

How many different gain values of paths are now possible? We can bound the gain of a
path P by

B−n ≤ γ(P) ≤ Bn,

and given that all gains are powers of b, then only

O(logb B2n) = O(n logb B) = O(n2 log(1+ε) B)

paths with different gains are possible. Thus, if we let H denote a network with gains γ,
then we may use Truemper’s algorithm to find an optimal flow h in H is polynomial time.
To obtain an approximate solution to the original generalized flow problem, we interpret h
in G as follows:

gij =
{

hij if hij ≥ 0
−γjihji if hij < 0.

Finally, we obtain the following bounds on the amount of flow found.

Definition 28.1 A flow g is ε-optimal if for an optimal flow g∗, |g| ≥ (1− ε)|g∗|.

Theorem 28.2 For an optimal flow h in H, its interpretation in G is ε-optimal.

Proof: Let g∗ be the optimal flow in G. What is its value in H? For each path P
pushing δ units of excess to the sink t gives γ(P)δ units at the sink. In H, the same path
gives

γ(P) ≥ γ(P)δ
b|P |

≥ γ(P)δ
bn

≥ γ(P)δ
1 + ε

≥ γ(P)(1− ε)δ

units of flow at the sink. Thus, the total flow pushed to the sink in H by g is
∑

P

γ(P)δP ≥
∑

P

γ(P)δP (1− ε)

= (1− ε)|g∗|

28-123

so the optimal flow h must have value greater than (1− ε)|g∗| in the network H. Since the
gains in G are only larger than those in H, the interpretation of h in G will only have larger
value, and thus is at least (1− ε)|g∗|. 2

This gives a polynomial-time ε-optimal approximation algorithm for the generalized flow
problem.

28.1.3 Error scaling

Now we will present the following lemma. Its proof will be given later.

Lemma 28.3 Given a B−4m optimal flow with no flow-generating cycles, we can compute an
optimal flow with one max-flow computation.

Setting ε = B−4m, we can obtain a B−4m-approximation using the Truemper algorithm
with gain scaling. Unfortunately, this method is not polynomial in B, since log1+ε B for
ε = B−4m is O(B4m log B). This is exponential in the size of the input. It is possible,
however, to modify the Truemper gain scaling approach to derive an actual polynomial
time algorithm for computing exact generalized flows. The basic idea is that we will invoke
the Truemper gain scaling algorithm to iteratively obtain half of the remaining flow in the
residual graph by setting ε = 1/2. Then only log2B

4m iterations of the Truemper gain
scaling algorithm are needed to get a B−4m-optimal flow. We introduce the algorithms
below.

Iterated Rounded Truemper (Tardos and Wayne, 1998)

g ← 0
For i ← 1 to log2 B4m

g ←Cancel cycles in Gg

g ←Rounded Truemper (Gg,
1
2)

Rounded Truemper(G, ε)

Round down gains to (1 + ε)1/n to get graph H
h ←Truemper(H)
Return interpretation of h in G

Theorem 28.4 For ε = 1
2 , Rounded Truemper runs in O(CC + (n2 log B)MF) time.

Proof: Trivial. 2

28-124

Theorem 28.5 Iterated Rounded Truemper computes a B−4m-optimal flow in
O((m log B)(CC + (n2 log B)MF)) time.

Proof: The initial flow is 1-optimal. Each iteration finds a 1
2 -optimal flow in Gg, so the

ith iteration is 2−i-optimal. In log2 B4m iterations, the flow is B−4m-optimal. 2

We now turn to the proof of Lemma 28.3. We start with the following lemma.

Lemma 28.6 Suppose we have a flow g and labels µ such that γµ
ij ≤ 1 for all (i, j) ∈ Ag. If

for an optimal flow g∗, |g∗| − |g| < B−2m, we can compute the optimal flow in one max-flow
computation.

Proof: Given g, µ, let

hµ
ij ←

{
0 if γµ

ij = 1
gµ
ij o.w.

We claim that B−2m is the least common denominator for gains of paths.

If the claim is true, then µi must be an integral multiple of B−2m. This in turn implies
that uµ

ij is an integral multiple of B−2m. Furthermore,

eµ,h
i = −

∑

j:(i,j)∈A

hµ
ij = −

∑

j:(i,j)∈A,γµ
ij 6=1

hµ
ij = −

∑

j:(i,j)∈A,γµ
ij>1

uµ
ij +

∑

j:(i,j)∈A,γµ
ij<1

γµ
jiu

µ
ji

is an integral multiple of B−2m. This implies that |hµ| = eµ,h
t is also an integral multiple of

B−2m.

Now we set up the network K as is shown in Figure 28.1. Add a dummy source node s
and a sink node t′, and all the edges with γµ

ij = 1. We compute flow f from s, which satisfies

all the deficits (eh,µ
i < 0) and maximizes the flow into t. We know that a flow satisfying

all deficits exists, since gµ satisfies them. By the integrality property of the maximum flow
problem, we know that the flow fµ has value that must be an integral multiple of B−2m,
since all the capacities, supplies, and demands are multiples of this factor.

By a similar argument, we can show that |g∗| must be an integral multiple of B−2m.
Now we have the following inequalities

|g∗| ≥ |hµ|+ |fµ| ≥ |gµ| > |g∗| −B−2m,

where |hµ|, |fµ| and |g∗| are all integral multiples of B−2m. Therefore |hµ|+ |fµ| is optimal.
2

We can now prove Lemma 28.3.

Proof of Lemma 28.3: If we have no flow-generating cycles, we can compute the
canonical labels µ. For optimal flow g∗

|g| > |g∗| −B−4m|g∗|,
but |g∗| ≤ mU ≤ mB ≤ Bm. Thus we can apply the previous lemma. 2

28-125

Figure 28.1: Network K

28-126

ORIE 633 Network Flows April 7, 2004

Lecture 29

Lecturer: David P. Williamson Scribe: Yankun Wang

29.1 Network design problems

29.1.1 The survivable network design problem

So far in the class, we have taken the network as a given. There has been some fixed
network, and we try to find some flow in it. However, finding a network that can support
certain kinds of flows is also an interesting problem, and one that comes up in practice (in
the telecommunications industry, for example). For the next few lectures we will consider
a simple type of network design problem known as the Survivable Network Design Problem
(SNDP).

Survivable Network Design Problem (SNDP)

• Input:

– An undirected graph G = (V, E)

– Costs ce ≥ 0 for each edge e ∈ E

– Requirement rij ∈ N ∀i, j ∈ N, i 6= j

• Goal: Find a minimum-cost set of edges F such that for ∀i, j, ∃ at least rij edge
disjoint paths from i to j in (V, E).

In other words, we are trying to find a network such that for each i, j, we can send
a flow of rij units from i to j, treating each edge as having unit capacity. In typical
industrial applications, rij is small; for example, rij ∈ {0, 1, 2}. SNDP is NP-hard even
when rij ∈ {0, 1}. Because it is NP-hard, we do not think we can find an efficient algorithm
to solve it, so instead we will consider approximation algorithms for the problem.

Definition 29.1 An algorithm is an α-approximation algorithm for SNDP if

1. it runs in polynomial time

2. it produces a solution whose value ≤ α times the value of the optimal solution (OPT).

29.1.2 The generalized Steiner tree problem

We consider a simple case first: rij ∈ {0, 1}. This is called the Generalized Steiner tree
problem. We are going to present a primal-dual 2-approximation algorithm for the problem.

29-127

To have a primal-dual algorithm, we’ll need both a primal and a dual. Consider the
integer program

Min
∑

cexe

subject to: ∑

e∈δ(S)

xe ≥ max
i∈S,j 6∈S

rij ∀S

xe ∈ {0, 1},

where we have defined δ(S) = {(i, j) ∈ E : i ∈ S, j 6∈ S}. We claim that this integer program
models the SNDP. This follows from the max-flow/min-cut theorem: the constraints ensure
that for any i-j cut, there are at least rij edges in any cut. Hence we will be able to send a
flow of value rij from i to j. By the integrality property of flows, we can decompose such a
flow into rij edge-disjoint paths.

The LP relaxation of this problem replaces the integer constraints xe ∈ {0, 1} with
0 ≤ xe ≤ 1. Note that we can solve the relaxation in polynomial time via the ellipsoid
method. The ellipsoid method says that given a solution x, if we can tell in polynomial
time whether x is a feasible solution for the LP, and, if not, produce a constraint violated
for the LP in polynomial time, then we can find an optimal solution to the LP in polynomial
time. In this case, we can find a violated constraint as follows. Given a solution x, treat
each edge as having capacity xe. For each i and j, compute a maximum i-j flow. If some
flow has value less than rij , then the minimum i-j cut for this flow gives a constraint that
is violated for the LP above.

It will be useful to restate the right-hand side of the primal LP in terms of a function
f . Define f(S) = maxi∈S,j 6∈S rij . Then our primal LP becomes

Min
∑

cexe

subject to: ∑

e∈δ(S)

xe ≥ f(S) ∀S

xe ≥ 0.

Note that we have dropped xe ≤ 1. In the case that rij ∈ {0, 1}, then f(S) ≤ 1 for all S
and a minimum-cost solution will have no variable xe > 1 anyway. Taking the dual of this
LP, we obtain

Max
∑

S

f(S)yS

subject to: ∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0.

29-128

Figure 29.1: The General Process of Primal-Dual Method

Recall the basic format of the primal-dual method, shown in Figure 29.1. In the case of
these LPs, the complimentary slackness conditions are

(primal) xe > 0 ⇒
∑

S:e∈δ(S)

yS = ce

(dual) yS > 0 ⇒
∑

e∈δ(S)

xe = f(S)

Because we are dealing with a problem in which we would like to find an integer optimum
solution, and the linear programming relaxation does not necessarily have integer vertices,
we will have to modify the primal-dual method slightly. We cannot hope to have a solution
such that there is an integer primal solution x that will obey the complementary slackness
conditions with respect to our current dual y. So we will have to give up on something.
In this case, we give up on the second type of complementary slackness conditions. We
will only hope to find an integer solution x obeying the primal complementary slackness
conditions.

Now we need to worry about whether the primal-dual method will still work in such
circumstances. Is it the case that if we do not have a feasible integer solution x obeying the
primal complementary slackness with respect to our current dual y, can we get a direction
of increase for the dual? To see that we can, given a feasible dual y, let A = {e ∈ E :∑

S:e∈δ(S) yS = ce}. A is the set of all edges e such that we could set xe = 1 and obey
the primal complementary slackness conditions. Suppose A is not a feasible solution. This
implies that there exists i, j, such that rij = 1, but i, j are not connected in (V, A). Pick
some connected component C such that i ∈ C and j /∈ C. Since C is a connected component

29-129

of (V,A), we know that for any e ∈ δ(C) it must be the case that
∑

S:e∈δ(S) yS < ce. Let

ε = min
e∈δ(C)

(ce −
∑

S:e∈δ(S)

y(S));

by the previous reasoning ε > 0. We can increase y(C) by ε > 0; since f(C) = 1, the dual
objective function increases.

29.1.3 A primal-dual algorithm for the generalized Steiner tree problem

This motivates the following primal-dual algorithm for the Generalized Steiner tree problem.
We will analyze it in the next lecture.

Primal-DualGST

y ← 0
A0 ← ∅
l ← 0 (l is a counter)
While Al is not feasible

l ← l + 1
Cl ← {set of all connected components C : f(C) = 1}
Increase yC for all C ∈ Cl uniformly until ∃ el /∈ Al−1 :

∑
S:ei∈δ(S) yS = cel

Al ← Al−1 ∪ {el}
A′ ← Al

For j ← l down to 1
If A′ − {ej} is still feasible

A′ ← A′ − {ej}
Return A′

29-130

ORIE 633 Network Flows April 9, 2004

Lecture 30

Lecturer: David P. Williamson Scribe: Chandrashekhar Nagarajan

30.1 Network design problems

30.1.1 A primal-dual algorithm for the generalized Steiner tree problem
(cont.)

Last class we introduced the Survivable Network Design Problem (SNDP) and looked at a
simple case with rij ∈ {0, 1} which is called the generalized Steiner tree (GST) problem.
We also gave a primal-dual algorithm which we will show is a 2-approximation algorithm
for the GST problem. Let us recall the problem and the algorithm.

GST problem

• Input:

– Undirected graph G = (V,E)

– Costs ce ≥ 0 ∀ e ∈ E

– rij ∈ {0, 1} ∀ i, j ∈ V

• Goal: Find a minimum-cost set F ⊆ E such that ∀ i, j s t rij = 1, i and j are
connected in (V, F).

Primal Dual GST

y ← 0
A0 ← ∅
l ← 0
while Al not feasible

l ← l + 1
Cl ← { connected components C of (V,A) s.t. f(C) = 1}
Increase yc for all c ∈ Cl uniformly until ∃el ∈ Al such that∑

s:el∈δ(S) ys = cel

Al ← Al−1 ∪ {el}
A′ ← Al

for j ← l down to 1
if A′ − {ej} is feasible

A′ ← A′ − {ej}

30-131

Definition 30.1 Let f(S) = maxi∈S,j /∈S rij

The LP relaxation of the above GST problem is as follows.

Min
∑

cexe

subject to: ∑

e∈δ(S)

xe ≥ f(S) ∀S

xe ≥ 0.

The dual of the above LP is

Max
∑

S

f(S)yS

subject to: ∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0.

Note that the algorithm outputs a feasible primal and a feasible dual solution. The for loop
at the end of the algorithm is to remove extra edges while maintaining feasibility of the set
A′.

We now turn to showing that this algorithm is a 2-approximation algorithm for GST.
We make the following claim, which we will prove later on.

Claim 30.1 For any step l, final solution A′

∑

C∈ Cl

∣∣A′ ∩ δ(C)
∣∣ ≤ 2 · |Cl|

Given the claim, we can prove the following theorem, showing that the algorithm is a
2-approximation algorithm.

Theorem 30.2 For solution A′ and final dual solution y

∑

e∈A′
ce ≤ 2 ·

∑

S⊆V

f(S)yS ≤ 2 ·OPT

where OPT is the optimal solution for the GST problem.

Proof: The second inequality follows since any feasible dual solution, by weak duality,
has value no more than the optimal solution to the primal LP, which in turn has value no
more than the optimal solution to the corresponding integer program, which is OPT .

30-132

e 2

1e

C 1

C

C

2

3

Figure 30.1: Components at lth iteration. C1, C2, C3 ∈ Cl, e1, e2 ∈ A′

Since we are maintaining primal complementary slackness conditions, we know that for
all e ∈ A′

ce =
∑

S:e∈δ(S)

yS .

Therefore ∑

e∈A′
ce =

∑

e∈A′

∑

S:e∈δ(S)

ys =
∑

S⊆V

yS

∣∣A′ ∩ δ(S)
∣∣ .

So we want to show that
∑

S⊆V

yS

∣∣A′ ∩ δ(S)
∣∣ ≤ 2 ·

∑

S⊆V

f(S)yS .

We will prove this by induction on the construction of the dual solution y.
Base case: Since y = 0 at the beginning of the algorithm, the inequality follows.
Inductive Step : Assume the inequality holds for dual variables at iteration l − 1 and we
will show that it holds for iteration l.

To do this, we will compare the change in LHS and RHS of the inequality. In step l,
each yC for C ∈ Cl is increased by some ε. Then the change of the RHS is 2ε|Cl|, while the
change in LHS is ε

∑
C∈Cl

|A′ ∩ δ(S)|. So by Claim 30.1 the change in the LHS is no greater
than the change in the RHS. So by induction the theorem is proved. 2

Now we must prove Claim 30.1.

Proof of Claim 30.1: Let
Bl−1 = A′ −Al−1

Then Al−1 ∪ Bl−1 is feasible since A′ ⊆ Al−1 ∪ Bl−1. We claim that for any e ∈ Bl−1,
Al−1 ∪Bl−1−{e} is not feasible. Consider the order in which edges are added to our set of
edges.

{e1, e2, · · · , el−1}, el, · · · , ek−1, ek.

30-133

The reverse order is the order in which we delete the extra edges in the set while maintaining
feasibility. So we absolutely need e ∈ Bl−1, where e = ej for some index j ≥ l, since we
considered it for deletion at a point when all the edges in (e1, e2, · · · , el−1) were in A′ during
the deletion step. If we didn’t remove e, then it must be needed for feasibility.

Contract each connected component of (V, Al−1) to a single vertex. Let the new vertex
set formed be V ′. Consider G′ = (V ′, Bl−1) where each edge e = (u, v) ∈ Bl−1 is connected
to the vertices u′, v′ ∈ V ′ corresponding to components that contain u and v respectively.
We claim that G′ is a forest. To see this, suppose there is some cycle Γ ∈ G′. We can delete
any edge in Γ while still maintaining feasibility since any pair of vertices i and j that are
connected are still connected after the edge is removed.

We now say that a vertex v ∈ V ′ is labeled “red” if the corresponding component C ⊆ V
has f(C) = 1. Other vertices are labeled “blue”. Let Red be the set of red vertices and
Blue be the set of blue vertices. See Figure 30.2.

f(C)=1 f(C)=1

f(C)=0

Red
Red

Blue

Figure 30.2: Components to vertices transformation

By the definition of Cl, |Cl| = |Red| and |A′ ∪ δ(C)| is the degree of vertex v′ corre-
sponding to the component C. Thus the inequality we are trying to prove is equivalent
to

∑

v∈Red

deg(v) ≤ 2 · |Red| .

To prove this, we need to establish one more claim; namely, that v ∈ Blue ⇒ deg(v) 6= 1.
Consider the edge e ∈ Bl−1 that connects a blue vertex v to its parent (See Figure 30.3).
Let S be the corresponding component of v. We know that Al−1∪Bl−1−{e} is not feasible.
This implies that there exists some i ∈ S and j /∈ S with rij = 1. But then f(S) = 1,
which implies that v is a red vertex. This is a contradiction. So any blue vertex v must
have degree other than 1.

30-134

e

f(C)=0

e

Blue

Figure 30.3: No blue vertex can be a leaf.

We now discard blue vertices of degree zero. Then
∑

v∈Red

deg(v) =
∑

v∈Red∪Blue

deg(v)−
∑

v∈Blue

deg(v)

≤ 2 · (|Red|+ |Blue|)− 2 · |Blue|
≤ 2 · |Red|.

The first inequality follows since G′ is a forest and since all blue vertices have degree at
least 2. 2

30-135

ORIE 633 Network Flows April 12, 2004

Lecture 31

Lecturer: David P. Williamson Scribe: Xin Qi

31.1 Network design problems

31.1.1 The survivable network design problem

In this lecture, we will start talking about approximation algorithm based on LP rounding
techniques for more general case of SNDP.

First, let us repeat the definition of SNDP:

Survivable Network Design Problem (SNDP)

• Input:

– Undirected graph G = (V, E)

– Costs ce ≥ 0 (∀e ∈ E)

– Requirements rij ∈ N (∀i, j ∈ V, i 6= j)

• Goal: Find a min-cost F ⊆ E, s.t. ∀i, j ∈ V, i 6= j, there are at least rij edge-disjoint
paths between i and j.

We also gave an integer LP formulation for SNDP.

Let f(S) = maxi∈S,j /∈S rij . Then we have the following integer program:

Min
∑

e∈E

cexe

subject to: ∑

e∈δ(S)

xe ≥ f(S) ∀S ⊂ V

xe ∈ {0, 1}

The above cut-based formulation completely characterizes SNDP, according to the maxflow-
mincut theorem.

Now we can relax the last constraint as 0 ≤ xe ≤ 1, and thereby obtain a LP relaxation
of SNDP. Obviously, the optimal solution to the LP sets a lower bound of the optimal
solution of SNDP, denoted by OPT .

31-136

By the ellipsoid algorithm, we can solve the LP in polynomial time, provided a separation
oracle that decides in polynomial time whether a solution is feasible or not, and if not, gives
the violated constraint. In our case, the separation oracle will be a routine that computes
maximum flow between all pairs of nodes (i, j), and checks if the flow value is less than rij .
If not, the corresponding minimum i-j cut must give a violated constraint. Thus the above
LP relaxation is polynomial-time solvable.

31.1.2 An LP rounding algorithm for the survivable network design prob-
lem

Before diving into the details of the algorithm, let us first take a look at the following useful
terminology.

Definition 31.1 A function f : 2V → Z is weakly supermodular, if f(V) = 0, and for any
A, B ⊆ V , one of the following holds:

• either f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

• or f(A) + f(B) ≤ f(A−B) + f(B −A)

Note that supermodular condition is only the first inequality, and the opposite inequality
f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) is called submodular condition. They are sort of the
discrete analogies of concavity and convexity.

Claim 31.1 The function

f(S) = max
i∈S,j /∈S

rij

is weakly supermodular.

Now we are going to give the central theorem underlying the whole algorithm. We will
not prove it at this time, but just use it to build our approximation algorithm first.

Theorem 31.2 (Jain ’98) For any weakly supermodular function f , any basic solution to the
LP has at least one variable xe ≥ 1

2 .

This is really important in the development of the algorithm: we can round up xe to
1, if it is no less than 1

2 , and we will not increase the value of the objective function by
too much. Of course, we have to notice that rounding up the variables will never make the
solution infeasible, according to the constraints of the LP.

31-137

Iterated Rounding (Jain ’98)

F ← ∅
f ′ ← f
While F not feasible solution

find a basic solution to the LP with the function f ′

F ← F ∪ {e ∈ E : xe ≥ 1
2}

f ′(S) ← f(S)− |F ∩ δ(S)|
Return F

Note that we are unable to do the third statement in the while loop literally, since that
would be exponential time. We would rather do it “conceptually”; the function f ′ will be
defined implicitly.

Here comes the first question: how can we solve the LP with f ′? We need to come
up with a separation oracle that runs in polynomial time, and actually, it will not be that
different than the one for the case of original function f . We will still compute maximum
flow for each pair of nodes, setting the capacity of any edge e ∈ F to be 1. (We can
alternatively view it as explicitly adding the constraint xe = 1 (∀e ∈ F), since we round
them up to 1.) We then find a maximum flow between every pair of vertices i and j; if the
value of the flow is less than rij , then the minimum i-j cut S on edges in E − F must have
value less than rij − |δ(S) ∩ F |, and this gives a violated constraint.

Another important question we need to ask is: why is f ′ weakly supermodular?

Lemma 31.3 For any given subset F ⊆ E, if f is weakly supermodular, then so is f ′(S) =
f(S)− |F ∩ δ(S)|.

Proof: We will first show that for general z ∈ R|E|≥0 , if we define

z(H) =
∑

e∈H

ze

then
z(δ(A)) + z(δ(B)) ≥ z(δ(A ∩B)) + z(δ(A ∪B))

and
z(δ(A)) + z(δ(B)) ≥ z(δ(A−B)) + z(δ(B −A))

Do the proof by picture:

We can check all types of edges, and see that any edge in RHS appears in LHS. For
example,

31-138

• Edge from A ∩B to A ∪B

It shows up in both A and B. It also appears in both items of the RHS of the first
inequality, but neither of the RHS of the second one.

• Edge from A−B to B −A

It shows up in both A and B. It also appears in both items of the RHS of the first
inequality, but neither of the RHS of the second one.

In fact, these two types of edges are the only cases to make the inequalities not tight.

Now, we will use the above fact to prove the lemma.

Let

ze =
{

1 e ∈ F
0 o.w.

then f ′(S) = f(S)− z(δ(S)).

Given any A and B, one the two statements of the weakly supermodularity holds for f :

• If the first holds,

f ′(A) + f ′(B) = f(A)− z(δ(A)) + f(B)− z(δ(B))
≤ f(A ∩B)− z(δ(A ∩B)) + f(A ∪B)− z(δ(A ∪B))
= f ′(A ∩B) + f ′(A ∪B)

• If the second holds, the proof is similar.

2

With the above discussion, we know that the algorithm is well defined, and yields a fea-
sible solution to SNDP. Now we have to prove the performance guarantee of the algorithm.

31-139

Theorem 31.4 Iterated rounding is a 2-approximation algorithm for SNDP.

Proof: First, we need to argue that it runs in polynomial time. This is easy: every
iteration we solve a LP instance, which can be done in polynomial time by ellipsoid algo-
rithm, and the number of iterations is bounded by m, since |F | increases by at least one
per iteration.

Second, we want to show that
∑

e∈F

ce ≤ 2
∑

e∈E

cexe

where x is a solution to the original LP, and F is the final set given by our algorithm.

The above result will lead to that the approximation ratio is 2, since the integral optimal
solution to SNDP is clearly a feasible solution to the LP, and therefore

∑
e∈E cexe ≤ OPT .

The proof will be done by induction on the number of iterations of the main loop. We
will do the proof in a “backward” way, that is, the induction hypothesis will be applied to
the execution after the first iteration.

Let

x̂e =
{

xe xe ≥ 1
2

0 o.w.

For the set of edges F1 added to F in the first iteration, the cost is clearly no more than
2

∑
e∈E cex̂e, according to the way of rounding.

Base case: If the algorithm terminates in one iteration and F1 = F , then
∑

e∈F

ce ≤ 2
∑

e∈E

cex̂e ≤ 2
∑

e∈E

cexe.

Inductive case: Observe that
∑

e∈δ(S)

xe −
∑

e∈δ(S)

x̂e ≥ f(S)− |F1 ∩ δ(S)| = f ′(S)

which implies that x − x̂ is a feasible solution to the LP given the new function f ′ at the
end of the first iteration.

Now apply the induction hypothesis: we know that for the set of edges F ′ added in
future iterations (after the first one), the cost of F ′ will be no larger than the optimal of
the new LP, hence no larger than any feasible solution of the new LP:

∑

e∈F ′
ce ≤ 2

∑

e∈E

ce(xe − x̂e)

⇒

31-140

∑

e∈F ′∪F1

ce ≤ 2
∑

e∈E

ce(xe − x̂e) + 2
∑

e∈E

cex̂e = 2
∑

e∈E

cexe

⇒
∑

e∈F

ce ≤ 2 ·OPT

2

31-141

ORIE 633 Network Flows April 14, 2004

Lecture 32

Lecturer: David P. Williamson Scribe: Xin Qi

32.1 Network design problems

32.1.1 An LP rounding algorithm for the survivable network design prob-
lem

In this lecture, we will dive into the proof of the Jain’s Theorem.

Let us first repeat the definition of weakly supermodular functions, and the content of
Jain’s Theorem.

Definition 32.1 A function f : 2V → Z is weakly supermodular, if f(V) = 0, and for any
A, B ⊆ V , one of the following holds:

• either f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

• or f(A) + f(B) ≤ f(A−B) + f(B −A)

Theorem 32.1 (Jain ’98) For any weakly supermodular function f , any basic solution to the
LP has at least one xe ≥ 1

2 .

32.1.2 Proof of Jain’s theorem

Actually, we are going to cheat a little bit. We will prove a weaker version of Jain’s Theorem,
and show that any basic solution to the LP has at least one xe ≥ 1

3 . The proof of the stronger
version is significantly more work, but doesn’t introduce many more ideas than what we
are going to do.

Take a basic solution of LP, we can assume that 0 < xe < 1 (∀e ∈ E). We are safe to
make this assumption, since

• if ∃e such that xe = 1, then we are done;

• if ∃e such that xe = 0, then we can remove that edge from the graph, and that will
not affect the proof.

We will need the following definitions to facilitate our proof.

32-142

Definition 32.2 A,B ⊂ V cross if A−B, B −A, and A ∩B are non-empty.

Definition 32.3 S ⊂ V is tight if
∑

e∈δ(S) xe = f(S)

Definition 32.4 A collection L of sets is called laminar if no two sets in L cross.

For a laminar set L, all the sets in L either contain each other, or are disjoint from each
other, as shown in the following figure.

Definition 32.5 For any cut S ⊂ V , χδ(S) ∈ {0, 1}|E| is defined as

χδ(S)(e) =
{

1 e ∈ δ(S)
0 o.w.

Then the constraints of the LP can be rewritten as

χδ(S) · x ≥ f(S) ∀S ⊂ V.

Let m denote the number of fractional xe, which is equal to the number of edges in the
graph, by our assumption.

Theorem 32.2 For a basic solution x to the LP, there exists a collection of L of m sets such
that

(1) S is tight for all S ∈ L;

(2) The set of vectors {χδ(S) : S ∈ L} is linear independent;

(3) L is laminar.

Claim 32.3 (1) and (2) follow by properties of a basic solution.

So we only need to prove (3). Before actually doing the proof, we will first show the
following lemma.

Lemma 32.4 If A and B cross, and are both tight, then either

32-143

• either A ∩B and A ∪B are tight, and χδ(A) + χδ(B) = χδ(A∪B) + χδ(A∩B);

• or A−B and B −A are tight, and χδ(A) + χδ(B) = χδ(A−B) + χδ(B−A).

Proof: Since f is weakly supermodular, one of the following two cases holds:

• either f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

• or f(A) + f(B) ≤ f(A−B) + f(B −A)

We will assume the first one holds, and the proof for the other case is similar.

Since A and B are both tight, we have

f(A) + f(B) = x(δ(A)) + x(δ(B))

Recall that last time we proved that for any z ∈ R|E|≥0 , the following two inequalities
both hold:

z(δ(A)) + z(δ(B)) ≥ z(δ(A ∩B)) + z(δ(A ∪B)) (32.1)

z(δ(A)) + z(δ(B)) ≥ z(δ(A−B)) + z(δ(B −A)). (32.2)

We can apply this result to x:

f(A) + f(B) = x(δ(A)) + x(δ(B)) ≥ x(δ(A ∩B)) + x(δ(A ∪B)) ≥ f(A ∪B) + f(A ∩B)

in which the last inequality holds according to the constraints of LP.

Combining the above result with our assumption of f , we know that all the inequalities
are tight. Especially for the the last inequality, it is not only tight for the sums, but also
tight for those summands, i.e. x(δ(A∩B)) = f(A∩B) and x(δ(A∪B)) = f(A∪B), which
means that A ∩B and A ∪B are both tight.

Another thing we have known from last lecture is that the only thing that can make
inequality (32.1) not tight is an edge from A−B to B−A. Thus because x(δ(A))+x(δ(B)) =
x(δ(A ∩ B)) + x(δ(A ∪ B)) and no edge e has xe = 0, we know that there is no edge from
A−B to B −A. This implies

χδ(A) + χδ(B) = χδ(A∩B) + χδ(A∪B).

2

Now let us come back to the proof of theorem 32.2.

Let T be a basic solution meeting properties (1) and (2), and let span(T) be the span
of vectors {χδ(S):S∈T }.

Let L be maximal collection of sets obeying properties (1) (2) and (3).

If |L| = m, then we are done. So let us suppose |L| < m, then we can choose a tight
set S, such that χδ(S) ∈ span(T), χδ(S) /∈ span(L), and there is no other such set crossing
fewer sets in L; that is, S crosses the fewest number of sets in L.

Now we pick T ∈ L such that S and T cross. By Lemma 32.4, one of the two cases holds.
Suppose it is the case that S−T and T −S are tight, and χδ(S) +χδ(T) = χδ(S−T) +χδ(T−S).

32-144

Claim 32.5 We can not have both S − T and T − S in L.

We know that χδ(T) ∈ span(L), and χδ(S) /∈ span(L).
If both S − T and T − S are in L, then χδ(S−T) + χδ(T−S) ∈ span(L), which

implies χδ(S) + χδ(T) ∈ span(L). Then we have a contradiction. ¦

Claim 32.6 S − T , T − S, S ∪ T , and S ∩ T all cross fewer sets in L than S.

Proof by picture:

T

S

We can observe that any set crossing one of S − T , T −S, S ∪ T , S ∩ T , but
not T must also cross S. However, these four sets do not cross T , but S does
cross T .

¦

From claim 32.5, we know that either χδ(S−T) /∈ span(L), or χδ(S−T) /∈ span(L). No
matter which is the case, we have another tight set (either S−T or T −S), outside span(L),
but crossing fewer sets in L, which contradicts the choice of S.

Now we have finished the proof of theorem 32.2.

To be continued...

32-145

ORIE 633 Network Flows April 16, 2004

Lecture 33

Lecturer: David P. Williamson Scribe: Alice Cheng

33.1 Network design problems

33.1.1 Proof of Jain’s theorem (cont.)

Recall the Survivable Network Design Problem from previous lectures:
Survivable Network Design Problem (SNDP)

• Input:

– Undirected graph G = (V,E)

– Costs ce ≥ 0 for all e ∈ E.

– Requirements rij ∈ N for all i, j ∈ V, i 6= j.

• Goal: Find a min-cost F ⊆ E such that ∀i, j ∈ V , i 6= j, there are at least rij

edge-disjoint paths in F between i and j.

Our goal is to prove the following theorem by Jain:

Theorem 33.1 (Jain 1998) For any weakly supermodular function f , and any basic solution
to the LP (stated below), x, there is at least one variable xe such that xe ≥ 1

2

The SNDP can be modelled by an integer program which relaxes to the following linear
program:

Min
∑

e∈E

cexe

subject to: ∑

e∈δ(S)

xe ≥ f(S) for each S ⊆ V,

0 ≤ xe ≤ 1 for each e ∈ E.

Last time, we used this theorem to show that Jain’s Iterated Rounding algorithm is a
2-approximation algorithm. For simplicity, we will show that there always exists a variable
xe such that xe ≥ 1

3 , rather than xe ≥ 1
2 as stated in Theorem 1. Then the proof that we

gave last lecture can be easily modified to show that the corresponding Iterated Rounding
algorithm is a 3-approximation algorithm.

Recall from last lecture some definitions:

33-146

Definition 33.1 A,B ⊂ V , A,B cross if A−B, B −A, and A ∩B are nonempty.

Definition 33.2 A collection L of sets is laminar if no pair A,B ∈ L cross.

Definition 33.3 For a solution x to the LP, S is tight if
∑

e∈δ(S) xe = x(δ(S)) = f(S).

Definition 33.4 The edge incidence vector χF ∈ {0, 1}m for F ⊆ E is defined component-

wise as χF (e) =
{

1 if e ∈ F,
0 otherwise.

We proved last lecture the following theorem:

Theorem 33.2 For a basic solution x to the LP, there exists a collection L of m sets (where
m is the number of fractional variables of x) such that

• S is tight for all S ∈ L
• The set {χδ(S) : S ∈ L} is linearly independent.

• L is laminar.

Throughout the lecture, we will assume that all of the edges e ∈ E have fractional xe

(0 < xe < 1), since if xe = 0, we can remove e from E without loss of generality, and in any
case where xe = 1, the theorem is trivially true.

Theorem 33.3 If L is a collection of sets with the properties stated in Theorem 2, there exists
an S ∈ L such that there are no more than 3 edges in δ(S).

With the above result, we can prove Jain’s theorem (Theorem 33.1).

Proof of Theorem 33.1: Let x be the basic solution for the LP. Let L be the collection
given by Theorem 33.2. For all S ∈ L, S is tight implies that f(S) = x(δ(S)) > 0 if there
are any edges in δ(S). Furthermore, since the set {χδ(S) : S ∈ L} is linearly independent, it
cannot be the case that δ(S) =. We know that f(S) integer, so f(S) ≥ 1 for all S ∈ L. By
Theorem 33.3, there is an S ∈ L such that δ(S) ≤ 3. This immediately implies that there
is some e ∈ δ(S) such that xe ≥ 1

3 . 2

Consider the tree defined by L: Represent each set in L by a node in the tree. If S, T ⊂ L,
S ⊂ T but S is not contained in any superset of T in L, then the node representing S is a
child of the node representing T . L is laminar, so this representation is well-defined. For
an example, see Figure 1.

Definition 33.5 A socket is an edge-vertex pair (e, v) such that v is one of the endpoints of
e, where e ∈ E, v ∈ V .

33-147

Figure 33.1: Example tree structure for a collection of laminar sets.

We can now prove the theorem.

Proof of Theorem 33.3: Suppose, for contradiction, that every S ∈ L has at least
4 edges in δ(S). There can be no more than 2m distinct sockets in the graph G, (where
m is the number of edges). By induction, we will exhibit a charging scheme that charges
2 sockets for every node in the tree and 4 for the root node. This yields a total charge of
2m + 2 > 2m, since L has m elements (Theorem 33.2), which will lead to a contradiction.

Base Case: We can charge 4 sockets to each leaf in the tree: For a leaf node on the
tree corresponding to a set S, δ(S) ≥ 4, so we can take 4 edges out of δ(S) and their
corresponding endpoints in S as sockets, and charge these sockets to S.

Inductive Step: For any parent, assume inductively that in each child’s subtree, 2 sockets
are charged per non-root node, and 4 sockets are charged to the root.

If there are 2 or more children, then each child can pass a charge of 2 to the parent, and
the induction holds.

If there is exactly one child, the we have a few cases. If the parent has at least two
additional sockets, then the child can pass a charge of 2 to the parent, and the induction
holds. If the parent has no additional sockets, then δ(P) = δ(C), where P is the parent
set and C is the single child set. Therefore, χδ(P) = χδ(C), which implies that χδ(P), χδ(C)

cannot be linearly independent (violating a condition of L), so this case cannot occur.

The only other case is if the parent P has exactly one child C, and exactly one additional
socket, associated with some edge, e. In that case, we have either f(P) = f(C)− xe (if e is
an edge between P and C) or f(P) = f(C) + xe (if e is an edge out of P), since P and C

33-148

are both tight. The function f is integer valued and xe’s are strictly fractional, so this case
cannot occur.

Therefore, we can charge the sockets to elements of the tree satisfying the condition that
2 sockets are charged to each non-root node and 4 sockets are charged to the root. This
gives a total charge of 2m + 2, yielding the contradiction. 2

An interesting open question is that of finding a combinatorial 2-approximation algo-
rithm for SNDP.

33.2 The multicommodity flow problem

After studying max-flow, min-cost circulations and generalized flows, we now move on to an
even more complex type of network problem: multicommodity flow. As suggested by the
name, in this problem we wish to move multiple commodities between different source-sink
pairs in the graph.

Multicommodity flow

• Input:

– A directed graph G = {V, A}
– A set of k source-sink pairs: sa-ta for a = 1, . . . , k

– integer capacities uij ≥ 0 for all (i, j) ∈ A.

– (optional) A set of k demands da for a = 1, . . . , k.

For each a = 1, . . . , k, let fa be a valid sa-ta flow in G (fa satisfies capacity constraints
and flow conservation at vertices other than sa and ta). Then the fa are a multicommodity
flow if for all (i, j) ∈ A,

∑k
a=1 fa

ij ≤ uij .

We define the value of flows in the usual way:

|fa| =
∑

(sa,i)∈A

fa
sai −

∑

(i,sa)∈A

fa
isa

There are several potential goals for this problem:

1. Feasibility: Determine if there exist flows fa such that |fa| = da for all a.

2. Maximum multicommodity flow: Maximize the total flow value
∑k

a=1 |fa| (ignoring
the demands da).

3. Maximum concurrent flow: Find the maximum λ such that |fa| ≥ λda for all a.

Next lecture, we will consider approximation algorithms for goal 2: finding a maximum
multicommodity flow.

33-149

ORIE 633 Network Flows April 19, 2004

Lecture 34

Lecturer: David P. Williamson Scribe: Mateo Restrepo

34.1 The multicommodity flow problem

34.1.1 Definition

In the last lecture we introduced the multicommodity flow problem. A multicommodity flow
is a flow consisting of several independent components, the commodities. Each commodity
has its own source and sink pair, but all of them share the same set of arcs for its trans-
portation. In this lecture we are going to focus on the version of the problem summarized
below.

Multicommodity flow

• Input:

– A directed graph G = {V, A}
– Integer capacities uij for all (i, j) ∈ A

– k source-sink pairs: sa-ta for a = 1, . . . , k

• Goal: Find a set of functions {fa : A → R, a = 1, . . . , k} such that:

– ∀a = 1, . . . , k, fa is a valid flow from sa to ta, i.e it satisfies conservation con-
straints at all vertices except sa and ta.

– The total flow respects capacities i.e. ∀(i, j) ∈ A,
∑

a=1,...,k fa
i,j ≤ ui,j

– The total flow is maximized. This flow is equal to
∑

a=1,...,k |fa| where
|fa| = ∑

(sa,j)∈A fa
sa,j −

∑
(j,sa)∈A fa

j,sa

Another version of the problem is to decide whether or not there exists a flow which
satisfies a set of given demands da, a = 1, . . . , k, that is, for which |fa| = da, for all a.

In still another one, known as the max-concurrent flow problem, the goal is to maximize
a parameter λ such that |fa| ≥ λda.

34.1.2 Linear programming formulation

The multicommodity flow problem has a very simple formulation as a linear program if we
use the path formulation for flows. The resulting LP will actually contain exponentially
many variables and we will not worry about solving it directly. Its usefulness comes from

34-150

the fact that the dual problem has only m variables and its feasibility is easily checked. The
dual will also provide us some intuition about the algorithm we are going to present.

Before proceeding we introduce some notation. Let the variable XP represent the total
flow along path P . We let Pa be the set of all paths P from sa to ta, and P =

⋃
a=1...k Pa.

The LP formulation of the max commodity flow problem is the following:

max
∑

a

(∑

P∈Pa

XP

)

∀(i, j) ∈ A,
∑

a

∑

P∈Pa,(i,j)∈P

XP ≤ uij

∀P ∈ P, XP ≥ 0.

The dual version of this LP is:

min
∑

(i,j)∈A

uijlij

∀P ∈ P,
∑

(i,j)∈P

lij ≥ 1

∀(i, j) ∈ A, lij ≥ 0.

In this program l might be viewed as an arc length function, in which case
∑

(i,j)∈P lij
is the length of path P . Checking feasibility of the dual is equivalent to checking, for every
a, that the length of the shortest path between sa and ta is at least 1. This can be easily
done in polynomial time.

The comments above imply also that the dual problem is solvable in polynomial time
using the ellipsoid method. Nevertheless, those methods are computationally expensive and
the approximation algorithm that we are about to present might perform better in practice.

34.1.3 The Garg-Könemann approximation algorithm

The preceding discussion motivates the following algorithm for finding an approximate
solution to our problem.

34-151

ε-approximate maximum multicommodity flow (Garg & Könemann, 1998)

XP ← 0 ∀P ∈ P
li,j ← δ ∀(i, j) ∈ A (∗)

// below we will discuss what an appropriate value of δ might be.
while ∃P ∈ P s.t. l(P) =

∑
(i,j)∈P li,j < 1

Let P a path such that l(P) < 1 (∗)
u ← min(i,j)∈P uij

XP ← XP + u
∀(i, j) ∈ P, lij ← lij(1 + ε u

uij
)

Pick M such that X
M is feasible (∗)

// below we will discuss how to calculate M appropiately.
return X

M

To simplify the initial exposition we have left three steps of the algorithm – marked
with an (∗) – unspecified. Later we will describe in detail how to determine optimal values
for δ and M , and how to pick the path P so as to guarantee both polynomial running time
of the algorithm and (1− 2ε) optimality of the resulting multicommodity flow.

Note that this algorithm is quite different from previous flow algorithms that we have
considered. We are not using the notion of a residual graph. Our solution X while running
the main loop is not even necessarily feasible; it is quite possible that the flow on an edge
exceeds its capacity. Thus we scale down the flow at the end of the algorithm to ensure
that the solution we return is a feasible flow.

We also notice that our problem has no integrality property. Thus we have to use some
other argument to can use this fact to guarantee that the algorithm will end. This is what
we do next.

Lemma 34.1 The algorithm terminates after at most m log1+ε
1+ε

δ iterations.

Proof: Initially, for all (i, j) ∈ A, lij = δ. At any point in the algorithm lij ≤ 1 + ε.
Indeed, lij only changes if it is in a path P of length l(P) < 1. Since all edges have positive
length, this means that lij < 1. Furthermore, lij is increased by a factor that is not above
1 + ε (since by definition u ≤ uij) so it can’t become greater than 1 + ε.

Also, at each iteration at least one edge has its length augmented by a factor of 1 + ε.
Call this edge a tight edge for that iteration. If a given edge e is the tight edge for ie
iterations then its length after the ie-th such iteration is δ (1 + ε)ie and since this quantity
is no bigger than (1 + ε) we conclude that ie ≤ log1+ε

(1+ε)
δ , which imposes a bound on the

total number of iterations for which e can be the tight edge. Since this bound is the same
for all edges we conclude that the total number of iterations is no more than m log(1+ε)

(1+ε)
δ
2

We now show that if we scale the flow by a fixed quantity, the flow becomes feasible.

34-152

Lemma 34.2 If we scale flows fa by M = log1+ε
1+ε

δ then the total flow becomes feasible.

Proof: Fix an edge (i, j). At each iteration k, if (i, j) ∈ Pk where Pk is the selected path,
the flow on this edge (i, j) is increased by uk. If we set ak = uk

uij
≤ 1, the length lij is increased

by a factor of 1 + akε. At the end, lij is increased by a factor of
∏

k:(i,j)∈Pk
(1 + akε). The

flow on these edges, on the other hand, is increased by
∑

k:(i,j)∈Pk
uk = uij

∑
k:(i,j)∈Pk

ak,
starting from 0. Since initially lij = δ, and at the end lij < 1 + ε, we have

δ
∏

k:(i,j)∈Pk

(1 + akε) < 1 + ε.

Since ak ≤ 1, 1 + akε ≥ (1 + ε)ak so that

δ(1 + ε)
P

k:(i,j)∈Pk
ak < 1 + ε

∑

k,(i,j)∈Pk

ak < log1+ε

1 + ε

δ
= M.

Thus since the total amount of flow on edge (i, j) is uij
∑

k:(i,j)∈Pk
ak, if we divide the flows

by M , the total amount of flow on edge (i, j) will be no more than uij , and the flow will be
feasible. 2

Next time we will prove

Theorem 34.3 The algorithm computes a 1− 2ε approximate flow.

34-153

ORIE 633 Network Flows April 21, 2004

Lecture 35

Lecturer: David P. Williamson Scribe: Sam Steckley

35.1 The multicommodity flow problem

35.1.1 The Garg-Könemann approximation algorithm (cont.)

Recall the multicommodity flow problem discussed last class.

Multicommodity flow

• Input:

– A directed graph G = {V, A}
– Integer capacities uij for all (i, j) ∈ A

– k source-sink pairs: sa-ta for a = 1, . . . , k

• Goal: Find a set of functions {fa : A → R, a = 1, . . . , k} such that:

– ∀a = 1, . . . , k, fa is a valid flow from sa to ta, i.e it satisfies conservation con-
straints at all vertices except sa and ta.

– The total flow respects capacities i.e. ∀(i, j) ∈ A,
∑

a=1,...,k fa
i,j ≤ ui,j

– The total flow is maximized. This flow is equal to
∑

a=1,...,k |fa| where
|fa| = ∑

(sa,j)∈A fa
sa,j −

∑
(j,sa)∈A fa

j,sa

We defined the following notation. Let the variable XP represent the total flow along
path P . We let Pa be the set of all paths P from sa to ta, and P =

⋃
a=1...k Pa.

The LP formulation of the max commodity flow problem is the following:

max
∑

a

(∑

P∈Pa

XP

)

∀(i, j) ∈ A,
∑

a

∑

P∈Pa,(i,j)∈P

XP ≤ uij

∀P ∈ P, XP ≥ 0.

The dual version of this LP is:

min
∑

(i,j)∈A

uijlij

35-154

∀P ∈ P,
∑

(i,j)∈P

lij ≥ 1

∀(i, j) ∈ A, lij ≥ 0.

We gave the following algorithm for the maximum multicommodity flow problem.

ε-approximate maximum multicommodity flow (Garg & Könemann, 1998)

XP ← 0 ∀P ∈ P
li,j ← δ ∀(i, j) ∈ A
while ∃P ∈ P s.t. l(P) =

∑
(i,j)∈P li,j < 1

Let P a path such that l(P) < 1 (∗)
u ← min(i,j)∈P uij

XP ← XP + u
∀(i, j) ∈ P, lij ← lij(1 + ε u

uij
)

Pick M such that X
M is feasible

return X
M

We proved the following lemmas:

Lemma 35.1 The algorithm terminates after at most m log1+ε
1+ε

δ iterations.

Lemma 35.2 If we scale flows fa by M = log1+ε
1+ε

δ then the total flow becomes feasible.

Note that in the algorithm we choose an arbitrary path P ∈ P s.t. l(P) =
∑

(i,j)∈P li,j <
1 on which to augment. Now suppose we choose P to be the shortest path. That is to say,
choose P ∈ P s.t. P = argmin l(P).

Given the slightly modified algorithm, we now can show the algorithm gives a 1 − 2ε
approximate flow.

Theorem 35.3 The algorithm computes a 1− 2ε approximate flow.

Proof:

A few definitions:

• For length function l, we’ll set D(l) =
∑

(i,j)∈A ui,jli,j (dual objective function) and
α(l) = minP∈P l(P).

• we’ll note ls the length function at the end of iteration s.

• we’ll also note D(s) = D(ls) and α(s) = α(ls).

• we’ll set β = minl feasible D(l) = minl≥0,α(l)6=0
D(l)
α(l) . This equality comes from the fact

that if you divide a positive length function by its corresponding shortest path, the
new shortest path becomes 1 so the length function becomes feasible.

35-155

• we’ll set Xs =
∑

P∈P Xs
P , primal value at the end of iteration s.

• t is the index of the last iteration.

By definition of t, 1 ≤ α(t). We’ll assume for now (we’ll prove it later) that

α(t) ≤ δne
ε Xt

β .

We then have:
Xt

β
≥ ln(1

δn)
ε

.

To get the result we must show that:

Xt

M
≥ (1− 2ε)β.

We will set δ = (1 + ε)((1 + ε)n)−
1
ε . This value is chosen so that ln(1

δn
)

M = (1− ε) ln(1 + ε).
By substitution,

Xt

Mβ
≥ ln(1

δn)
Mε

≥ (1− ε) ln(1 + ε)
ε

.

By a Taylor series argument,

(1− ε) ln(1 + ε)
ε

≥ (1− ε)(ε− ε2/2)
ε

≥ (1− 2ε).

Now we return to the inequality we assumed above:

α(t) ≤ δne
ε Xt

β .

To show this is true, we consider how the dual objective function changes from iteration to
iteration. Let Ps be the shortest path on which we augment in iteration s. For an arbitrary
iteration s,

D(s) =
∑

ui,jl
s
i,j

=
∑

(i,j)∈Ps

ui,jl
s−1
i,j (1 + ε

u

ui,j
)

= D(s− 1) + εu
∑

(i,j)∈Ps

ls−1
i,j

= D(s− 1) + ε(Xs −Xs−1)α(s− 1).

35-156

Thus we have in iteration s that

D(s) = D(0) + ε
s∑

h=1

(Xh −Xh−1)α(h− 1).

We are looking for a bound on β. If we consider length function ls − l0, since β is
minimum we have

β ≤ D(ls − l0)
α(ls − l0)

D is linear so D(ls− l0) = D(s)−D(0). Now, α(ls− l0) is the length of some path P . Then
α(ls− l0) = ls(P)− l0(P) ≥ α(s)− δn since for any P , α(s) ≤ ls(P) and δn ≥ l0(P) (which
follows from the observations that l0 is δ on every edge, and P has less than n edges). Then
we have that

β ≤ D(s)−D(0)
α(s)− δn

≤ ε
∑s

h=1(X
h −Xh−1)α(h− 1)
α(s)− δn

.

Rearranging terms, we have that

β(α(s)− δn) ≤ ε
s∑

h=1

(Xh −Xh−1)α(h− 1),

or that

α(t) ≤ δn +
ε

β

s∑

h=1

(Xh −Xh−1)α(h− 1).

Let α′(s) be the maximum possible value of α(s) given the above equation, for 1 ≤ s ≤ t.
Let α′(0) = δn. Then we have that

α′(0) = δn

α′(1) = δn +
ε

β
(X1 −X0)α′(0) = (1 +

ε

β
(X1 −X0))α′(0)

α′(2) = δn +
ε

β
((X2 −X1)α′(1) + (X1 −X0)α′(0))

= (1 +
ε

β
(X1 −X0))α′(0) +

ε

β
(X2 −X1)α′(1)

= (1 +
ε

β
(X2 −X1))α′(1).

In general we obtain that

α′(s) = (1 +
ε

β
(Xs −Xs−1))α′(s− 1)

≤ e
ε
β

(Xs−Xs−1)
α′(s− 1).

35-157

Then applying the bound repeatedly, we get that

α′(s) ≤ α′(0)e
ε
β

(Xs−X0)
.

So then
α(t) ≤ α′(t) ≤ α′(0)e

ε
β

(Xt−X0)
.

Since X0 = 0 and α′(0) = δn,
α(t) ≤ δne

ε
β

Xt

.

2

35-158

ORIE 633 Network Flows April 23, 2004

Lecture 36

Lecturer: David P. Williamson Scribe: Sam Steckley

36.1 Multicommodity flow

36.1.1 A dynamic, local control algorithm

In designing algorithms thus far, we have been assuming both global knowledge of the
given network and that the given network is static. These assumptions may fail to hold.
Consider a large computer network. In this case the network may be dynamic. Nodes or
communication arcs may fail. New nodes or arcs may be added. In addition, the network
may be so large that a complete, global description of the network is unwieldy. We now
consider an algorithm which assumes only local knowledge of a possibly dynamic network.

The goal of the previous multicommodity flow algorithm was to obtain a maximum
multicommodity flow. In introducing multicommodity flows, we discussed other possible
objectives. One possible objective is finding a feasible multicommodity flow such that
|fa| = da ∀a where da is the demand for commodity a. The following theorem states that
there is a local control algorithm that achieves this goal provided the given network supports
a flow that can do a bit better. We state the theorem here without proof.

Theorem 36.1 (Awerbuch, Leighton ’94) There exists a local control algorithm to compute
a multicommodity flow f s.t. |fa| = da ∀a if there exists a flow g s.t. |ga| ≥ (1 + 3ε)da ∀a

So although we don’t assume need to assume global knowledge of the network or assume
that the network is static, we do need to assume that the network can push through a flow
of a certain value.

36.1.2 Definitions and assumptions

In this algorithm, we maintain a queue at each vertex i for each arc (i, j) ∈ A and each
commodity a. For vertex i, arc (i, j) ∈ A, and commodity a, let qa

ij denote the length of
this queue. Ignoring capacity constraints, qa

ij is the amount of commodity a at vertex i that
could be pushed along arc (i, j) to vertex j.

For each source sa we assume that there is only one arc out of sa. Similarly, for each
sink ta we assume that there is only one arc into ta. If this were not true, we could easily
alter our network so that it was. With only one edge out of each of the sources and with
only one edge into each of the sinks we can denote the length of the queues at the source
and sink for any commodity a as qsa and qta , respectively.

36-159

qa
ij

qa
ji

i j

Figure 36.1: Queues associated with commodity a and arc (i, j)

At source sa, we bound the queue height by Qa, which will be determined later. The
remaining flow at the source sa is held in an overflow buffer. Let ba be the amount of flow
in the buffer for the commodity a.

The algorithm will use the following potential functions:

• potential of a queue is φa(x) = eαax for x units of flow of commodity a

• potential of overflow buffer is σa(x) = φ′a(Qa)x = αaxeαaQa for x units of flow of
commodity a

The constant αa will be given later.

36.1.3 Algorithm

We now present the algorithm.

36-160

Dynamic, local control algorithm (Awerbuch & Leighton, 1994)

Repeat forever
Phase 1: Add flow to sources:

ba ← ba + (1 + ε)da ∀a
Move up to Qa flow from buffer to source queue

Phase 2: Push flow on edges:
For each arc (i, j) ∈ A

Compute fa
ij to minimize∑

a φa(qa
ij − fa

ij) + φa(qa
ji + fa

ij)
s.t.

∑
a fa

ij ≤ uij

Move fa
ij from qa

ij to qa
ji

Phase 3: Zero out flows at sinks: qta ← 0∀a
Phase 4: Balance the queues at the nodes:

qa
ij ← 1

deg(i)

∑
j:(i,j)∈A qa

ij ∀a, (i, j) ∈ A

In Phase 2, flow is pushed along arc (i, j) to minimize the total potential of the queues at
i and j. By the convexity of the node potentials this minimization tends to push flow from
nodes with high potentials to nodes with low potentials. So the flow moves downhill. In
Phase 1, flow is added to the sources, increasing potentials at the sources. In Phase 3, if any
flow has reached the sinks, we empty it, so the sink potentials stay small (φa(0) = eαa∗0 = 1).
We note that the potential function is convex, so the balancing of the queues at the nodes
only decreases the overall potential function value for each commodity at each node. Overall,
the algorithm maintains high source potentials and low sink potentials so that the flow will
run downhill from the sources to the sinks.

The outline of the analysis of this algorithm is as follows. First, we show the increase in
potentials in Phase 1 is not too big. Then we show the decrease in potentials resulting from
Phases 2 and 3 cancels the increase from Phase 1. This implies overall potential is bounded,
which in turn implies the total flow in the queues and buffer is bounded. Therefore, flow
must be reaching the sink.

The first lemma presented gives an upper bound on the potential increase in Phase 1.
The second gives a lower bound on the potential decrease from Phases 2 and 3. We will
prove these lemmas later.

Lemma 36.2 The potential increase in Phase 1 is at most (1+ ε)daφ
′
a(qsa) for commodity a,

where qsa is the height of source for commodity a after Phase 1.

Lemma 36.3 The potential decrease in Phase 2 and 3 is at least

(1 +
3
2
ε− ε2)

∑
a

daφ
′
a(qsa)−

εk

8n
(1 + 2ε).

Observation 36.1 Phase 4 can only decrease the total potential.

36-161

Using the two lemmas and the observation above, we can bound the total potentials.

Lemma 36.4 The total potential is at most 2m
∑

a φa(Qa).

Proof: Suppose for some a′, qs′a = Q′
a. By previous lemmas, the total decrease in

potentials is

= (1 +
3
2
ε− ε2)

∑
a

daφ
′
a(qsa)−

εk

8n
(1 + 2ε)− (1 + ε)

∑
a

daφ
′
a(qsa)

= (1 +
3
2
ε− ε2 − (1 + ε))da′φ

′
a′(Qa′)− εk

8n
(1 + 2ε) + (1 +

3
2
ε− ε2 − (1 + ε))

∑

a:a 6=a′
daφ

′
a(qsa)

= (
1
2
ε− ε2)da′φ

′
a′(Qa′)− εk

8n
(1 + 2ε) + (

1
2
ε− ε2)

∑

a:a 6=a′
daφ

′
a(qsa)

≥ (
1
2
ε− ε2)da′φ

′
a′(Qa′)− εk

8n
(1 + 2ε)

=
ε

2
(1− 2ε)da′αa′e

αa′Qa′ − εk

8n
(1 + 2ε)

Set αa = ε
8nda

and Qa = 1
αa

ln(2k(1+2ε)
ε(1−2ε)). Substituting into the above gives

=
ε

2
(1− 2ε)da′

ε

8nda

2k(1 + 2ε)
ε(1− 2ε)

− εk

8n
(1 + 2ε)

= 0

Otherwise, qsa < Qa ∀a. Then all overflow buffers are empty and overflow buffer potentials
are zero. Therefore total potential for each commodity a is at most 2mφa(Qa) since the
queue heights are at most Qa which follows from Phase 2 and the convexity of the potential
function.

The lemma then follows by induction on the algorithm. The statement of the lemma
holds initially since (1 + ε)da ≤ Qa. Assume the lemma statement holds for the previous
iteration. Either for some a, qsa = Qa or ∀a, qsa < Qa. In the first case we showed that
potentials do not increase so statement is true in the current iteration by the inductive
hypothesis. In the second case we showed the statement of lemma is true for the current
iteration.

2

36-162

ORIE 633 Network Flows April 26, 2004

Lecture 37

Lecturer: David P. Williamson Scribe: Sumit Kunnumkal

37.1 Multicommodity flow

37.1.1 A dynamic, local control algorithm (cont.)

In this lecture, we complete the analysis of the dynamic local control algorithm.

Dynamic local control algorithm

Phase 1: Add (1 + ε)da units of flow to buffers ba. Move as much flow as possible
to the source queue qa.

Phase 2: For each edge, move flow across edge to minimize queue potentials.
Phase 3: Zero out flow at sinks.
Phase 4: Balance queues at nodes.

Recall that the queue height at the source is bounded by Qa. We defined the potential
of a queue, Φa(x) = eαax and the potential of the overflow buffer, σa(x) = xΦ′a(Qa). In the
above expressions, x is the units of flow of the commodity and αa is a predefined constant.
We also assumed that there was only one edge coming out of source sa and one edge going
into sink ta. Last time we proved the following lemma:

Lemma 37.1 The total potential ≤ 2m
∑

a Φa(Qa).

Using this lemma, we obtain a bound on the potential of the overflow buffer and hence
the bound the height of the overflow buffer. We then bound the total amount of a commodity
present in the system. Finally, we use this bound along with the fact that at every iteration
(1 + ε)da units is put into the system to prove the theorem of Awerbuch and Leighton ’94.

The potential of the overflow buffer is lower than the total potential of the system. So,

σ(ba) ≤ 2m
∑

a′
Φa′(Qa′),

i.e.,
baαae

αaQa ≤ 2m
∑

a′
eαa′Qa′ .

Noting that αa = ε
8nda

and Qa = 1
αa

ln(2k(1+2ε)
ε(1−2ε)), we have that eαa′Qa′ is the same for all

a′. Thus the height of the overflow buffer ba ≤ 2mk
αa

. Since all intermediate queues for

37-163

commodity q are at most Qa, we can now bound the total amount of commodity a in the
system at any given time.

Total amount of commodity a in system ≤ ba + 2mQa

≤ 2mk

αa
+

2m

αa
ln

(
2k(1 + 2ε)
ε(1− 2ε)

)

= O

(
danm(k + ln(k/ε))

ε

)
.

Note that in the first inequality, the term 2mQa comes from there being two queues for
a commodity at each edge and the amount in each being bounded by Qa.

Since (1 + ε)da units of commodity is put into the system at every iteration, the above

bound implies that after R = O(nm(k+ln(k/ε))
ε2

) iterations, only ε/(1 + ε) of total flow put
into the network is still in the network. Therefore, over R rounds, daR units of flow made
it from sa to ta. Averaging over R rounds, we get a flow fa such that |fa| = da. This
completes the proof of the theorem of Awerbuch and Leighton. We return to the proofs of
two lemmas we had stated last time.

Lemma 37.2 The potential increase in Phase 1 ≤ (1 + ε)daΦ
′
a(qsa) per commodity a.

Proof: Let q be the initial height of the source queue, b the initial height of the overflow
buffer, and qsa the final height of the source queue for commodity a.

We will use the fact that for all x and δ ≥ 0,

φ(x + δ) ≤ φ(x) + δφ′(x + δ).

If q + b + (1 + ε)da ≤ Qa, then the potential increase is

φa(q + b + (1 + ε)da)− φa(q)− σa(b)
≤ (b + (1 + ε)da)φ′a(q + b + (1 + ε)da)− bφ′a(Qa)
≤ (1 + ε)daφ

′
a(qsa),

where the first inequality follows by the fact above and the definition of σa.

If q + b + (1 + ε)da > Qa, then the potential increase is

φa(Qa) + σa(q + b + (1 + ε)da −Qa)− φa(q)− σa(b)
≤ (Qa − q)φ′a(Qa) + (q + (1 + ε)da −Qa)φ′a(Qa)
= (1 + ε)daφ

′
a(Qa)

= (1 + ε)daφ
′
a(qsa),

where again the first inequality follows by the fact above and the definition of σa. 2

Lemma 37.3 The potential decrease in Phases 2 and 3 is at least (1+ 3ε
2 −ε2)

∑
a daΦ′a(qsa)−

εk(1+2ε)
8n .

37-164

Proof: We use the fact that there exists a flow g with |ga| = (1+3ε)da to get a potential
decrease of at least X. Since we minimize the potentials, the decrease will be at least X.

Consider moving δ units of flow across (i, j) with t units at i and h units at j. The
potential decrease = Φa(t)− Φa(t− δ) + Φa(h)− Φa(h + δ). Using the fact that ∀x, δ ≥ 0

Φ(x + δ)− Φ(x) ≥ δΦ′(x + δ)− δΦ′′(x + δ)

and
Φ(x + δ)− Φ(x) ≤ δΦ′(x) + δ2Φ′′(x + δ),

the decrease in potential on moving δ units along an arc is at least δΦ′a(t) − δ2Φ′′a(t) −
δΦ′a(h)− δ2Φ′′a(h + δ).

What if we move δ units on a path from sa to ta? The δφ′a terms drop out, and the sum
telescopes, since we rebalance the queues and the queue height of the head of an arc is equal
to the queue height of the tail of the next arc on the path. If q̂a is the maximum height
along the path, the decrease is at least δΦ′a(qsa)− δΦ′a(0)− 2nδ2Φ′′a(q̂a + δ). Note that the
second term in the above expression comes from the sink node where the flow zeroed out.

We know that there exists a flow g such that |ga| = (1 + 3ε)da. Let δa
i be flow of

commodity a along the ith path of g. Let q̂a
i be the max queue height on a path i for

commodity a. Then potential decrease is at least

∑
a

∑

i

δa
i

(
Φ′a(qsa)− Φ′(0)− 2nδa

i Φ′′a(q̂a
i + δa

i)
)

≥
∑

a

∑

i

δa
i

(
Φ′a(qsa)− Φ′(0)− 2n(1 + 2ε)daΦ′′a(q̂a

i + (1 + 2ε)da)
)

,

by substitution. For αa = ε
8nda

, we have that

2n(1 + 2ε)daΦ′′a(q̂a
i + (1 + 2ε)da) = 2n(1 + 2ε)daα

2
ae

αaq̂a
1 · eαa(1+2ε)da

=
(1 + 2ε)ε

4
Φ′(q̂a

i) · eαa(1+2ε)da

≤ ε

2
Φ′a(q̂a

i).

Plugging this into the inequality above, we have that the potential decrease is at least

∑
a

∑

i

δa
i

((
1− ε

2

)
Φ′a(qsa)− Φ′(0)

)

≥
∑

a

∑

i

δa
i

((
1− ε

2

)
Φ′a(qsa)− αa

)

=
∑

a

(1 + 2ε)da

((
1− ε

2

)
Φ′a(qsa)− αa

)

= (1 +
3
2
ε− ε2)

∑
a

daφ
′
a(qsa)−

εk(1 + 2ε)
8n

.

37-165

Since we can show that the potential can decrease by this much given the flow g, and
we maximize the potential decrease on each arc, the potential must decrease by at least this
much. 2

Note that this proof only uses that a flow exists at each iteration! It doesn’t even have
to be the same flow in each iteration. So if arcs disappear, reappear, change capacity, or
whatever, the algorithm will still work - as long as the required flow exists in each iteration.

37-166

ORIE 633 Network Flows April 28, 2004

Lecture 38

Lecturer: David P. Williamson Scribe: Retsef Levi

38.1 Unsplittable flow

From this class till the end of the semester we will start discussing several more advanced
and up to date topics regarding flows. In particular, we will discuss in the this lecture the
unsplittable flow problem. We start with a rigorous definition:

Unsplittable Flow Problem

• Input:

– Directed graph G = (V, A)

– Integer capacity uij ≥ 0 ∀(i, j) ∈ A

– Specified source-sink demand pairs in V , s1-t1, . . . ,sk-tk.

– Integer non-negative demands d1, . . . , dk each corresponding to the respective
source-sink pair.

• Goal: For each sa-ta (a = 1, . . . , k) find an sa-ta path Pa, such that for each (i, j) ∈ A,∑
a: (i,j)∈Pa

da ≤ uij

In this problem we need to send the demand of each source-sink pair on a single path
in a way that will respect the capacities on all arcs. This problem is related to another well
known problem, namely the the edge-disjoint paths problem on a graph. The edge-disjoint
paths problem is a special case of the unsplittable flow problem where all demands and all
arc capacities are equal 1.

One of the optimization variants of the problem is where sa = s for all a = 1, . . . , k and
in addition we have a cost cij ≥ 0 for each arc (i, j) ∈ A. The goal is as defined above, but
with objective of minimizing the cost.

38.1.1 NP-hardness

We now wish to show that the latter problem is NP-hard. We do that by a reduction from
the knapsack problem, which is known to be NP-hard.

38-167

Knapsack Problem:

• Input:

– A set of items I

– Size Si and a value Vi ≥ 0 for each item i ∈ I

– Knapsack size S

• Goal: Find a subset I ′ ⊆ I such that S(I ′) ≤ S and V (I ′) is maximized

Given an input for the knapsack problem, we construct the following instance of the
unsplittable flow problem with costs. We construct the following graph:

• A source s, an intermediate node s′, and a node i for each item i ∈ I, each with
demand di = Si.

• An arc (s, s′) with capacity S and cost 0. An arc (s, i) for each i ∈ I with infinite
capacity and cost Vi/Si. Finally have arc (s′, i) for each i ∈ I with cost 0 and infinite
capacity.

We now solve the constructed instance of the unsplittable flow problem with costs.
Clearly if we minimize the value of all items not taken in the knapsack, this is equivalent to
the knapsack problem defined above. It is readily seen that any solution to the unsplittable
flow problem corresponds to a solution to the knapsack problem with the same cost. All
demands satisfied through the arc (s, s′) (s− s′ − i path) correspond to items taken in the
knapsack (hence they incur no cost). On the other hand each demand i satisfied through an
(s, i) arc, corresponds to an item not taken, and incurs a cost of SiVi/Si = Vi. Conversely,
any solution to the knapsack problem induces a solution to the flow problem with the same
cost (again use s− s′− i to satisfy all demands that correspond to items taken in knapsack,
and satisfy all other demands using the (s, i) arcs). Thus the two problems are equivalent,
and so if there exists a poly-time algorithm to solve the unsplittable flow problem with
costs, there exists a poly-time algorithm to solve the knapsack problem, which is unlikely
unless P = NP .

38.1.2 Decision version

We now consider a decision variant of the former problem in which we wish to answer the
question of whether there exists an unsplittable flow of cost ≤ B. Naturally, this is an
NP-complete problem. So it is natural to talk on approximation algorithms of some sort.

Observe that we already know that the splittable flow problem is solvable in poly-time,
and even more important, the optimal solution has an integrality property. Here we use the
term splittable flow to refer to the problem, when we do not force the flow of any source-sink

38-168

pair to be shipped on a single path. This is equivalent to the term fractional that was used
in class.

Having this in mind we can think about the following relaxed procedure. First we try to
find an optimal splittable flow. Now clearly if the optimal splittable flow is of cost > B, we
know that the answer to the above decision problem is no. Suppose now that the optimal
splittable flow is of cost ≤ B. We then wish to find an approximated unsplittable flow.
Here the notion of approximation can refer to two aspects:

• Finding an unsplittable flow, where the capacity constraint of each arc (i, j) is not
violated by more that a factor of α (α > 1). Naturally, our goal would be to make α
as small as possible.

• Instead of sending the flow in one time, we send it in rounds, where in each round we
respect the capacities on all arcs (e.g, in first round we satisfy demands 2,5,9, then in
second round demands 1,3,4 and then in third round demands 6,7,8, etc). Here, we
wish to minimize the number of rounds.

38.1.3 An algorithm

Along the lines described above, we will present an algorithm due to Skutella. The following
theorem describes the performance guarantees of the algorithm (proof will be shown in next
lecture).

From now on we will assume that maxa da ≤ min(i,j)∈A uij .

Theorem 38.1 (Skutella 2000). Assume there exists a splittable flow of cost ≤ B. Then in
poly-time one can find an unsplittable flow such that one of the following holds:

(i) The flow over any arc (i, j) ∈ A is ≤ 3uij .

(ii) The flow can be sent in at most 8 rounds.

The key idea underlying the theorem is to increase capacities and re-route the splittable
flows, which can again assumed to have the integrality property. Moreover, observe that if
da = d and all capacities are multiples of d, then the unsplittable flow problem is reduced
to the regular min-cost flow problem (we can scale capacities and measure them as multiple
of d and scale all demands to be 1).

Having this in mind, we will first describe an algorithm for a special case. Let dmin :=
mina da, dmax := maxa da and umin := min(i,j)∈A uij . Now assume that for each a = 1, . . . , k
da := dmin2q for some q ∈ N .

38-169

Algorithm

q ← 0
Compute splittable flow f0

while dmin2q ≤ dmax

q ← q + 1, δq ← 2qdmin

Set uq
ij to f q

ij rounded up to a multiple of δq

Compute δq integral flow f q with cost(f q) ≤ cost(f q−1)
A ← A \ {(i, j) : f q

ij = 0}
For all a : da = δq

Find any s− ta path Pa

f q
ij ← f q

ij − da for each (i, j) ∈ Pa

A ← A \ {(i, j) : f q
ij = 0}

Observe that in each iteration δq is the new unit of measure. Also observe that in each
iteration k the previous flow fk−1 is still feasible.

In next class we will show that the above algorithm finds an unsplittable flow such that
the flow on each arc is ≤ uij + dmax. We will also show how to use rounding to exploit this
algorithm in solving the general problem.

38-170

ORIE 633 Network Flows April 30, 2004

Lecture 39

Lecturer: David P. Williamson Scribe: Yankun Wang

39.1 Unsplittable flow

Let’s recall the algorithm given in last class:

Unsplittable Flows, Skutella 2002

q ←0
Compute min-cost fractional flow f◦

while dmin · 2q ≤ dmax

q ← q + 1; δq ← dmin · 2q

Set uq
ij to f q−1

ij rounded up to the nearest multiple of δq

Compute δq -integral flow f q s.t. cost(f q) ≤ cost(f q−1)
A ← A− {(i, j) : fij = 0}
For all a : da = δq

Find any path Pa from s to ta
f q

ij = f q
ij − δq ∀(i, j) ∈ Pa

A ← A− {(i, j) : f q
ij = 0}

Return P1, · · · , Pk

Last class we talked about a single source case: There is one source node, say s, and k
sink nodes, say t1, · · · , tk, with respective demands, d1, · · · , dk.

We observed that if there is no fractional flow, then there is no way that we can find an
unsplittable flow.

Theorem 39.1 (Skutella 2002) Assume fractional flow exists, and that dmax ≤ umin. Then we
can find an unsplittable flow of cost no more than the fractional flow using capacity 3uij ,∀(i, j) ∈
A

In order to prove this theorem, let’s start from an easy case. Assume da = dmin2q, q ∈
N, ∀a, then the above algorithm exactly does this for us.

Theorem 39.2 The algorithm finds an unsplittable flow using capacity uij + dmax of cost no
more than the fractional flow f0.

Proof: We prove this by induction on the algorithm. Let’s consider total flow using
arc(i, j) at the end of the qth iteration, which is given by the current flow value f q

ij plus

39-171

the demands da of commodities a that have been routed across edge (i, j). The total flow
is thus bounded by:

f q
ij +

∑

a:da≤δa
(i,j)∈Pa

da = f q
ij +

∑

a:da=δa
(i,j)∈Pa

da +
∑

a:da<δa
(i,j)∈Pa

da ≤ uq
ij +

∑

a:da<δa
(i,j)∈Pa

da

Notice that uq
ij is f q−1

ij rounded up to a multiple of dmin2q and f q−1
ij is a multiple of

dmin2q−1. As a result,

uq
ij ≤ f q−1

ij + dmin2q−1 = f q−1
ij + dmin2q − dmin2q−1

So flow on (i, j) at the end of qth iteration is

f q
ij +

∑

a:da≤δa
(i,j)∈Pa

da ≤ f q−1
ij + dmin2q − dmin2q−1 +

∑

a:da<δa
(i,j)∈Pa

da

Applying this inequality iteratively, we get that the flow on (i, j) at the end of the
algorithm is bounded by f0

ij + dmax − dmin, thus also bounded by uij + dmax − dmin.

How about the cost? It’s easy to see that the total cost is bounded by the cost of the
initial flow f0

ij by the construction of the algorithm. 2

Corollary 39.3 For any (i, j), the sum of all demands but one using arc(i, j) is bounded by
f0

ij − dmin.

Proof: Let’s look at the above proof of the theorem 2. If the biggest demand on (i, j)
is routed in qth iteration, then the flow on (i, j) ≤ f0

ij + dmin2q − dmin.

2

So we have shown that in this special case, we can get an unsplittable flow from a
fractional flow. But how about the general case?

One idea: Round demands up to have the form dmin2q, thus no demand increases by
more than a factor of 2. We can prove that in this case the capacity needed on each edge
is bounded by 3uij . But the problem with this is that costs might increase by a factor of 2.

Next idea: Round demands down to have the form: dmin2q. Suppose d̂a = (da rounded down).

General Algorithm

Find fractional flow f0 for demands da

Get fractional flow f̂0 for demands d̂a by removing
da − d̂a flow from the most expensive s-ta paths in f0 (via flow decomposition)

Apply previous algorithm to flow f̂0

Send da units of flow on path Pa found by the algorithm

39-172

Theorem 39.4 The above algorithm returns an unsplittable flow of cost no more than the
fractional flow using capacity ≤ 3uij .

Proof: By previous theorem we know that

∑
a

d̂ac(Pa) ≤ c(f̂0) (39.1)

Since there was flow on Pa in f̂0 after the most expensive s-ta path removed, we get
that

∑
a

(da − d̂a)c(Pa) ≤ c(f0)− c(f̂0) (39.2)

Add (39.1) and (39.2) together, we get

∑
a

dac(Pa) ≤ c(f0) (39.3)

Let a0 be the largest demand commodity using (i, j). Then by the Corollary 39.3, we
know that

∑

a:(i,j)∈Pa

da ≤ da0 + 2
∑

a 6=a0

(i,j)∈Pa

d̂a ≤ da0 + 2f̂0
ij ≤ da0 + 2uij ≤ 3uij

2

Research Question: Can we use capacity bounded by 2uij to have un unsplittable flow
without incurring greater cost? A special case of the generalized assignment problem con-
sidered by Shmoys and Tardos in 1993 gives us a positive answer. Also, for the version
without costs, Dinitz, Garg, Goemans (’99) have designed an algorithm which uses capaci-
ties no more than 2uij .

39-173

ORIE 633 Network Flows May 3, 2004

Lecture 40

Lecturer: David P. Williamson Scribe: Xin Qi

In this lecture, we will start discussing the problem “Flows over Time”, aka “Dynamic
Flows”. However, we think the former name is a more favorable one. Typically, “dynamic”
means “network changing with time”, but here, we are considering the case that flow changes
over time, and network stays the same.

40.1 Flows over time

40.1.1 Maximum s-t flow problem over time

A typical problem to consider is Maximum s-t Flow Problem over Time (aka Maximum
Dynamic Flow Problem).

Maximum s-t Flow Problem over Time

• Input:

– Directed graph G = (V,A)

– Integer capacities uij ≥ 0 (∀(i, j) ∈ A)

– Source s and sink t

– Integer transit time τij (∀(i, j) ∈ A)

– Integer time bound T

• Goal: Find maximum amount of flow sent from s arriving at t by time T .

Compared to the ordinary maxflow problem, this problem is sort of more realistic. We
are trying to model highways or networks or something that requires some time to traverse
an arc.

Let us clarify some ideas in this model:

• Transit times τij :

We can imagine that when flow enters arc (i, j) at node i at time τ , it will arrive at
j at time τ + τij .

• Capacities cij :

There are two possible explanation of the capacity of an arc (i, j):

40-174

– Total flow using arc (i, j) at any time is bounded by uij .

– This is what we are going to use: uij bounds the rate of flow entering (i, j), i.e.
no more than uij units per time unit [τ, τ + 1).

Another problem that can be considered is “Quickest Flow”, i.e. given flow value V ,
find the smallest time T , s.t. we can ship V flow in time T . In fact, with either one solved,
we can solve the other problem by binary search.

40.1.2 Time-expanded network

There is one idea to solve the flow problem, however, it is not polynomial time. First, let
us take a look at a simple example as shown below. There are three nodes s, v, t, and three
arcs. The transit times are marked beside the corresponding arcs.

s

v

t

0

1

2

We will make T + 1 copies v(0), v(1), . . . , v(T) of every vertex v. For any original arc
(i, j), we have arcs (i(τ), j(τ + τij)) in the time-expanded network. We will also allow flow
to stay at nodes, by adding “hold over” arcs (marked as straight lines) between consecutive
copies of a node with capacities ∞.

s

v

t

t
i
m
e

0

1

2

3

40-175

We can solve the Maximum s-t Flow Problem over Time by computing maximum s(0)-
t(T) flow in time-expanded network. Since the constructed network has size proportional
to T , it will be only a pseudo-polynomial time algorithm.

We will need some other idea to get a polynomial-time algorithm.

40.1.3 Temporally repeated flow

Suppose we have an s-t path P s.t. τ(P) ≡ ∑
(i,j)∈P τij ≤ T . If u = min(i,j)∈P uij , then we

can send u units of flow along path P at time 0, 1, . . . , T − τ(P).

Definition 40.1 Such a flow over time is called a temporally repeated flow.

Lemma 40.1 Given standard s-t flow f , decomposition of f into s − t paths P1, P2, . . . , Pl,
with Pk sending δk units of flow s.t. τ(Pk) ≤ T ∀k, then the value of flow over time by
temporally repeating these paths is

(T + 1)|f | −
∑

(i,j)∈A

τijfij

Proof: First, we need to show that the temporally repeated flow is a valid flow over
time. We check the capacity constraint: at any time τ , flow entering (i, j) is no more than

∑

k:(i,j)∈Pk

δk = fij ≤ uij

Hence, the capacity constraints are respected.

Second, we are going to compute the total flow. For each path Pk, it sends δk units of
flow for T + 1− τ(Pk) time units. Therefore the total amount of flow sent is

∑

k

δk(T + 1− τ(Pk)) =
∑

k

(T + 1)δk −
∑

k

δkτ(Pk)

= (T + 1)|f | −
∑

k

δk

∑

(i,j)∈Pk

τij

= (T + 1)|f | −
∑

(i,j)∈A

τij

∑

k:(i,j)∈Pk

δk

= (T + 1)|f | −
∑

(i,j)∈A

τijfij

2

Now we want to maximize the temporally repeated flow, which can be solved by a min-
cost circulation problem. We will treat τij as the cost of arc (i, j), and add an arc from
t to s with cost −(T + 1), as shown in the above figure. Then we can find the min-cost
circulation in that graph by canceling negative cost cycles, and this will exactly satisfy all
the requirements:

40-176

• Any negative cost cycle uses arc (t, s).

• The s− t part of any negative cost cycle has cost ≤ T .

So we have a polynomial time algorithm to compute the optimal temporally repeated
flow; however, it is not clear until now why this will be useful. Next time, we will prove the
following theorem:

Theorem 40.2 (Ford, Fulkerson ’62) The value of the maximum s-t flow over time equals the
value of the maximum temporally repeated flow.

40-177

ORIE 633 Network Flows May 5, 2004

Lecture 41

Lecturer: David P. Williamson Scribe: David P. Williamson

41.1 Flows over time

41.1.1 Maximum s-t flow problem over time (cont.)

In this lecture, we will complete the proof of the theorem we stated last time.

Theorem 41.1 (Ford, Fulkerson ’62) The value of the maximum s-t flow over time equals the
value of the maximum temporally repeated flow.

Proof: Although we argued last time that we could not get a polynomial-time algorithm
by using the time-expanded network, we can use it in the proof to show our result. We will
argue that the minimum s(0)-t(T) cut in the time-expanded network has the same value as
the maximum temporally repeated flow. This will prove the theorem.

We found the maximum temporally repeated flow by finding a minimum-cost circulation
in the network in which the cost of each arc (i, j) was set to the transit time τij , and
we added an arc from t to s of cost −(T + 1). This found an s-t flow f minimizing∑

(i,j)∈A fijτij−(T +1)|f |, which maximized the value of the associated temporally repeated
flow. Recall from our discussion of minimum-cost circulations that f is a min-cost circulation
iff there exist potentials p such that cp

ij ≡ τij + pi− pj ≥ 0 for all (i, j) ∈ Af . Also if cp
ij > 0

then fij = `ij = 0, and if cp
ij < 0 then fij = uij . So we know that the cost of the circulation

is ∑

(i,j)∈A

cijfij =
∑

(i,j)∈A

cp
ijfij =

∑

cp
ij<0

cp
ijuij ,

which is equal to the value
∑

(i,j)∈A fijτij − (T + 1)|f |.
We assume |f | 6= 0. We will consider a cut S in the time-expanded network with

S = {i(θ) : pi− ps ≤ θ}. Note that s(0) ∈ S since ps− ps = 0. Furthermore, if |f | 6= 0, then
fts > 0, which implies that cp

ts = 0, which implies that pt − ps = −cts = T + 1. Therefore,
t(T) /∈ S, since pt − ps > T .

Note that any holdover arc (i(θ), i(θ + 1)) is not in the cut, since if i(θ) ∈ S then
i(θ + 1) ∈ S.

41-178

Now we compute the capacity of the cut. An arc (i(θ), j(θ + τij)) is in the cut for all θ
such that pi − ps ≤ theta and pj − ps > θ + τij . Then the capacity of the cut is

∑

(i,j)∈A

uij ·max(0, pj − ps − (pi − ps)− τij) =
∑

(i,j)∈A

uij ·max(0, pj − pi − τij)

=
∑

(i,j)∈A

uij ·max(0,−cp
ij)

= −
∑

(i,j)∈A:cp
ij<0

uijc
p
ij

= (T + 1)|f | −
∑

(i,j)∈A

τijfij ,

where the last inequality follows by previous discussion, and is equal to the value of the
temporally repeated flow. 2

In the area of flows over time, the quickest transshipment problem is known to be
in polynomial time, but needs fairly complicated subroutines. The quickest minimum-
cost flow problem is NP-hard, as is the quickest multicommodity flow problem. Work on
approximation algorithms for these problems has been done. A natural variant of this
problem is to suppose that the transit time τij is a function of the flow on the arc fij , and
there has been some preliminary work on this.

41-179

