
RJ 10296 (Log# A0306-022) (06/25/2003)
Computer Science/Mathematics

IBM Research Report

Lecture Notes on Advanced Algorithms

Spring 2003

David P. Williamson

IBM Research Division
Almaden Research Center
650 Harry Rd.
San Jose, CA 95120-6099

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publi-
cation. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright
to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the arti-
cle (e.g., payment of royalties). Some reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.
Copies may be requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598 or
send email to reports@us.ibm.com.

IBM

Research Division

Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



This page intentionally left blank.



Lecture Notes on Advanced Algorithms

David P. Williamson

Spring 2003



2



Contents

Preface 7

Lecture 1 9

1.1 Course overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 An introduction to linear programming . . . . . . . . . . . . . . . . . 9

1.2.1 The geometry of LP . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 The Simplex algorithm . . . . . . . . . . . . . . . . . . . . . . 14

Lecture 2 16

2.1 An introduction to linear programming (cont.) . . . . . . . . . . . . . 16

2.1.1 The Simplex algorithm (cont.) . . . . . . . . . . . . . . . . . . 16

2.1.2 LP duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The minimum cut problem . . . . . . . . . . . . . . . . . . . . . . . . 21

Lecture 3 23

3.1 Minimum cuts and maximum flows . . . . . . . . . . . . . . . . . . . 23

3.1.1 Minimum cut via MA orderings . . . . . . . . . . . . . . . . . 25

Lecture 4 29

4.1 Minimum cuts and maximum flows (cont.) . . . . . . . . . . . . . . . 29

4.1.1 MA orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Residual graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.3 A maximum s-t flow algorithm via MA orderings . . . . . . . 31

3



Lecture 5 34

5.1 Minimum-cost circulations . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Finding an initial solution . . . . . . . . . . . . . . . . . . . . 35

5.1.2 Residual graph . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.3 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.4 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . 36

Lecture 6 38

6.1 Minimum-cost circulations (cont.) . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Some applications . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.2 Optimality conditions (another proof) . . . . . . . . . . . . . 39

6.1.3 Klein’s cycle cancelling algorithm . . . . . . . . . . . . . . . . 40

6.1.4 Goldberg-Tarjan min-mean cycle cancelling . . . . . . . . . . . 40

Lecture 7 43

7.1 Minimum-cost circulations (cont.) . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Goldberg-Tarjan min-mean cycle cancelling (cont.) . . . . . . 43

7.1.2 A strongly polynomial time analysis . . . . . . . . . . . . . . . 45

Lecture 8 48

8.1 The primal-dual method . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.1.2 A minimum-cost circulation algorithm . . . . . . . . . . . . . 48

8.1.3 The hitting set problem . . . . . . . . . . . . . . . . . . . . . 51

Lecture 9 54

9.1 The primal-dual method (cont.) . . . . . . . . . . . . . . . . . . . . . 54

9.1.1 The feedback vertex set problem . . . . . . . . . . . . . . . . . 54

9.1.2 Shortest s-t path . . . . . . . . . . . . . . . . . . . . . . . . . 57

Lecture 10 60

10.1 The primal-dual method (cont.) . . . . . . . . . . . . . . . . . . . . . 60

10.1.1 Generalized Steiner trees . . . . . . . . . . . . . . . . . . . . . 60

4



Lecture 11 64

11.1 Generalized flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.1.2 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . 67

Lecture 12 70

12.1 Generalized flows (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . 70

12.1.1 Truemper’s algorithm for generalized flow . . . . . . . . . . . 70

12.1.2 Gain scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

12.1.3 Error scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Lecture 13 75

13.1 Multicommodity flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

13.1.1 A linear programming formulation . . . . . . . . . . . . . . . 75

13.1.2 An approximation algorithm . . . . . . . . . . . . . . . . . . . 76

Lecture 14 81

14.1 Market equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

14.1.1 Characterizing market clearance using flow . . . . . . . . . . . 82

14.1.2 An algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Lecture 15 87

15.1 Market equilibria (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . 87

15.1.1 Running time analysis . . . . . . . . . . . . . . . . . . . . . . 88

15.1.2 A polynomial time analysis . . . . . . . . . . . . . . . . . . . 90

15.1.3 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Lecture 16 92

16.1 Interior-point methods for linear programming . . . . . . . . . . . . . 92

16.1.1 Newton steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

16.1.2 The central path . . . . . . . . . . . . . . . . . . . . . . . . . 96

16.1.3 Types of interior-point algorithms . . . . . . . . . . . . . . . . 99

16.1.4 A predictor-corrector algorithm . . . . . . . . . . . . . . . . . 100

5



Lecture 17 102

17.1 Interior-point methods (cont.) . . . . . . . . . . . . . . . . . . . . . . 102

17.1.1 The complexity of the predictor-corrector algorithm . . . . . . 103

17.2 A flavor of the ellipsoid method . . . . . . . . . . . . . . . . . . . . . 105

6



Preface

The contents of this book are lecture notes from a class taught in the Computer
Science Department of Stanford University during the Spring 2003 quarter (CS 361B,
Advanced Algorithms). The notes were created via the “scribe” system: each lecture
one student was appointed as the scribe for that lecture, and was responsible for
turning their notes into a LATEX document. I then edited the notes, and made copies
for the entire class. The students in the class who served as scribes were Zoë Abrams,
Abhishek Bapna, Sanders Chong, Chuong Do, Mihaela Enăchescu, Vivek Farias,
Charles-Henri Gros, Krishnaram Kenthapadi, Damon Mosk-Aoyama, Shubha Nabar,
Sanatan Rai, Paat Rusmevichientong, Dilys Thomas, Sergei Vassilvitskii, Fang Wei,
and Jiawei Zhang. Any errors which remain (or were there to begin with!) are, of
course, entirely my responsibility.

The lectures were drawn from a variety of sources. Lectures 1 and 2 on linear
programming, and Lectures 5-7 on minimum-cost circulations were drawn primarily
from Michel Goemans’ lecture notes on advanced algorithms. The max flow algorithm
in Lecture 4 is from

• Satoru Fujishige, “A maximum flow algorithm using MA ordering,” to appear
in Operations Research Letters.

The lectures on generalized flow in Lectures 11 and 12 were mostly drawn from

• Éva Tardos and Kevin Wayne, “Simple generalized maximum flow algorithms,”
in Integer Programming and Combinatorial Optimization, Lecture Notes in
Computer Science, vol. 1412, pp. 310–324, Springer, 1998.

• Kevin Wayne, Generalized Maximum Flow Algorithms, Ph.D. dissertation, Cor-
nell University, 1999.

Lecture 13 on multicommodity flow was drawn from the two papers

• Naveen Garg and Jochen Könemann, “Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems.” In the Proceedings of

the 39th Annual IEEE Computer Society Conference on Foundations of Com-

puter Science, 1998.

• Lisa Fleischer, “Approximating fractional multicommodity flows independent
of the number of commodities,” SIAM J. Discrete Math. 13:505-520, 2000.

Lectures 14 and 15 on market equilibria was drawn from slides of Vijay Vazirani and

• Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazi-
rani, “Market equilibrium via a primal-dual-type algorithm.” In the Proceed-

ings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
389–395, 2002.

7



Lectures 16 and 17 on interior-point methods were drawn primarily from the book

• Stephen J. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.

David P. Williamson
San Jose, CA
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CS 361B Advanced Algorithms April 1, 2003

Lecture 1

Lecturer: David P. Williamson Scribe: Jiawei Zhang

1.1 Course overview

The course will cover algorithms for problems in combinatorial optimization. Com-
binatorial optimization is used fundamentally in making decisions that have discrete
choices: should we build a facility here or there? Which person should be assigned
this task? Which facility should service this client? What paths should be used for
transporting these goods?

In this class we will focus on several things:

• Efficient algorithms in combinatorial optimization. That is, algorithms
that run in polynomial time. Many problems in combinatorial optimization
are NP-hard and thus not solvable in polynomial time (at least, not to our
knowledge). However, many problems are solvable in polynomial time. We will
look mostly at these problems and algorithms, and a little at efficient algorithms
for approximating NP-hard problems.

• Central role of linear programming and duality. LP is one of the funda-
mental tools in combinatorial algorithms and in thinking about these problems –
both in modelling the problems and algorithms for them. We will focus heavily
on LP – its structure, use, and a little on algorithms for its solution.

• Problems/algorithms that are either a fundamental piece of back-
ground, a useful technique for solving other problems, or an interest-
ing open research direction.

1.2 An introduction to linear programming

A linear programming (LP) problem is an optimization problem that maximizes or
minimizes a linear objective function of the decision variables x1, x2, · · · , xn, subject
to some linear constraints on xj’s. The standard form of an LP problem is the
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following:

min

n∑

j=1

cjxj (objective function)

s.t.
n∑

j=1

aijxj = bi i = 1, 2, · · · , m (constraints)

xj ≥ 0 j = 1, 2, · · · , n (nonnegativity constraints)

where cj, aij, bi are given for i = 1, 2, · · · , m and j = 1, 2, · · · , n. In the mathematical
programming literature, it is often expressed using matrices:

min cTx

s.t. Ax = b

x ≥ 0

where

x =




x1
...
xn


 ∈ ℜn×1, b =




b1
...
bm


 ∈ ℜm×1, c =




c1
...
cn


 ∈ ℜn×1,

and

A =




a11 · · · a1n
...

...
...

am1 · · · amn


 ∈ ℜm×n.

Definition 1.1 If x satisfies constraints Ax = b and x ≥ 0, then x is feasible.

Definition 1.2 An LP is feasible if there exists a feasible x; otherwise the LP is infeasible.

Definition 1.3 x∗ is an optimal solution if x∗ is feasible and

cTx∗ = min{cTx : Ax = b, x ≥ 0}.

Definition 1.4 An LP is unbounded if there exists d ∈ ℜ, such that for any z ≤ d,
there exists a feasible x such that cT x ≤ z.

It is simple to transform a linear program in general form to standard form. Two
forms are equivalent in the same sense that they have the same set of optimal solutions
or both are unbounded or infeasible.

1. A maximization problem is equivalent to a minimization problem:

max cT x⇔ min − cTx

10



2. An equality constraint can be represented by a pair of inequality constraints:

aT
i x = bi ⇔ aT

i x ≥ bi and aT
i x ≤ bi

3. An inequality constraint can be represented by an equality constraint by adding
a slack variable:

aT
i x ≤ bi ⇔ aT

i x + si = bi, si ≥ 0

4. If a variable xj is unrestricted, we can replace it with x+
j − x−

j and add non-
negativity constraints x+

j ≥ 0, x−
j ≥ 0.

The canonical form of an LP is the following:

min cT x

s.t. Ax ≥ b

Consider the following linear program in the canonical form

min x2

s.t. x1 ≥ 2

3x1 − x2 ≥ 0

x1 + x2 ≥ 6

−x1 + 2x2 ≥ 0

The optimal solution is x∗ =

(
4
2

)
and the optimal value is 2 (see Figure 1.2).

Notice that the optimal solution is obtained at a ‘corner’ of the feasible region. This
is true in general if the LP is bounded. A formal statement will be presented in the
next section.

If the first constraint x1 ≥ 2 is replaced by x1 ≤ 2 and the constraint −x1+2x2 ≥ 0
replaced by −x1+2x2 ≤ 0, the problem is infeasible. If the original problem is a max-
imization problem rather than a minimization problem, the problem is unbounded.

1.2.1 The geometry of LP

Let P = {x : Ax = b, x ≥ 0}.

Definition 1.5 x ∈ P is a vertex of P if ∀y 6= 0, either x + y /∈ P or x− y /∈ P .

Theorem 1.1 If min{cTx : x ∈ P} is finite, then ∀x ∈ P , there exists a vertex x′ such
that cTx′ ≤ cT x.
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(4,2) 

  

x1=2 

3x1−x2=0 

x1+x2=6 

−x1+2x2=0 

x1 

x2 

Figure 1.1: The feasible region of an linear program.

Proof: If x is a vertex, then let x′ = x and we are done. Otherwise, ∃y 6= 0 such
that x + y ∈ P and x− y ∈ P . It follows that Ay = 0 since A(x + y) = b = A(x− y).
We can assume that cTy ≤ 0 (WLOG). For λ > 0, consider x + λy. By assumption,

cT (x + λ) = cTx + λcT y ≤ cTx.

Case 1. ∃j such that yj < 0. (This case is true, WLOG, if cTy = 0.)

Choose
λ = min

j:yj<0

xj

−yj
=

xk

−yk
.

It is clear that λ > 0. Furthermore, x+λy ≥ 0 and A(x+λy) = Ax+λAy = Ax = b.
This implies that x + λy ∈ P and (x + λy)k = 0. Replace x with x + λy and repeat
the process. This process will terminate since x + λy has one more zero component
than x.

Case 2. yj ≥ 0 for all j. This implies that cTy < 0. In this case, x + λy ≥ 0 for
all λ > 0 since x ≥ 0 and y ≥ 0. Moreover, A(x + λy) = Ax + λAy = Ax = b. Thus
x + λy ∈ P . But cT (x + λy) = cT x + λcT y → −∞ as λ→∞, which implies that the
LP is unbounded, a contradiction. ✷

Corollary 1.2 If min{cT x : x ∈ P} is finite, there is an optimal solution x∗ that is a
vertex.

Theorem 1.3 Let P = {x : Ax = b, x ≥ 0}. For x ∈ P , let Ax be the submatrix of
A with columns j such that xj > 0. Then x is a vertex if and only if Ax has linearly
independent columns.
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For example, if

A =




2 1 3 0
7 3 2 1
0 0 0 5


 , x =




2
0
1
0


 ,

then

Ax =




2 3
7 2
0 0



 ,

whose columns are linearly independent. Therefore, x is a vertex.

Proof:

⇐) If x is not a vertex, then ∃y 6= 0, such that x + y ∈ P and x− y ∈ P . Again,
it implies that Ay = 0. Thus Ay must have dependent columns since y 6= 0. On the
other hand, x + y ∈ P and x− y ∈ P together imply that if xj = 0 then yj = 0 since
x + y ≥ 0 and x− y ≥ 0. It follows that Ay must be a submatrix of Ax. Therefore,
Ax has dependent columns.

⇒) If Ax has linearly dependent columns, then ∃y′ 6= 0 such that Axy
′ = 0. Let

y ∈ ℜn with components yj = y′
j when xj > 0, and yj = 0 otherwise. Then Ay = 0.

Pick λ > 0 such that |λyj| < xj for any j such that xj > 0. Set y′′ = λy. Then
Ay′′ = λAy = 0, x + y′′ ≥ 0 and x − y′′ ≥ 0, and thus x + y′′ ∈ P , x − y′′ ∈ P . By
definition, x is not a vertex. This completes the proof. ✷

Let B ⊆ {1, 2, · · · , n}. Let AB be the submatrix of A that has colunms corre-
sponding to the indices in B. We assume that A ∈ ℜm×n, m ≤ n and rank(A)= m.

Definition 1.6 If |B| = m and AB has linearly independent columns, then B is a basis.

Let N = {1, 2, · · · , n} − B. xB and xN denote the components of x selected by B
and N respectively.

Definition 1.7 Variable xj s.t. j ∈ B is called a basic variable; Variable xj s.t. j ∈ N
is called a non-basic variable.

Suppose that xN = 0; then xB = A−1
B b (since if B is a basis, then AB is invertible).

It is not necessarily true that A−1
B b ≥ 0. But if it is the case, i.e., xB ≥ 0, then x ∈ P .

Definition 1.8 x is a basic feasible solution if xN = 0 and xB = A−1
B b ≥ 0.

Theorem 1.4 There exists a basis B such that x is a basic feasible solution if and only
if x is a vertex.
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Proof:

⇐) If x is a vertex, set B = {j : xj > 0}. By Theorem 1.3, AB has linearly
independent columns.

If |B| = m, then we are done. If |B| < m, then we can add columns of A to AB

such that AB has linearly independent columns and |B| = m (This can be done since
the rank of A is m.)

⇒) If x is a basic feasible solution with respect to some basis B, then AB has
linearly independent columns, and xj = 0 for j /∈ B. By definition, x is a vertex. ✷

Corollary 1.5 If min{cT x : Ax = b, x ≥ 0} is finite, then ∃B such that xB =
A−1

B b, xN = 0 is optimal.

1.2.2 The Simplex algorithm

The simplex algorithm tries to find an optimal solution from basic feasible solutions
or vertices. The idea is to start from a basis and check if objective value can be
improved or not by moving to an adjacent basis.

Given a current basis B and the corresponding basic feasible solution x, consider

min cT
BxB + cT

NxN

s.t. ABxB + ANxN = b

xB, xN ≥ 0

It is clear that
xB = A−1

B (b− ANxN) = A−1
B b− A−1

B ANxN

and the objective function can be expressed as

cT x = cT
BxB + cT

NxN

= cT
B(A−1

B b− A−1
B ANxN ) + cT

NxN

= cT
BA−1

B b− (cT
BA−1

B AN + cT
N)xN

= cT
BA−1

B b + (cT
N − cT

BA−1
B AN)xN

Call c̃T
N = cT

N − cT
BA−1

B AN the reduced costs of the non-basic variables.

We can then give the following algorithm for solving linear programs. This was
the first algorithm given for solving LPs, and is still the most widely used in practice –
indeed if there were an Algorithms Hall of Fame, the Simplex method would certainly
belong there.

The central idea is quite simple: if there is a non-basic variable whose reduced
cost is negative, we can improve the value of the objective function by increasing it
from zero. Since xB is dependent on xN at some point this increase might cause a
basic variable to become zero. It is then obvious that we should update the basis by

14



swapping the non-basic variable for the basic variable that has become zero. This
swap is called a pivot.

There are many issues about the Simplex method that we will not discuss (e.g.
how to find an initial basic feasible solution). The reason is simple: in this class we
are discussing efficient algorithms for combinatorial optimization problems, and there
is no known polynomial-time version of the Simplex method.

Simplex Algorithm (Dantzig 1947)

Given an initial basis B and a basic feasible solution x
While ∃j ∈ N , s.t. c̃j < 0

increase xj as long xB ≥ 0
when there exists some k ∈ B such that xk = 0

B ← B − {k}+ {j}
N ← N − {j}+ {k}

15



CS 361B Advanced Algorithms April 3, 2003

Lecture 2

Lecturer: David P. Williamson Scribe: Krishnaram Kenthapadi

2.1 An introduction to linear programming (cont.)

2.1.1 The Simplex algorithm (cont.)

The Simplex Algorithm tries to find an optimal solution from basic feasible solutions
or vertices. The idea is to start from a basis and check if the objective value can
be improved or not by moving to an adjacent basis. Let B be the current basis
and N = {1, 2, . . . , n} \ B. Let xB denote the basic variables and xN the non-basic
variables.

The central idea of the Simplex Algorithm is quite simple: if there is a non-basic
variable whose reduced cost is negative, we can improve the value of the objective
function by increasing it from zero. Since xB is dependent on xN , at some point,
this increase might cause a basic variable to become zero. It is then obvious that
we should update the basis by swapping the non-basic variable for the basic variable
that has become zero. This swap is called a pivot.

Simplex Algorithm (Dantzig 1947)

Given an initial basis B and a basic feasible solution x
While ∃j ∈ N , s.t. c̃j < 0

increase xj as long xB ≥ 0
when there exists some k ∈ B such that xk = 0

B ← B − {k}+ {j}
N ← N − {j}+ {k}

Pivoting rule:
We need a pivoting rule to determine which index should enter the basis and which
index should be removed from the basis. For instance, there could be many choices
for j and k above (i.e., many c̃j’s which are negative and once we increase some xj,
simultaneously many xk’s (k ∈ B) become zero). Hence we need to decide which xj

has to be increased amongst those for which c̃j < 0, j ∈ N and also which xk = 0, k ∈
B has to be removed from the basis.

Remark 2.1 There is no known pivoting rule for which the number of pivots in the
worst case is better than exponential. Hence the Simplex Algorithm (using any of the
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known pivoting rules) can take exponential time in the worst case. It is an interesting

open problem to find a pivoting rule that requires only polynomially many pivots. A
related problem is to analyze the length of the shortest path between any two vertices of
a convex polyhedron where the path is along edges.

Remark 2.2 (Kalai) There is a randomized pivoting rule that gives expected subexpo-
nential number of pivots.

Remark 2.3 There exists a pivoting rule that gives polynomially many pivots for a
randomly perturbed matrix A.

Hirsch Conjecture:
For m constraints (i.e., hyperplanes) in d dimensions, the length of the shortest path
between any two vertices of the arrangement is at most m− d.

Even if the Hirsch Conjecture were true, it doesn’t say much about the number of
pivots for the Simplex Algorithm. This is because, in the Simplex method, the path
we take is monotonic with respect to the objective function whereas the objective
function need not be non-increasing (it doesn’t even come into the picture!) along
the shortest path.

2.1.2 LP duality

Duality is one of the most important ideas in Linear Programming. It is extremely
useful in the design of algorithms for problems in combinatorial optimization.

The concept of duality helps us to lower bound the value of the optimal solution to
a linear programming (minimization) problem. For example, consider the following
LP:

Min 6x1+ 4x2+ 2x3

s.t. 4x1+ 2x2+ x3 ≥ 5
x1 + x2 ≥ 3

2x2+ x3 ≥ 4
xi ≥ 0 i = 1, 2, 3

The first inequality gives a lower bound of 5 on the value of LP, since 6x1 +4x2 +
2x3 ≥ 4x1 + 2x2 + x3 ≥ 5 due to the nonnegativity of the xi’s. By considering the
first inequality plus twice the second inequality, we get a better bound: value(LP)
≥ 6x1 + 4x2 + x3 ≥ 5 + 2 ∗ 3 = 11. We get an even better bound by considering four
times the second inequality: value(LP) ≥ 4x1 + 4x2 ≥ 4 ∗ 3 = 12.

We might think about how to find the best possible lower bound by taking com-
binations of the rows as above. It turns out that we can express this as a linear
program:
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Max 5y1+ 3y2+ 4y3

s.t. 4y1+ y2 ≤ 6
2y1+ y2+ y3 ≤ 4
y1 + y3 ≤ 2

yj ≥ 0 j = 1, 2, 3

Here y1 is the multiplier for the first constraint (inequality), y2 for the second and
y3 for the third. yj’s have to be nonnegative so as to preserve the signs of the original
inequalities. Suppose the second constraint was an equality: x1 + x2 = 3. Then y2

which multiplies this constraint can be negative as well.

In general, let P and D denote the following pair of dual linear programs:

(P) ZP = min{cT x|Ax = b, x ≥ 0}

(D) ZD = max{bTy|ATy ≤ c}

(P) is called the primal linear program and (D) the dual linear program. We can
also express these LPs without using matrix notation as:

Primal LP (P):

min

n∑

j=1

cjxj [objective function]

s.t.
n∑

j=1

aijxj = bi i = 1, 2, · · · , m [constraints]

xj ≥ 0 j = 1, 2, · · · , n [nonnegativity constraints]

Dual LP (D):

max
m∑

i=1

biyi [objective function]

s.t.
m∑

i=1

yiaij ≤ cj j = 1, 2, · · · , n [constraints]

yi [unrestricted]

We can formalize the notion of the dual being a lower bound as follows.
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Theorem 2.1 (Weak Duality) If x is a feasible solution to (P) and y is a feasible solution
to (D), then cTx ≥ bT y. As a consequence, ZP ≥ ZD.

Proof: cTx ≥ (ATy)Tx = yTAx = yT b = bTy. The first inequality follows from
the dual constraint and the second equality follows from the primal constraint. ✷

As a corollary, we see that only some possibilities of primal/dual feasibility/unboundness
are possible.

Corollary 2.2 For any primal LP, (P) and the corresponding dual LP (D), exactly one
of the following is true:

1. Both (P) and (D) are feasible and are bounded.

2. (P) is infeasible and (D) is unbounded.

3. (D) is infeasible and (P) is unbounded.

4. Both (P) and (D) are infeasible.

In fact, something even more useful and interesting than weak duality is true. The
proof can be either geometric or algorithmic. Due to lack of time, we will not prove
this in the class.

Theorem 2.3 (Strong Duality) If (P) and (D) are both feasible, then ZP = ZD.

Complementary slackness

Definition 2.1 Given a feasible x for (P) and (y, s) for (D), the duality gap is defined
as cT x− bT y.

As a consequence of the weak duality theorem, the duality gap is nonnegative.
cT x− bT y = cTx− (Ax)Ty = xT c− xTATy = xT (c − ATy) = xT s ≥ 0 since x, s ≥ 0.
From the strong duality theorem, it follows that the duality gap is zero for the optimal
solutions x∗ for (P) and (y∗, s∗) for (D), i.e., cT x∗ − bT y∗ = ZP − ZD = 0. Thus the
duality gap provides a measure of how close a feasible x and y are to the optimal
solutions for (P) and (D).

Corollary 2.4 (Complementary Slackness) Let x∗ be a feasible solution for (P) and
(y∗, s∗) be a feasible solution for (D). Then the following are equivalent:

1. x∗ is optimal for (P) and (y∗, s∗) is optimal for (D).

2. (x∗)T s∗ = 0.
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3. x∗
js

∗
j = 0 ∀j = 1, 2, . . . , n.

4. For any j, if s∗j > 0, then x∗
j = 0

5. For any j, if x∗
j > 0, then s∗j = 0

Proof:

(1)⇒ (2): As a result of the strong duality theorem, the duality gap, (x∗)T s∗ is
zero for the optimal solutions x∗ for (P) and (y∗, s∗) for (D).

(2)⇒ (1): (x∗)T s∗ = 0 ⇐ cT x∗ = bTy∗ Since the primal and dual LP values are
equal, the corresponding solutions are optimal.

(2)⇔ (3)⇔ (4)⇔ (5): Follows from the feasibility and hence non-negativity of
x∗ and s∗.

✷

In algorithms for combinatorial problems, we manipulate the primal and the dual
solutions. We know that we have reached the optimal solutions when the complemen-
tary slackness conditions are met (typically one of (4) or (5) above). Many algorithms
fix two of the following conditions to start with and then try to satisfy the third con-
dition:

1. x is feasible for (P).

2. y is feasible for (D).

3. Complementary slackness conditions hold.

Rules for transforming primal LP to dual LP

Suppose we are given a primal LP with the following structure.

Primal LP Framework:

min cT
1 x1 + cT

2 x2 + cT
3 x3

s.t. A11x1 + A12x2 + A13x3 = b1 [(1)]

A21x1 + A22x2 + A23x3 ≥ b2 [(2)]

A31x1 + A32x2 + A33x3 ≤ b3 [(3)]

x1 ≥ 0; x2 ≤ 0; x3 unrestricted

Here, the variables which are nonnegative are grouped together as x1, those non-
positive as x2 and the rest as x3. A11, A12, . . . , A33 are the corresponding parts of the
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matrix A. We obtain the corresponding dual below.

Corresponding Dual LP Framework:

max bT
1 y1 + bT

2 y2 + bT
3 y3

s.t. AT
11y1 + AT

21y2 + AT
31y3 ≤ c1 [since x1 ≥ 0]

AT
12y1 + AT

22y2 + AT
33y3 ≥ c2 [since x2 ≤ 0]

AT
13y1 + AT

23y2 + AT
33y3 = c3 [equality since x3 is unrestricted]

y1 [unrestricted, due to equality in (1)]

y2 ≥ 0 [due to “ ≥ ” in (2)]

y3 ≤ 0 [due to “ ≤ ” in (3)]

2.2 The minimum cut problem

Now that we’ve reviewed linear programming, we will start our exploration of algo-
rithms for combinatorial problems with one of the most basic problems in combina-
torial optimization.

Definition 2.2 Given an undirected graph, G = (V, E) and a nontrivial S ⊂ V , the
cut induced by S is the set of edges with exactly one endpoint in S.

We let δ(S) = {(i, j) ∈ E|i ∈ S, j ∈ V \ S} denote the set of edges in the cut.
Given capacities ue ≥ 0 for all edges e ∈ E, the capacity of the cut is the sum of the
capacities of edges in the cut: u(δ(S)) =

∑
e∈δ(S) ue.

Mincut

• Input:

– Undirected graph, G = (V, E)

– Edge capacities, ue ≥ 0 ∀e ∈ E

• Goal: Find S ⊂ V, S 6= ∅ that minimizes the capacity of the cut, u(δ(S))

A slight variant is the following problem:
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Min s–t cut

• Input:

– Undirected graph, G = (V, E)

– Edge capacities, ue ≥ 0 ∀e ∈ E

– Two distinguished vertices s, t ∈ V, s 6= t

• Goal: Find S ⊂ V, S 6= ∅ such that s ∈ S, t /∈ S that minimizes u(δ(S))

The mincut problem can be reduced to the min s–t cut problem as follows. Choose
s = 1 (first vertex) and obtain the optimum s–t cut for t = 2, 3, . . . , n. The cut with
the minimum capacity will correspond to the global mincut.
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Lecture 3

Lecturer: David P. Williamson Scribe: Abhishek Bapna

3.1 Minimum cuts and maximum flows

In this section, we discuss how the min s-t cut problem defined for directed graphs
relates to the max s-t flow problem. Recall that for undirected graphs, we had defined
the min s-t cut problem as follows.

The Min s-t Cut Problem

• Input:

– Undirected Graph G = (V, E).

– Capacities ue ≥ 0 ∀e ∈ E.

– s, t ∈ V, s 6= t.

• Goal: Find a set S ∈ V, S 6= ∅, s ∈ S, t /∈ S, that minimizes u(δ(S)), where δ(S)
is the the set of edges with exactly on endpoint in S, and u(δ(S)) =

∑
e∈δ(S) ue.

For a directed graph, we define the cut to be δ+(S) = {(i, j) ∈ A, i ∈ S, j /∈ S},
where A is the set of arcs. The goal now is to minimize u(δ+(S)).

When in a given network, the links have a limited capacity, the problem of find-
ing the maximum amount of flow on the network sometimes becomes an important
one.This is known as the max-flow problem. Some sample applications use the max-
flow problem in answering questions of the form:

• What is the maximum amount of traffic that can be routed on a given network
of roads?

• Given a network of pipelines, what is the maximum amount of water that can
be pumped?

• A recent development in solving for market equilibrium prices in a market of
goods and buyers asks the question: What is the maximum amount of a partic-
ular good that can be supplied to consumers getting maximum benefit out of
it?

Definition 3.1 Given a directed graph G = (V, A), with integer capacities uij ≥ 0 for
all (i, j) ∈ A we define a s-t flow f : A→ ℜ≥0 such that:
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(i) fij ≤ uij (Capacity Constraints).

(ii)
∑

k:(i,k)∈A f(i, k) =
∑

k:(i,k)∈A f(k, i) ∀i ∈ V, i 6= s, t (Flow Conservation)

Then the max s-t flow problem in a directed graph is:

The Max s-t Flow Problem

• Input:

– Directed Graph G = (V, A).

– Integer capacities uij ≥ 0 ∀(i, j) ∈ A.

– s, t ∈ V , s 6= t

• Goal: Find an s-t flow that maximizes
∑

k:(s,k)∈A f(s, k)−∑k:(k,s)∈A f(k, s).

Letting xij = f(i, j), the linear program corresponding to the above max s−t flow
problem is

Max
∑

j:(s,j)∈A

xsj −
∑

j:(j,s)∈A

xjs

s.t. ∑

i:(i,k)∈A

xik −
∑

i:(k,i)∈A

xki = 0 ∀k 6= s, t

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

Introducing dual variables zij corresponding to the nonnegativity constraints,
and yi corresponding to the flow balance constraints, we can write the dual (call
it (MFD)) as

Min
∑

(i,j)∈A

uijzij

s.t.

zij + yj − yi ≥ 0 ∀(i, j) ∈ A, i 6= s, t; j 6= s, t

(MFD) zsj + yj ≥ 1 ∀(s, j) ∈ A

zjs + yj ≥ −1 ∀(j, s) ∈ A

zit − yi ≥ 0 ∀(i, t) ∈ A

zij ≥ 0.

Claim 3.1 Let zD be the optimal value of MFD and let MC refer to the value of the
min s-t cut. Then zD = MC .
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If the above claim is true, then the following theorem follows from the strong
duality theorem of linear programs.

Theorem 3.2 The max s-t flow in any directed graph is equal to the value of the min
s-t cut of the graph.

Proof of Claim 3.1:

(i) zD ≤ MC .
Let S be the min cut of the graph. Then create a feasible solution (y, z) to
(MFD) of value MC as follows.

zij=

{
1 if i ∈ S, j /∈ S
0 otherwise

yi=

{
1 if i ∈ S
0 otherwise

A quick verification shows that the above is a feasible solution to (MFD) that
has an objective function value MC . Therefore zD ≤ MC since zD is the
optimal solution by definition.

(ii) MC ≤ zD.
Let (y∗, z∗) be an optimal solution to MFD. Set y∗

s = 1, y∗
t = 0. Now create a

cut S as follows:

– generate a uniform random number, U ∈ (0, 1].

– if y∗
i ≥ U , set i ∈ S.

Now the probability of a particular arc (i, j) to be a part of the cut

Pr[(i, j) in cut]=Pr[i ∈ S, j /∈ S] =

{
y∗

i − y∗
j if y∗

i ≥ y∗
j

0 otherwise
= max(0, y∗

i − y∗
j )

≤ z∗
ij

and so, E[value of cut] =
∑

(i,j)∈A uij Pr[(i, j) in cut]

≤∑(i,j)∈A uijz
∗
ij

= zD

So there exists some cut with value ≤ zD ⇒ MC ≤ zD

Thus from (i) and (ii), zD = MC and the proof is complete. ✷

3.1.1 Minimum cut via MA orderings

We now return to undirected graphs. Given an undirected graph G = (V, E), let
δ(A, B) = {(i, j) ∈ E, i ∈ A, j ∈ B}.

Now, suppose we order the nodes of the graph through the following computation:
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- Choose an arbitrary vertex, v1 and set S ← {v1}

- For i← 2 to n

Choose vi that maximizes u(δ(S, vi)) ∀vi ∈ V − S

S ← S ∪ {vi}

Then, the sequence of vertices v1, v2, ..., vn is called an MA Ordering of the graph.
(MA stands for “maximum adjacency”).

We now make a claim that induces an algorithm to compute the min cut in a
graph.

Claim 3.3 For MA Ordering v1, v2, ..., vn, the cut around the node {vn} is a min vn−1−
vn cut.

The following algorithm shows how this property can be used to compute the min
cut of a undirected graph. The proof of the claim will follow the algorithm.

Finding MinCut using MA ordering

MC ←∞, S ← ∅
While |V | > 1

Compute MA ordering v1, v2, ..., vn

If u(δ(vn)) < MC
MC ← u(δ(vn)), S ← {vn}
Contract vn−1 and vn into a single node

Return S.

An example of the above algorithm is presented at the end.

To prove the claim made above, we need the following lemma.

Lemma 3.4 Let λ(G, s, t) denote value of the min s-t cut in G. Then for any three
vertices p, q, r ∈ V , λ(G, p, q) ≥ min(λ(G, r, q), λ(G, p, r)).

Proof: Let S be the min p-q cut of the graph and p ∈ S. Now suppose r ∈ S.
Then, λ(G, p, q) ≥ λ(G, r, q). If r /∈ S, then λ(G, p, q) ≥ λ(G, p, r). In either case,
the result holds. ✷

Proof of Claim 3.3: We know that by the definition of the min cut λ(G, vn−1, vn) ≤
u(δ(vn)). We need to show that λ(G, vn−1, vn) ≥ u(δ(vn)). We do this through an
induction on the number of nodes and edges, |E|+ |V |.

- The base case, i.e. when either |E| = 0 or |V | = 2, holds trivially.
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- For the inductive case, there are two possibilities

(i) (vn−1, vn) ∈ E:
Let (vn−1, vn) = e, G′ ← G − e, δ′ ← δ. Now, v1, v2, ..., vn is still an MA
ordering of G′, and

u(δ(vn)) = u(δ′(vn)) + ue

= λ(G′, vn−1, vn) + ue

= λ(G, vn−1, vn).

(ii) (vn−1, vn) /∈ E:
In this case, we need to apply the inductive hypothesis twice. First, let
G′ ← G−vn−1. Note that v1, v2, . . . , vn−2, vn is an MA ordering in G′, and
by the inductive hypothesis,

u(δ(vn)) = u(δ′(vn))
= λ(G′, vn−2, vn)
≤ λ(G, vn−2, vn).

The last inequality follows since the cut in G separating vn−2 and vn has
no greater value in G′.

Now, let G′ ← G − vn. Again, v1, v2, . . . , vn−1 is an MA ordering in G′,
and by the construction of the ordering, and the inductive hypothesis,

u(δ(vn)) ≤ u(δ(vn−1))
= u(δ′(vn−1))
= λ(G′, vn−2, vn−1)
≤ λ(G, vn−2, vn−1).

Again, the last inequality follows since the cut in G separating vn−2 and
vn−1 has no greater value in G′.

Now using Lemma 3.4,

λ(G, vn−1, vn) ≥ min(λ(G, vn−2, vn−1), λ(G, vn−2, vn)) ≥ u(δ(vn)).

Therefore by the principle of mathematical induction, λ(G, vn−1, vn) ≥
u(δ(vn)) holds for any number of vertices and edges. This proves the
claim.

✷

A note: Using Fibonacci heaps, an MA ordering of a graph can be computed
in O(m + n log n) time. Thus, the algorithm to compute the MinCut using MA
orderings presented above has a time complexity of O(n(m + n log n)). The fastest
known algorithm runs in O(m log3 n) randomized time.
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MA Ordering={v1=a,v2=b,v3=c,v4=d} S={d}, u(d)=7, MC=7

Merge ‘c’ and ‘d’

MA Ordering={v1=a,v2=b,v3=cd} S={cd}, u(cd)=8, MC=7

Merge ‘cd’ and ‘b’

MA Ordering={v1=a,v2=bcd } S={bcd}, u(bcd)=5, MC=5

MinCut=5, S={b,c,d} 

Step1:

Step2:

Step3:

Figure 3.1: An Example of the MinCut Algorithm via MA orderings.
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Lecture 4

Lecturer: David P. Williamson Scribe: Fang Wei

4.1 Minimum cuts and maximum flows (cont.)

Recall from the previous lecture we showed that the maximum s-t flow problem could
be formulated as the following linear program:

Max
∑

j:(s,j)∈A

xsj −
∑

j:(j,s)∈A

xjs

subject to: ∑

k:(i,k)∈A

xik −
∑

k:(k,i)∈A

xki = 0 ∀i 6= s, t

xij ≤ uij (i, j) ∈ A,

where uij is the capacity of arc (i, j). We assume that the capacities are non-negative
and integral.

We showed that the dual of the linear program is as follows:

Min
∑

(i,j)∈A

uijzij

subject to:

zij + yj − yi ≥ 0 ∀(i, j) ∈ A, i, j 6= s, t

zsj + yj ≥ 1 ∀(s, j) ∈ A

zit − yi ≥ 0 ∀(i, t) ∈ A

zij ≥ 0

We also showed that the dual gives the minimum s-t cut problem.

4.1.1 MA orderings

Recall that we defined the concept of an MA ordering of an undirected graph, and
showed that this could be used to find the minimum global cut. Here we extend the
concept of an MA ordering to a directed graph. First, let

δ(C, D) = {(i, j) ∈ A : i ∈ C, j ∈ D}.

We say that for B ⊆ A, u(B) =
∑

(i,j)∈A uij. Then we can define a directed MA
ordering of a capacitated directed graph as follows.
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MA-Ordering

S ← {v1}
for i← 2 to n

Choose vi to maximize u(δ(S, {v})) ∀v ∈ V − S
S ← S ∪ {vi}.

4.1.2 Residual graphs

To give an algorithm computing a maximum s-t flow, we first need the concept of a
residual graph.

Definition 4.1 Given a flow f , the residual graph Gf = (V, Af , u
f) where

Af = {(i, j) ∈ A : f(i, j) < uij} ∪ {(j, i) : (i, j) ∈ A, f(i, j) > 0}

uf
ij =

{
uij − f(i, j) if (i, j) ∈ A, (i, j) ∈ Af

f(i, j) if (j, i) ∈ A, (i, j) ∈ Af

Note that if an arc (i, j) ∈ Af then it has residual capacity uf
ij > 0.

We now show one of the oldest and most celebrated theorems in combinatorial
optimization

Theorem 4.1 (Ford, Fulkerson 1955) f is a maximum s − t flow ⇐⇒ there is no
augmenting path in Gf .

Proof: Suppose there exists an augmenting path s = i0, ..., ik = t, Let

δ ← minj=0,...k−1 uf
ij ,ij+1

,

f ′(ij, ij+1)←
{

f(ij, ij+1) + δ if (ij, ij+1) ∈ A

f(ij, ij+1)− δ o.w.

f ′ is a valid flow by construction. Furthermore, the flow on f ′ out of source is greater
by δ.

To prove that if no augmenting path exists that we must have a maximum flow,
we look at the dual and use complementary slackness. Let S be the set of vertices
reachable from s in the residual graph Gf . Note that since there is no augmenting
path t /∈ S. Construct the following dual solution:

yi ←
{

1 if i ∈ S

0 o.w.

zij ←
{

1 if i ∈ S, j /∈ S

0 o.w.

30



By arguments from the previous lecture, one can show that this dual solution is
feasible. We now need to show that complementary slackness holds. To do this, we
need to show two sets of conditions. First, we want to show that if zij > 0 then
xij = uij. Second, we want to show that if xij > 0 then the corresponding dual
constraint is met with equality. To see the first case, note that if zij = 1, then
(i, j) /∈ Af , which implies that f(i, j) = uij.

To show the second type of complementary slackness condition, we consider (as
an example) just the case in which i, j 6= s, t. Thus we need to show that if xij > 0
then zij + yj − yi = 0. We observe that if both i, j ∈ S, we have 0 + 1 − 1 = 0. If
both i, j /∈ S, we have 0 + 0− 0 = 0. If i ∈ S, j /∈ S, we have 1 + 0− 1 = 0. Finally,
if j ∈ S, i /∈ S, xij > 0 implies that (j, i) is in the residual graph, which contradicts
the definition of S.

Therefore we have a primal feasible solution x = f , and dual feasible solution
(y, z) and complementary slackness holds, so that the flow must in fact be optimum.

✷

4.1.3 A maximum s-t flow algorithm via MA orderings

The algorithm

There are many, many known algorithms for maximum s-t flows. Here we give a very
recent one due to Fujishige, which uses the concept of an MA ordering.

Max Flows via MA Ordering (Fujishige 2002)

f(i, j)← 0 ∀(i, j) ∈ A
while ∃ an augmenting path in Gf

Compute MA-ordering in Gf starting at v1 = s.
Let k be such that t = vk, Vj = {v1, ..., vj}.
α← minj=2,...,k uf (δ(Vj−1, vj)).
β(t)← α, β(v)← 0 ∀v 6= t
For j ← t down to 2

For each (vi, vj) ∈ δ(Vj−1, vj) (Note : i < j)
γ ← min(β(vj), u

f
vi,vj

).

f ′(vi, vj)←
{

f(vi, vj) + δ if (vi, vj) ∈ A.

f(vi, vj)− δ if (vj, vi) ∈ A.

β(vi)← β(vi) + γ.
β(vj)← β(vj) − γ.

f ← f ′.

We need to argue that this algorithm produces a feasible flow. Consider what
happens in the “down to” loop when we consider vertex vj. By definition of α we
know that at least α units of residual capacity enter vj. We have used β(vj) capacity
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going out so far. We maintain inductively that
∑

l β(vl) = α, so we know that
β(vj) ≤ α; that is, we can ensure that the total flow entering vj is equal to the total
flow leaving it. Hence f ′ is a feasible flow.

Running time analysis

We now want to show that the algorithm runs in polynomial time. Let n be the
number of vertices in the graph, v(f) be the value of the flow f , and f∗ be a max
flow.

Theorem 4.2 v(f∗)− v(f) ≤ (1− 1
n
)[v(f∗)− v(f)].

We now argue that this theorem is enough to show that the algorithm runs in
polynomial time. Let f (n) = flow after n iterations of the main loop. Thus the
Theorem implies that

v(f∗)− v(f (n)) ≤
(

1− 1

n

)n

[v(f∗) − v(f)]

≤ 1

e
[v(f∗)− v(f)],

using the fact that
(
1− 1

n

)n
< e−1.

Let U = maxi,j uij. Then v(f∗) ≤ mU , where m is the number of arcs in the
graph. Hence after at most n log(mU) iterations,

v(f∗)− v(f) < 1.

This is enough since capacities are integers and thus the amount by which the value
of a flow increases is also an integer. So if v(f∗)− v(f) < 1 it must be the case that
v(f∗)− v(f) = 0, and f is max flow.

Because we can compute an MA ordering in O(m + n log n) time, the overall
runtime is O((m +n log n)n log(mU)). The current fastest max flow algorithm is due
to Goldberg and Rao, and has running time

O(min[n
2
3 ,
√

m]m log(
n2

m
) log U).

We now prove the theorem.

Proof of Theorem 4.2: We need to show

v(f∗)− v(f (n)) ≤
(

1− 1

n

)n

[v(f∗)− v(f)]

.
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Suppose α = uf (δ(Vi−1, vi)). Then

∑

j∈Vi−1,k∈V −Vi−1

uf
kj =

∑

k≥i

uf(δ(Vk−1, vk)) ≤ nα.

The value α is the value of a cut in the residual graph, which must be at least
the value of the minimum cut in the residual graph. By an extension of the theorem
we proved above, the value of the minimum cut in the residual graph is at least
v(f∗)− v(f). Since we increase the value of the flow by α, we know v(f ′)− v(f) ≥ α.
Thus v(f∗)− v(f) ≤ n[v(f ′)− v(f)]

⇒ nv(f∗)− nv(f ′) ≤ (n− 1)v(f∗)− (n− 1)v(f)

⇒ v(f∗)− v(f ′) ≤
(

1− 1

n

)
[v(f∗) − v(f)].

✷
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5.1 Minimum-cost circulations

Last time we considered the problem of finding a maximum flow in a directed graph.
For the next few lectures we will consider the next more complicated variant of this
problem, in which there are costs cij associated with each arc (i, j), and each unit of
flow sent on (i, j) incurs the cost cij .

Minimum-cost circulation problem

• Input:

– A directed graph G = (V, A).

– Integer costs cij ≥ 0, ∀(i, j) ∈ A.

– Integer capacities uij ≥ 0, ∀(i, j) ∈ A.

– Integer demands 0 ≤ lij ≤ uij, ∀(i, j) ∈ A.

• Goal: Find a minimum-cost circulation.

The goal is to find a flow f : A→ ℜ≥0 that minimizes
∑

(i,j)∈A cijfij such that

lij ≤ fij ≤ uij, ∀(i, j) ∈ A∑
k:(i,k)∈A fik −

∑
k:(k,i)∈A fki = 0, ∀i ∈ V

This is related to the min-cost flow problem, where the input is a directed graph
G = (V, A) with integer costs cij ≥ 0 and integer capacities uij ≥ 0 for each edge
(i, j) ∈ A. The difference is that there are demands bi on the vertices i ∈ V , such
that the sum of demands over all the vertices is zero:

∑
i∈V bi = 0. The goal is to

find the flow that minimizes
∑

(i,j)∈Acijfij such that

0 ≤ fij ≤ uij, ∀(i, j) ∈ A,∑
k:(i,k)∈Afik −

∑
k:(k,i)∈Afki = bi, ∀k ∈ V.

Theorem 5.1 These two problems are equivalent.

Proof: We sketch the transformations that convert one problem to the other.
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Given a min cost flow, add a node s to the graph. For i ∈ V such that bi > 0
then attach an arc (i, s) with cost 0, and lis = uis = bi. For i ∈ V such that bi < 0
we attach an arc (s, i) of cost 0 such that lsi = usi = |bi|. Note that given a feasible
min-cost flow in the original problem we have a min-cost circulation in the modified
problem since the flow coming into each node is equal to the flow going out of each
node (including the node s, since

∑
i:bi>0 bi =

∑
i:bi<0 |bi|). The reverse is also true

– given a min-cost circulation in the modified problem, the flow on the arcs of the
original problem is a feasible min-cost flow of the same value.

For the converse, we change variables. Set f ′
ij = fij − lij, with f ′

ij ≥ 0 and
0 ≤ f ′

ij ≤ uij − lij. Set bi =
∑

k:(i,k)∈Alik −
∑

k:(k,i)∈Alki. This provides a direct
transformation between the two problems. Given a feasible min-cost circulation f in
the original problem, we have a feasible min-cost flow f ′ in the modified problem of
the same cost, and vice versa. ✷

5.1.1 Finding an initial solution

We use the correspondence to the minimum-cost flow problem to find a feasible cir-
culation. Set fij = lij, bi =

∑
k:(k,i)∈Afki−

∑
k:(i,k)∈Afik, and u′

ij = uij − lij. We claim

that we can find an initial circulation (if one exists) by determining a max flow for
the above data. To see this, add a source node s and a sink node t to G to obtain a
new graph G′ = (V, A′) as follows. Add an arc s → i if bi > 0 with capacity bi. Add
an arc i→ t if bi < 0 with capacity |bi|. Now compute the max flow f ′ on G′. Then
we claim the following.

Lemma 5.2 The s-t flow value of f ′ in G′ is
∑

i:bi>0 bi iff f ′ + f is a feasible circulation
in G.

Proof: We prove only the⇒ part. Since f ′ ≥ 0 and f = l, lij ≤ f ′
ij +fij. Moreover,

f ′
ij ≤ u′

ij, so that f ′
ij + lij ≤ u′

ij + lij = uij. Therefore, lij ≤ f ′
ij + fij ≤ uij for each

edge (i, j) ∈ A. Finally, by flow conservation we know that

∀i ∈ V, i 6= s, t :
∑

k:(k,i)∈A′

f ′
ki −

∑

k:(i,k)∈A′

f ′
ik = 0.

We also know that ∑

k:(k,i)∈A

fki −
∑

k:(i,k)∈A

fik = bi.

Suppose bi > 0. Since the flow out of the source equals
∑

i:bi>0 bi, and this means
that all the arcs out of s are to capacity, this forces f ′

si = bi. Thus adding the two
equations together and subtracting f ′

si = bi from both sides gives

∑

k:(k,i)∈A

(f ′
ki + fki)−

∑

k:(i,k)∈A

(f ′
ik + fik) = 0.
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The case if bi < 0 is similar. ✷

Now we make a slight change in notation. Replace each arc by two arcs of op-
posite orientations. If fij is the flow in (i, j), then force fji = −fij. This is called
antisymmetry. Also set uji = −lij. This removes the lower bound constraints, since
fji = −fij ≤ −lij = uji. We make the costs antisymmetric, too: cji = −cij. Thus the
total cost for the two edges with flow f is cjifji + cijfij = 2cijfij. Hence optimising
for the total cost for this new graph is the same as optimising for the total cost for
the original graph.

5.1.2 Residual graph

Given a flow f on G, define the residual graph Gf = (V, Af ) where the new arc set

Af := {(i, j) ∈ A : fij < uij}.

Note that we are using the new notation here. Impose the upper bounds uf
ij = uij−fij.

Then clearly uf
ij > 0 for all (i, j) ∈ Af .

5.1.3 Potentials

A potential is a function p : V → ℜ. Given a potential p, define the reduced cost

cp
ij := cij + pi − pj . Then cp

ji = −cp
ij. The potential plays the role of the dual

variable. We shall show this formally in an moment. Observe that if Γ is a cycle
and c(Γ) :=

∑
(i,j)∈Γ cij, and cp(Γ) is defined similarly, then cp(Γ) = c(Γ). Define

c · f :=
∑

(i,j)∈Acijfij. We can then prove the following.

Theorem 5.3 c · f = cp · f .

Proof:

cp · f = c · f +
∑

(i,j)∈A

(pi − pj)fij

= c · f +
∑

i∈V

pi

( ∑

k:(i,k)∈A

fik −
∑

k:(k,i)∈A

fki

)

= c · f.

This follows since the term in parentheses is zero because of flow conservation. ✷

5.1.4 Optimality conditions

We now characterise the minimum-cost circulation.

Theorem 5.4 The following are equivalent:
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1. f is a minimal cost flow,

2. there are no negative cost cycles in Gf , and,

3. there exists a potential p such that cp
ij ≥ 0 for all (i, j) ∈ Af .

Proof:

[¬(2)⇒ ¬(1)] Let Γ be a negative cost cycle in Af . Define

δ = min
(i,j)∈Γ

uf
ij,

then δ > 0 and let

f ′
ij =






fij + δ, (i, j) ∈ Γ,

fij − δ, (j, i) ∈ Γ,

fij, otherwise.

Thus, f ′
ij = −f ′

ji and f ′ is a feasible circulation if f is. Also, f ′
ij ≤ uij. Furthermore,

c · f ′ = c · f + 2δc(Γ) < c · f,

since Γ is a negative cost cycle. Therefore, f is not of minimum cost.

Note: In Gf ′ , Γ does not exist. This is so because, f ′
ij = uij for some (i, j) ∈ Γ, and

this means that (i, j) 6∈ Af ′, and so Γ 6⊆ Af ′. We say that Γ has been cancelled.

[(2)⇒ (3)] Add a node s to Gf , and add arcs of cost 0 from s to each i ∈ V . Then
let pi be the length of the shortest path from s to i using costs cij as the edge lengths.
These paths are well defined since there are no negative-cost cycles. Moreover, by
definition, pj ≤ pi + cij, so that cp

ij ≥ 0 on Af .

[(3)⇒ (1)] Let f ′ be any other circulation. We shall show that c · f ′ ≥ c · f , so that
f is minimal.

Suppose that (i, j) and (j, i) are both present in Af . Then by assumption, cp
ij ≥ 0,

and cp
ji ≥ 0. This implies that in fact, cp

ij = cp
ji = 0, since cp

ji = −cp
ij.

On the other hand if neither (i, j) nor (j, i) is in Af , then fij = uij and fji = uji =
−lij. So that, fij = uij = lij and this means that f ′

ij = fij .

Lastly suppose that (i, j) /∈ Af but (j, i) ∈ Af . Then fij = uij so that f ′
ij ≤ fij =

uij. Therefore, cp
ij ≤ 0 since cp

ji ≥ 0.

Using the fact that c · f = cp · f , we have that
∑

(i,j)∈A

cij(f
′
ij − fij) =

∑

(i,j)∈A

cp
ij(f

′
ij − fij) ≥ 0,

since for any pair of arcs (i, j) and (j, i) the terms in the sum will be non-negative.
Thus c · f ′ ≥ c · f , and f must be a circulation of minimum cost. This completes the
proof. ✷
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Lecture 6

Lecturer: David P. Williamson Scribe: Dilys Thomas

6.1 Minimum-cost circulations (cont.)

6.1.1 Some applications

In the previous lecture the application of min-cost flows to real world problems was
asked for. So here we provide examples from the book by Ahuja, Magnanti, and
Orlin.

Production-distribution

A car manufacturer has several manufacturing plants and produces several car models
at each plant that it then shipped to geographically dispersed retail centers through-
out the country. Each retail center requests a specific number of cars of each model.
The firm must determine the production plan of each model at each plant and a
shipping pattern that satisfies the demands of each retail center and minimizes the
overall cost of production and transportation. There are 4 kinds of nodes plant nodes,
plant-model nodes, retailer-model nodes, and retailer nodes. Production arcs connect
plant nodes to plant-model nodes with cost equal to manufacturing cost of the model
at the plant. Upper and lower bounds indicate minimum and maximum production
of each particular car model at the plants. Transportation arcs connect plant-model
nodes to retailer-model nodes with shipping costs and capacity bounds imposed by
contractual agreements with the shippers. Demand arcs connect retailer-model nodes
to retailer nodes, have zero cost and lower bounds that equal the demand of the model
at that retail center. Refer to Figure 6.1.

The minimum cost flow yields a optimal production and shipping schedule.

Racial balancing of schools

Suppose there are two ethic communities 1 and 2 which must be balanced in schools.
Each location i is modeled as two nodes, l

′

i and l
′′

i and each school j is modeled as
nodes s

′

j and s
′′

j . An arc from l
′

i to s
′

j denotes the number of students from race 1

assigned at location i to school j, similarly between l
′′

i and s
′′

j for race 2. These arcs
are uncapacitated and have cost per unit flow the distance between location i and
school j. For each j, connect s

′

j and s
′′

j to school node sj with upper and lower bounds
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Figure 6.1: Min cost flow for production distribution

on the arcs denoting the bounds on the races needed for school j. Finally add a sink
node t, and join each sj to t with arc of capacity uj the capacity of school j, so that
schools are not overfilled. To ensure everyone goes to school l

′

i and l
′′

i are given supply
equal to number of children of ethnic communities 1,2 respectively at location i and
the sink t is has demand equal to the sum of all supplies.

6.1.2 Optimality conditions (another proof)

Last time it was proved that if there exists a potential function p such that cp
ij ≥ 0

for all (i, j) ∈ Af then f is a minimum cost flow. We will now reprove this using
complementary slackness. First we give the primal and dual formulations.

Primal LP (min-cost circulation):

Min
∑

(i,j)∈A

cijxij

subject to: ∑

k:(k,i)∈A

xki −
∑

k:(i,k)∈A

xik = 0 ∀i ∈ V

xij + xji = 0 ∀(i, j) ∈ A

xij ≤ uij

Dual:

Max
∑

(i,j)∈A

uijzij

subject to:

pj − pi + wij + zij = cij ∀(i, j) ∈ A

zij ≤ 0.
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For all (i, j) ∈ A, we can set wij = max(cp
ij, 0) and zij = min(cp

ij, 0). This solution
obeys complementary slackness as zij < 0 implies cp

ij < 0 which in turn implies
(i, j) /∈ Af which means xij = uij; that is, the primal constraint is tight. This proves
the optimality of the flow.

6.1.3 Klein’s cycle cancelling algorithm

The obvious way to improve a circulation is to push flow around a cycle when the
residual graph has a negative cycle, so as to decrease the circulation cost.

Cycle cancelling algorithm (Klein 1967)

Let f be any circulation
While Af contains negative cycle Γ

Cancel Γ, update f

The problem with the above algorithm is that choosing arbitrary negative cycle Γ
does not give a polynomial time algorithm. Also finding the most negative cost cycle
is NP-hard. However always selecting certain cycles can ensure the algorithm to run
in time polynomial in the input.

Definition 6.1 Let the mean cost of a cycle Γ be c(Γ)
|Γ| , where |Γ| is the number of arcs

in Γ.

Definition 6.2 Let µ(f) be the minimum mean cost cycle in Af ; that is,

µ(f) = mincycles ΓinAf

c(Γ)

|Γ| .

6.1.4 Goldberg-Tarjan min-mean cycle cancelling

We can now give the following algorithm.

Min-mean cycle cancelling algorithm (Goldberg & Tarjan 1989)

Let f be any circulation
While µ(f) < 0

Cancel min-mean cycle Γ, update f

Definition 6.3 A circulation f is ǫ-optimal if there exist potentials p s.t. cp
ij ≥ −ǫ for

all (i, j) ∈ Af

Clearly f is 0-optimal iff f is a min cost circulation.
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Definition 6.4 Define ǫ(f) to be the minimum ǫ such that f is ǫ-optimal.

Interestingly, the two values of ǫ(f) and µ(f) are closely related.

Theorem 6.1 For a circulation f , µ(f) = −ǫ(f).

Proof:
We first show that µ(f) ≥ −ǫ(f). Since cp

ij ≥ −ǫ(f) for all (i, j) ∈ Af , cp(Γ) ≥
−ǫ(f)|Γ| for all Γ ∈ Af . Thus

µ(f) =
c(Γ)

|Γ| =
cp(Γ)

|Γ| ≥ −ǫ(f).

We now show that µ(f) ≤ −ǫ(f). Set cij= cij - µ(f). Then for any cycle Γ in

Af , c(Γ) = c(Γ) − |Γ|µ(f). As µ(f) ≤ c(Γ)
|Γ| , we have c(Γ) ≥ 0. We introduce a source

vertex s, connected to all vertices with edges of cost c = 0, and define the potential
pi of node i to length of shortest path from s to i using costs cij. By the definition
of shortest path, for all (i, j) ∈ Af , pj ≤ pi + cij = pi + cij − µ(f) which implies
cp
ij = cij + pi − pj ≥ µ(f) for all (i, j) ∈ Af , which implies the result. ✷

Given circulation f , let f (i) denote the circulation i iterations later. The following
theorems, which we will prove later, will show that the Goldberg-Tarjan algorithm
runs in polynomial time.

Theorem 6.2 ǫ(f (1)) ≤ ǫ(f)

Theorem 6.3 ǫ(f (m)) ≤ (1− 1/n)ǫ(f)

Theorem 6.4 When ǫ(f) < 1/n then circulation f is optimal.

Proof: Since ǫ(f) < 1/n, this implies that there exist potentials p such that
cp
ij > −1/n for all (i, j) ∈ Af . Thus for all cycles Γ ∈ Af , cp(Γ) > −1, which by

integrality of costs gives c(Γ) ≥ 0. ✷

We now prove use the previous three results to prove that the Goldberg-Tarjan
algorithm terminates in time bounded by a polynomial in the input size.

Theorem 6.5 The Goldberg-Tarjan minimum mean-cost cycle cancelling algorithm re-
quires at most O(mn log(nC)) iterations, where C = max(i,j)∈A |cij|.

Proof:

Any initial circulation is C-optimal by the assignment pi = 0 for all i ∈ V . After
k = mn log(nC) iterations, we have that

ǫ(f (k)) ≤ (1− 1/n)n log(nC)C < e− log(nC)C = 1/n,
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using the fact that (1 − 1/n)n < e−1. This proves the optimality of f (k) by Theo-
rem 6.4. ✷

The running of the Goldberg-Tarjan algorithm is O(m2n2 log(nC)) time as min-
mean cycle computations take O(mn) time. Note that this algorithm is not strongly
polynomial. A strongly polynomial algorithm will be presented in the next lecture
along with the proofs of Theorem 6.2 and Theorem 6.3.
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Lecture 7

Lecturer: David P. Williamson Scribe: Sergei Vassilvitskii

7.1 Minimum-cost circulations (cont.)

7.1.1 Goldberg-Tarjan min-mean cycle cancelling (cont.)

Remember that we first got rid of lower bounds on the edges by introducing opposite
edges:

i•
lij≤fij≤uij

cij
,, •j =⇒ i•

fij≤uij , cij

,, •j
fji=−fij≤−lij=uji , cji=−cij

ll

With this change in mind, we can rewrite the conservation of flow condition:

∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji = 0 =⇒
∑

j:(i,j)∈A

fij = 0

We have also shown last time the following:

Theorem 7.1 For a circulation f the following are equivalent:

1. f is of minimum cost

2. There are no negative cost cycles in Gf

3. There exist potentials p such that cp
ij ≥ 0 ∀(i, j) ∈ Af .

Recall that we defined the minimum-mean cost cycle of the residual graph as

Definition 7.1 µ(f) = min
cycles Γ∈Gf

c(Γ)

|Γ|

We can now present an algorithm for finding a minimum cost circulation.

Min-mean cycle cancelling algorithm (Goldberg & Tarjan 1989)

Find initial circulation f
While µ(f) < 0

Cancel mean-min cycle Γ, update f
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Definition 7.2 A circulation f is ǫ-optimal if ∃ potentials p such that cp
ij ≥ −ǫ ∀(i, j) ∈

Af . Further, we define ǫ(f) as the minimum ǫ such that f is an ǫ-optimum circulation.

If given a flow f we denote by f (i) the circulation after i cancellations. Last time
we stated the following theorems:

Theorem 7.2 ǫ(f (1)) ≤ ǫ(f)

Theorem 7.3 ǫ(f (m)) ≤
(
1− 1

n

)
ǫ(f)

Theorem 7.4 If ǫ(f) < 1
n

then f is a minimum cost circulation.

Theorem 7.5 Let C = maxi,j |cij|. Then the above algorithm terminates after at most
O(mn log nC) iterations. This gives the overall running time of O(m2n2 log nC).

Last time we showed that Theorem 7.5 follows from Theorems 7.2, 7.3, and 7.4,
and gave a proof for Theorem 7.4. We now complete the proof of Theorem 7.5 by
proving the other two theorems. Recall that last time we also proved the following.

Theorem 7.6
µ(f) = −ǫ(f).

Proof of Theorem 7.2: We know there exist potentials p such that cp
ij ≥ −ǫ(f)

∀(i, j) ∈ Af . For a cancelled cycle Γ, µ(f) = −ǫ(f). Since µ(f) = cp(Γ)/|Γ|, it follows
that for all(i, j) ∈ Γ cp

ij = −ǫ(f). We now claim that cp
ij ≥ −ǫ(f) for all (i, j) ∈ Af (1)

.

∀(i, j) ∈ Af ∩Af (1) this is true, nothing changed

∀(i, j) ∈ Af (1) − Af ⇒ (j, i) ∈ Γ⇒ cp
ji = −cp

ij = ǫ(f) ≥ 0.

✷

Proof of Theorem 7.3: Again we know there exist potentials p such that
cp
ij ≥ −ǫ(f) for all (i, j) ∈ Af . Suppose that in some iteration k we cancel cycle Γ

and ∃(i, j) ∈ Γ such that cp
ij ≥ 0 Then:

−ǫ(f (k)) = µ(f (k)) =
cp(Γ)

|Γ|

≥ |Γ| − 1

|Γ| (−ǫ(f))

≥
(

1− 1

n

)
(−ǫ(f)).

Thus

ǫ(f (k)) ≤
(

1− 1

n

)
ǫ(f).

How many consecutive iterations can it be the case that cycle Γ that is cancelled has
cp
ij < 0 for all (i, j) ∈ Γ ? Cancelling the cycle removes one edge with cp

ij < 0 from
the residual graph and creates only edges with cp

ij ≥ 0. So we need no more than m
iterations before we cancel such a cycle Γ. ✷
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7.1.2 A strongly polynomial time analysis

Definition 7.3 An algorithm runs in strongly polynomial time if the number of basic op-
erations (e.g. additions, subtractions, multiplications, comparisons, etc.) can be bounded
by a polynomial in the number of data items that were input and is not dependent on the
size of data inputs (e.g. bits to encode cost, lower bounds, etc).

If an algorithm is strongly polynomial for minimum cost circulations, its running
time depends only on m and n. The first such algorithm is due to Éva Tardos in
1985.

Definition 7.4 An arc (i, j) ∈ A is ǫ-fixed if the flow on it is the same for all ǫ-optimal
circulations f .

Theorem 7.7 Let ǫ > 0, let f be a circulation, and let p be potentials such that f is
ǫ-optimal with respect to p. If |cp

ij| ≥ 2nǫ then (i, j) is ǫ-fixed.

Proof: Suppose that f ′ is an ǫ-optimal circulation such that f ′
ij 6= fij. Assume

that cp
ij ≤ 2nǫ; this is without loss of generality since costs are antisymmetric.

Claim 7.8 There exists a cycle Γ in Af ′ such that (i, j) ∈ Γ.

We look at flow conditions across a particular cut. For any set S we
know: ∑

i:(i,j)∈A

fij = 0 =⇒
∑

j∈S

∑

i:(i,j)∈A

fij = 0

We also have the antisymmetry conditions:

fij + fji = 0, ∀(i, j) ∈ S

Combining the two, we conclude:

∑

i∈S
j 6∈S

(i,j)∈A

fij = 0

Since cp
ij ≤ −2nǫ we know that (i, j) 6∈ Af because of ǫ-optimality of

f . Therefore fij = uij. Thus we must have f ′
ij < uij.

Let E< = {(k, l) ∈ A : f ′
kl < fkl}. Observe that E< ⊆ Af ′. Let S be

the set of nodes reachable from j in E<. We will show that i ∈ S therefore
a cycle Γ exists as claimed.

Suppose by contradiction that i 6∈ S.
∑

k∈S
l 6∈S

fkl = 0 ∧
∑

k∈S
l 6∈S

f ′
kl = 0 =⇒

∑

k∈S
l 6∈S

(fkl − f ′
kl) = 0
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But f ′
ij < fij ⇒ f ′

ji > fji. Therefore there is a term in the sum that is
negative. Then there must be a term that is positive. So ∃(k, l), k ∈ S, l 6∈
S such that f ′

kl < fkl. By then (k, l) ∈ E< and since k ∈ S, it must be
that l ∈ S, which is a contradiction. ⋄

Therefore we know that if |cp
ij| ≥ 2nǫ then (i, j) is part of a cycle Γ in the set

of edges (k, l) for which f ′
kl < fkl. Note that this implies that the reverse cycle

Λ = {(l, k) : (k, l) ∈ Γ} exists in the set of arcs (l, k) for which f ′
lk > flk, which

implies that Λ exists in Af since flow on the edges in this cycle cannot be at their
upper bounds. Since f is ǫ-optimal we know that for (l, k) ∈ Af , c

p
lk ≥ −ǫ. Therefore

for any (k, l) ∈ Γ we know that cp
kl ≤ ǫ.

We know that µ(f
′) = −ǫ(f ′) ≥ −ǫ. Thus:

c(Γ)

|Γ| =
cp(Γ)

|Γ|

=
1

|Γ|



cp
ij +

∑

(k,l)∈Γ:(k,l) 6=(i,j)

cp
kl





≤ 1

|Γ|(−2nǫ + (|Γ| − 1)ǫ)

<
1

|Γ|(−|Γ|ǫ)

= −ǫ

Therefore there exists a cycle in Af ′ whose mean cost is less than −ǫ, which is a
contradiction. Therefore the flow on the arc (i, j) must be fixed. ✷

We can now show that this analysis gives a strongly polynomial time algorithm.

Theorem 7.9 The algorithm terminates after O(m2n log n) iterations.

Proof: Once an arc is fixed, it will always remain fixed since ǫ(f) is non-increasing.
We now claim that a new arc will be fixed after at most k = mn log(2n) iterations.
Let f be the current circulation and Γ be the cycle cancelled in this iteration. Then

ǫ(f (k)) ≤
(

1− 1

n

)n log 2n

ǫ(f)

< e− log 2nǫ(f)

=
ǫ(f)

2n

Let pk be the potentials associated with the flow f (k) such that the flow is ǫ(f (k))-
optimal. Then

−ǫ(f) =
cpk

(Γ)

|Γ| < −2nǫ(f (k))
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Therefore, ∃(i, j) ∈ Γ such that cpk

ij < −2nǫ(f (k)). Therefore (i, j) is fixed.

Further, note that (i, j) was not ǫ(f)-fixed since (i, j) ∈ Γ and the flow on it
changed when we cancelled Γ. But if it was ǫ(f)-fixed, the flow on it would not have
changed. Therefore we fixed a new edge. ✷

47



CS 361B Advanced Algorithms April 29, 2003

Lecture 8
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8.1 The primal-dual method

8.1.1 Introduction

So far, the algorithms we have studied have been primal algorithms. The algorithms
start with some feasible primal solution and move towards optimality. One could
also consider a dual algorithm, which maintains a dual feasible solution, and moves
towards optimality. Today we will start discussions of a special case of dual algorithms
known (in combinorial optimization) as primal-dual algorithms. They start with
some dual feasible solution and a primal infeasible solution. The algorithm moves
to reduce the infeasibility of the primal and increase the value of the dual while
maintaining complimentary slackness. We will introduce the primal-dual method with
an algorithm for the min-cost circulation problem. The fastest min-cost circulation
algorithm is a dual algorithm due to Orlin, and has running time O(m log n(m +
n log n)). We will then use the primal-dual method in an approximation algorithm
for a problem called the hitting set problem.

8.1.2 A minimum-cost circulation algorithm

The min-cost circulation problem is defined at the begining of Lecture 5. To begin,
we will look at the Primal LP for this problem.

Min
∑

(i,j)∈A

cijxij

subject to: ∑

k:(k,i)∈A

xki −
∑

k:(i,k)∈A

xik = 0 ∀i ∈ V

lij ≤ xij ≤ uij.

We then take the dual of this LP to obtain the following:
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Max
∑

(i,j)∈A

lijwij −
∑

(i,j)∈A

uijzij

subject to:

pj − pi + wij − zij = cij ∀(ij) ∈ A

wij ≥ 0

zij ≥ 0.

Now, suppose that the node potentials p are given. The reduced cost cp
ij = cij +

pi − pj , and cij + pi − pj = wij − zij in the dual LP. If we know the potentials,
then we can compute all dual variables by setting wij = max(Cp

ij, 0) ≡ (cp
ij)

+ and
−zij = min(cp

ij, 0) ≡ (cp
ij)

−. Therefore, finding potentials p yields a solution to the
dual and the following LP is equivalent to the dual LP:

Max
∑

(i,j)∈A

lij(c
p
ij)

+ −
∑

(i,j)∈A

uij(c
p
ij)

−

subject to:

cij + pi − pj = cp
ij ∀(ij) ∈ A

Complementary slackness conditions are then:

cp
ij > 0⇔ wij > 0⇒ xij = lij

cp
ij < 0⇔ zij > 0⇒ xij = uij

Our primal dual algorithm will start with a dual feasible solution by setting all
potentials equal to 0. We will then determine whether there exists a primal feasible
solution that obeys complimentary slackness by defining a new circulation problem
with modified upper and lower bounds ũ and l̃.

Cp
ij > 0⇒ l̃ij = ũij = lij

Cp
ij < 0⇒ l̃ij = ũij = uij

Cp
ij = 0⇒ l̃ij = lij, ũij = uij

As with most primal dual approaches, we have reduced a problem with cost to
a problem without cost where we only need to check for feasibility. If we can find
a feasible circulation in the problem with bounds l̃ij and ũij, we are finished, since
then we will have a primal feasible solution and a dual feasible solution that obey the
complementary slackness conditions, and thus are optimal.

If not we can find a cut S such that l̃(δ+(S)) > ũ(δ−(S)). Here δ+(S) = {(i, j) ∈
A : i ∈ S, j /∈ S} is the set of arcs in the graph such that the tail is in S but the head
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is not. Similarly, δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} is the set of arcs in the graph
such that the head is in S but the tail is not. We will modify the dual to increase the
dual objective function. To do this, we will increase the potentials of nodes in the cut
S by a value β, chosen so that after modification all reduced costs stay on the same
side of zero.

β = min(min(|cp
ij| : (i, j) ∈ δ+(S) ∧ cp

ij < 0), min(cp
ij : (i, j) ∈ δ−(S) ∧ cp

ij > 0)).

Lemma 8.1 Increasing pi by β for all i ∈ S strictly increases the dual objective function.

Proof: How is the dual changed? To answer this, we define the reduced costs
after the addition of β:

Ĉp
ij =






Cp
ij + β (i, j) ∈ δ+(S)

Cp
ij − β (i, j) ∈ δ−(S)

Cp
ij Otherwise

The dual changes by

β




∑

(i,j)∈δ+(S):cp
ij≥0

lij −
∑

(i,j)∈δ−(S):cp
ij>0

lij +
∑

(i,j)∈δ+(S):cp
ij<0

uij −
∑

(i,j)∈δ−(S):cp
ij≤0

uij



 .

Note that ∑

(i,j)∈δ+(S):cp
ij≥0

lij +
∑

(i,j)∈δ+(S):cp
ij<0

uij = l̃(δ+(S))

and ∑

(i,j)∈δ−(S):cp
ij>0

lij +
∑

(i,j)∈δ−(S):cp
ij≤0

uij = ũ(δ−(S)).

Thus the dual changes by

β
(
l̃(δ+(S))− ũ(δ−(S))

)
> 0,

since by hypothesis l̃(δ+(S)) > ũ(δ−(S)). ✷

In summary:

Primal-Dual Algorithm

p← 0

While the solution to the new circulation problem (using l̃, ũ) is infeasible
Find a cut S
Increase potentials of nodes in S by β

Return circulation in the new circulation problem.
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The running time of this algorithm is O(mCU ∗max flow compuations) where m
is the number of arcs, C is the value of the largest edge cost, and U is the value of the
largest capacity. This is since the dual solution can be at worst −mCU and at most
mCU and we increase the dual by at least 1 each iteration by the integrality of the
costs and capacities. The algorithm is not polynomial time because of its dependence
on C and U . However, it is pseudopolynomial; that is, it is polynomial time if the
input is encoded in unary.

8.1.3 The hitting set problem

There are many problems, unlike the problems we have dealt with until now, that are
not known to be solvable in polynomial time. However, we can still design polynomial
algorithms with solutions that are provably close to the value of an optimal solution.

Definition 8.1 An algorithm is an α-approximation algorithm for an optimization prob-
lem if

1. The algorithm runs in polynomial time

2. The algorithm always produces a solution which is within a factor of α of the value
of the optimal solution

For example, the TSP problem has a 3
2
-approximation. Notice that this definition

does not require the problem to be NP-Hard. We will show how the primal dual
method can be used in an approximation algorithm for the Hitting Set problem.

Hitting Set

• Input:

– ground set E = {e1, e2, . . . , en}
– subsets T1, T2, . . . , Tp ⊆ E

– costs ce ≥ 0 e ∈ E

• Goal: Find min-cost A ⊆ E s.t. A ∩ Ti 6= ∅ ∀i

The integer program below models the hitting set problem.

Min
∑

e∈E

cexe

subject to: ∑

e∈Ti

xe ≥ 1 i = 1....p

xe ∈ {0, 1}
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The integer program can be relaxed to a linear program in the usual way:

xe ∈ {0, 1} → xe ≥ 0.

Once we have an LP relaxation, we can take the dual of this LP, and obtain the
following:

Max
∑

i

yi

subject to: ∑

i:e∈Ti

yi ≤ ce ∀e ∈ E

yi ≥ 0 ∀i

We want to show for our primal solution A ⊆ E that

∑

e∈A

ce ≤ α

p∑

i=1

yi ≤ αOPT,

for some value of α, where OPT is the optimal value of the integer primal solution.
Note that for any feasible dual solution y, the dual objective function

∑
i yi is a lower

bound on the cost an optimal solution to the linear programming relaxation, which
is a lower bound on the cost of an optimal integer solution, since the integer optimal
solution is feasible for the linear programming relaxation. Thus

∑p
i=1 yi ≤ OPT.

Our algorithm starts with the dual feasible solution yi = 0 ∀i. Complimentary
slackness conditions are:

yi > 0⇒
∑

e∈Ti

xe = 1

xe > 0⇒
∑

i:e∈Ti

yi = ce

We cannot obtain an optimal integral solution in polynomial time (unless P =
NP ), so we will have to modify the primal-dual schema in some fashion. Here we will
drop the first condition and maintain only the second. Given a feasible dual solution y,
the least infeasible solution that obeys the second complementary slackness condition
is obtained by setting A = {e ∈ E :

∑
i:e∈Ti

yi = ce}. A is feasible iff A∩ Ti 6= ∅ ∀i. If
A is feasible, we are done. Otherwise, ∃k s.t. A ∩ Tk = ∅ ⇒ ∀e ∈ Tk

∑
i:e∈Ti

yi < ce.
We call such a set Tk a violated set.

Therefore, we can increase the dual objective function by raising the value of yk.
We will increase yk by arg mine∈Tk

{ce −
∑

i:e∈Ti
yi}.

This leads to the following algorithm:
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Primal-Dual Algorithm

y ← 0
A← ∅
While A is not feasible

Choose some violated Tk (i.e. Tk s.t. A ∩ Tk = ∅)
Increase yk until ∃ e ∈ Tk such that

∑
i:e∈Ti

yi = ce

A← A ∪ {e}
Return A.

Once an element e is in A, none of the sets Ti that contain it can be violated, there-
fore none of the associated dual variables yi will be increased later in the algorithm.
Therefore, ∑

e∈A

ce =
∑

e∈A

∑

i:e∈Ti

yi

because the second complimentary slackness condition was maintained throughout
the algorithm. Further,

∑

e∈A

∑

i:e∈Ti

yi =

p∑

i=1

yi|A ∩ Ti|

We now obtain an approximation algorithm by showing that ∀i, |A ∩ Ti| ≤ α
for some reasonable α. As an example, we apply this algorithm to the vertex cover
problem. We transform vertex cover into a hitting set problem where V is the ground
set of elements, the costs ce of the elements are the weights of the vertices, and we
must hit the sets Ti = {u, v} for each (u, v) ∈ E. Since |Ti| = 2 for each set, it follows
that |A ∩ Ti| ≤ 2 for all i, and by the reasoning above we have a 2-approximation
algorithm for vertex cover.
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CS 361B Advanced Algorithms May 1, 2003

Lecture 9

Lecturer: David P. Williamson Scribe: Sanders Chong

9.1 The primal-dual method (cont.)

9.1.1 The feedback vertex set problem

In previous lectures we discussed methods to “solve” the Hitting Set and Vertex
Cover within a factor α of optimal. Furthermore, we introduced the primal-dual
formulation to generate an algorithm and prove α-optimality. In this lecture, we
begin by presenting yet another example: the Feedback Vertex Set Problem (FVS).

Feedback Vertex Set in Undirected Graphs

• Input:

– Undirected graph G = (V, E)

– Weights wi ≥ 0 ∀i ∈ V

• Goal: Find S ⊆ V minimizing
∑

i∈S wi such that for every cycle C in G,
C∩S 6= ∅. (Equivalently, find a min-weight set of vertices S such that removing
S from the graph causes the remaining graph to be acyclic).

We claim that the feedback vertex set problem is just a hitting set problem with:

• Ground set V

• Cost wi

• Sets to hit: Ti = Ci for each cycle Ci in graph

We now have a hitting set problem with potentially an exponential number of sets
to hit. How do we deal with this problem? The answer is that we do not need to
enumerate or find all cycles: the algorithm only needs to find a violated set when one
exists.

Before we formulate the FVS using the primal-dual method, let us first recap what
is needed : To apply the primal-dual method, we first need a primal and a dual. The
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integer program below models the feedback vertex set problem.

Min
∑

i∈V

wixi

subject to: ∑

e∈Ci

xi ≥ 1 ∀ cyclesCi

xe ∈ {0, 1}.

The integer program can be relaxed to a linear program in the usual way:

xe ∈ {0, 1} → xe ≥ 0.

Once we have an LP relaxation, we can take the dual of this LP, and obtain the
following:

Max
∑

C

yC

subject to: ∑

C:i∈C

yC ≤ wi ∀i ∈ V

yC ≥ 0 ∀ cycles C

The basic goal in the primal dual method is to obtain a solution A ⊆ E and a
dual feasible solution y such that

∑

i∈A

wi ≤ α
∑

C

yC ≤ αOPT,

for some value of α.

With this in mind, let us now formulate the primal-dual method here and get a
good performance guarantee. This follows if we can show that |A ∩ Ci| ≤ α for all
cycles Ci on which yi > 0. This would be true if |Ci| ≤ α for all cycles i, but α can
be as large as n in this case. To be able to bound |A ∩ Ci| in this case, we consider
only “interesting” vertices. An interesting vertex will be defined as a vertex that we
will consider to be in solution subset A.

First of all, any vertex not in any cycle is not interesting, since it can’t participate
in the solution set. Additionally, on any path of nodes of degree 2, only one vertex is
interesting; namely, the vertex of least cost, since any cycle which goes through the
vertices on this path also goes through this vertex of least cost. Thus we may as well
only consider the vertex of least cost.

To get our algorithm, we need the following lemma:

Lemma 9.1 (Erdös, Posa) In every non-empty graph which is not a forest, there is a
cycle of at most 4 log2 n interesting vertices.
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Proof: From G we create a graph G′ consisting of only interesting vertices by
deleting vertices not in any cycle, and shortcutting all remaining uninteresting vertices
out of G. Note that there is still a one-to-one correspondance of cycles in G and G′.
Now G′ has no degree 1 vertices, and each vertex of degree 2 has two neighbors of
degree more than 2.

We now find the requisite cycle. We do a breadth-first search of G′. By the
properties of the graph, if we do not close a cycle by revisiting a previously explored
node, then at least in every other level the number of explored nodes increases by a
factor of 2. Thus at depth i, we will have explored 2i/2 nodes. By depth 2 log2 n, we
will have found a cycle. ✷

We can now state our primal-dual algorithm.

Primal-DualFVS (Bar-Yehuda, Geiger, Naor, Roth 1994)

y ← 0
A← ∅
I ← interesting vertices of G
While A is not feasible

Find cycle C s.t. |C ∩ I | ≤ 4 log2 n
Increase yC until ∃ i ∈ I :

∑
C:i∈C yC = wi

A← A ∪ {i}
Remove i from graph, remove all vertices no longer in cycles from I ,

remove new uninteresting verts (w.r.t. to prices
w̃i = wi −

∑
C:i∈C yi).

Return A.

We should observe that no uninteresting vertex ever becomes interesting again.
Certainly any vertex not in any cycle will be part of a cycle again. Similarly, any
uninteresting vertex on a path of degree two nodes will always be in the same cycles
as the interesting vertex on that path, and thus choosing the interesting vertices in
the way specified above guarantees that an interesting vertex will be one for which
the dual inequality becomes tight first. This also implies that the dual solution we
construct is feasible. We leave a formal proof of this to the reader.

Theorem 9.2 (Bar-Yehuda, Geiger, Naor, Roth ’94) PrimalDualFVS is a (4 log2 n)-
approximation algorithm for the feedback vertex set problem in undirected graphs.
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Proof: By using the standard primal-dual analysis, we have that

∑

i∈A

wi =
∑

i∈A

∑

C:i∈C

yC

=
∑

C

yC |A ∩ C|

≤
∑

C

yC |I ∩ C|

≤ (4 log2 n)
∑

C

yC

≤ (4 log2 n)OPT.

✷

In fact, one can get a 2-approximation algorithm for this problem using the primal-
dual method; however, one has to use a substantially different integer programming
formulation of the problem, and we will not get into it here. For further discussion, see
papers by Chudak, Goemans, Hochbaum, and Williamson; and the paper by Fujito.

9.1.2 Shortest s-t path

Here we consider the problem of finding the shortest s-t path in an undirected graph.
This problem can be seen as a hitting set problem as follows:

Ground Set : the set of edges E
Costs : ce ≥ 0, ∀e ∈ E
Sets to Hit : Ti = δ(Si), s ∈ Si, t /∈ Si

where δ(S) = {(u, v) ∈ E : u ∈ S and v /∈ S}. That is, the sets Si are the s-t cuts
and the sets Ti = δ(Si) are the edges crossing the s-t cuts.

To see that this hitting set problem captures the shortest s-t path problem, we
need that a set of edges contains an s-t path if and only if it hits every s-t cut1. First,
if a set of edges A does not cross some s-t cut Si then A must consist exclusively of
edges joining two vertices of Si or joining two vertices of the complement of Si. Thus
any path starting from s ∈ Si consisting of such edges can only bring us to vertices
that are also in Si, but t /∈ Si. Conversely, if a set of edges does not contain an s-t
path then let Si be the largest connected component (corresponding to those edges)
containing s. By assumption t /∈ Si and the set of edges could not contain any edge
from δ(Si) or else we could have found a larger connected component containing s
by including the other vertex incident on that edge. Thus the absence of an s-t path
implies that some s-t cut was not hit. We find then that a set of edges contains an
s-t path if and only if it hits every s-t cut.

1This follows directly from the max-flow/min-cut theorem, but for completeness we prove it here.
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We now wish to apply the primal-dual method to this problem. We set up our
primal and dual:

Min
∑

e∈E

cexe

subject to: ∑

e∈δ(S)

xe ≥ 1 ∀S : s ∈ S, t /∈ S

xe ≥ 0

Max
∑

S

yS

subject to: ∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S : s ∈ S, t /∈ S

To use our primal-dual algorithm, we have to say which violated s-t cut we will
choose in each iteration of the algorithm. We will choose the cut S which is the
connected component containing S. By the reasoning above, S will not contain t
unless we have already selected an s-t path.

The problem with the standard primal-dual method is that it will include too
many edges not on the path from s to t. Hence we will need to add some steps at
the end to get rid of all edges not on the s-t path. We do this in a particular fashion
below (in the reverse of the order in which edges are added) not so much because it is
useful for this particular problem, but because it is useful for several other problems.

Primal-DualSP

y ← 0
A← ∅
l← 0 (l is a counter)
While A is not feasible

l ← l + 1
Let S be the connected component containing s
Increase yS until ∃ el ∈ δ(S) :

∑
S:el∈δ(S) yS = cel

A← A ∪ {el}
For j ← l down to 1

If A− {ej} is still feasible
A← A− {ej}

Return A′ ← A.
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Once again, we have that

∑

e∈A′

ce =
∑

e∈A′

∑

S:e∈δ(S)

yS =
∑

S

yS|A′ ∩ δ(S)|.

In the following theorem, we will see that for all S such that yS > 0, |A′ ∩ δ(S)| =
1. Thus this algorithm is optimal; in fact, it is just Dijkstra’s algorithm cleverly
disguised.

Theorem 9.3 For all S such that yS > 0, |A′ ∩ δ(S)| = 1.

Proof: Let AS be the edges in A when we increased the variable yS. Let B =
A′−AS. Let k be the iteration in which we increase yS. Observe that AS∪B contains
an s-t path, and furthermore, that if we remove any edge e ∈ B, AS ∪B− e no longer
contains an s-t path. This follows because when we go through the edge deletion step
at the end of the algorithm, when we reach the consideration of edge ek, the remaining
edges in A are exactly AS ∪ B, and all edges in B were necessary for feasibility.

Now let s, v1, v2, . . . , vl, t be an s-t path in (V, AS ∪ B). Choose i such that
vi ∈ S, vi+1 /∈ S where i is as large as possible. Since S is a connected component
there must be a s-vi path exclusively in S of the form s, w1, w2, . . . , wj, vi, where
wℓ ∈ S. Thus s, w1, w2, . . . , wj, vi, vi+1, . . . , vl, t is an s-t path. Since all the edges
(vi, vi+1), . . . , (vl, t) are not in AS, they must be in B. Therefore

|A′ ∩ δ(S)| = |B ∩ δ(S)| = |{(vi, vi+1)}| = 1,

since the first edge is the only one to have an endpoint in S. ✷
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Lecture 10

Lecturer: David P. Williamson Scribe: Shubha Nabar

10.1 The primal-dual method (cont.)

10.1.1 Generalized Steiner trees

We now consider another problem for which the primal-dual method gives a good
approximation algorithm, the Generalized Steiner Tree problem.

Generalized Steiner Tree Problem

• Input:

– An undirected graph G = (V, E)

– l pairs of vertices (si, ti), i = 1 . . . l

– Costs ce ≥ 0 for each edge e ∈ E

• Goal: Find a minimum-cost set of edges F such that for all i, si and ti are in
the same connected component of (V, F ).

This can be modelled as a hitting set problem:

Ground Set : the set of edges E
Costs : ce ≥ 0, ∀e ∈ E
Sets to Hit : Ti = δ(Si) iff |Si ∩ {sj, tj}| = 1 for some j (the sj-tj cuts).

Note that by the logic we used for the shortest s-t path problem that a set of edges
will be feasible for this hitting set problem if and only if it contains a path between
si and ti for each i.

Let us consider how to apply the primal-dual method to this problem. Suppose
we do more or less the same thing here we did for the shortest s-t path problem.
We know that if A is not feasible then there must be some connected component S
containing sj but not tj for some j. Suppose the algorithm picks δ(S) as the violated
set and increases its dual. The difficulty is that the reasoning used above in the s-t
path problem will not yield a good bound here since a solution A′ may cross the cut
many times. Consider the problem for which s = s1 = s2 = · · · = sl and for which
there are edges (s, tj), ∀j and say that A′ = {(s, tj)}, j = 1 . . . n is a solution in which
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all edges are necessary, and that crosses the cut δ({s}) l times, which implies an
l-approximation algorithm (since |A′ ∩ δ(S)| = l). This is not very good.

Perhaps we picked the wrong infeasible solution to augment; that is, maybe our
previous algorithm will work if we change the way that we choose the violated set.
It turns out that this approach does not work either because it still leads to a l-
approximation in the worst case scenario (where all the s’s are in one group, uncon-
nected to any of the t’s).

Suppose we consider all the reasonable choices of violated sets (e.g. all connected
components S containing one of sj or tj for some j). If we look at the example above,
the average of |A′ ∩ δ(S)| over these S is l+l

l+1
< 2. Therefore it might be wise to pick

several violated sets and increase the associated dual variables all at the same time.
We do this in the algorithm below:

Primal-DualGST

y ← 0
A← ∅
l← 0 (l is a counter)
While A is not feasible

l ← l + 1
Cl ← {S : S a connected component of (V, A) : |S ∩ {sj, tj} = 1}
Increase yS for all S ∈ Ci uniformly until ∃ el /∈ A :

∑
S:el∈δ(S) yS = cel

A← A ∪ {el}
For j ← l down to 1

If A− {ej} is still feasible
A← A− {ej}

Return A′ ← A.

We claim that our statement about the average over this choice of violated sets
holds in general.

Claim 10.1 ∑

C∈Ci

|A′ ∩ δ(C)| ≤ 2|Ci|.

From the claim we can prove the following lemma.

Lemma 10.2 Claim 10.1 implies that
∑

e∈A′

ce ≤ 2
∑

S

yS.

Proof: From prior analysis we know that
∑

e∈A′

ce =
∑

e∈A′

∑

S:e∈δ(S)

yS =
∑

S

yS|A′ ∩ δ(S)|.
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Hence we want to show that

∑

S

yS|A′ ∩ δ(S)| ≤ 2
∑

S

yS.

We prove this by induction on the construction of y by the algorithm. In the base
case, y = 0, so the inequality is true. Suppose the inequality holds in the ith iteration.
In iteration i + 1, suppose we increase all dual variables yS for S ∈ Ci by ǫ. Then the
right-hand side of the inequality increases by 2ǫ|Ci+1|, and the left-hand side of the
inequality increases by ǫ

∑
C∈Ci
|A′ ∩ δ(C)|. But given Claim 10.1, this means that

the increase of the left-hand side is no more than the increase of the right-hand side,
and thus the inequality continues to hold. ✷

We now prove the claim.

Theorem 10.3 ∑

C∈Ci

|A′ ∩ δ(C)| ≤ 2|Ci|.

Proof: Consider Ai in iteration i. Let B = A′ − Ai. As we argued in the case of
the shortest s-t path problem, Ai ∪ B is a feasible solution to the problem, but for
any e ∈ B, Ai ∪B − e is not feasible.

Suppose we contract every connected component of (V, Ai). In this contracted
graph, call the nodes corresponding to the connected components in Ci red and the
rest blue. Now consider the graph G′ = (V ′, B) where V ′ is the vertex set. We note
that G′ must be a forest, since if it had a cycle we could remove an edge of the cycle
and maintain feasibility, contradicting the fact that every edge in B is necessary.

How does the inequality we wish to prove translate to the graph G′? Note that
|A′ ∩ δ(C)| in G for a connected component C is equal to deg(v) in G′ for the vertex
v corresponding to S. Similarly, |Ci| in G is simply the number of red vertices in G′.
We let Red and Blue represent the sets of red and blue vertices in G′, so that we can
rewrite the above inequality as

∑

v∈Red

deg(v) ≤ 2|Red|.

We will need the following claim.

Claim 10.4 If v ∈ Blue then deg(v) 6= 1.

Proof: If deg(v) = 1 then we claim Ai∪B−e is feasible for e ∈ B and adjacent to
v; this is a contradiction. Let S be the connected component in G that corresponds
to the vertex v in G′. If Ai ∪B− e is not feasible, then there must be some sj-tj pair
that is connected in (V, Ai ∪B) but not in (V, Ai ∪B − e). Thus either sj or tj is in
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S, and the other vertex is in V −S. But then it must have been the case that S ∈ Ci
and v ∈ Red, which is a contradiction. ✷

To complete the proof, we first discard all blue nodes with deg(v) = 0. Then

∑

v∈Red

deg(v) =
∑

v∈Red∪Blue

deg(v)−
∑

v∈Blue

deg(v)

≤ 2(|Red| + |Blue|)− 2|Blue|
= 2|Red|

The inequality follows since the sum of the degrees of nodes in a forest is at most
twice the number of nodes, and since every blue node has degree at least two. ✷

This 2-approximation algorithm for the generalized Steiner tree is just an example
of the kind of graph problem for which the primal-dual method can obtain a good
approximation algorithm. A generalization of the proof above gives 2-approximation
algorithms for many other graph problems. The result above is due to Agrawal, Klein,
Ravi ‘95 and Goemans, W ‘95.
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Lecture 11

Lecturer: David P. Williamson Scribe: Mihaela Enăchescu

11.1 Generalized flows

In this lecture we come back to discuss algorithms on (generalized) flows. We already
introduced a generalization of flows, when we considered adding costs to the edges.
Today we will consider a model in which the edges are also “lossy” so the flow is no
longer conserved, but transformed along edges. This models leaks, theft, taxes, etc.

80•
γ=3/4

,, •
γ=1/2

,, •30

In the above graph, if we start with 80 units of flow, we obtain 60 units after
following the first arc and 30 units after the second arc. We call the parameter γ the
“gain” of the edge.

Another application for this model would be converting currency. Consider, for
instance, the graph below in which we want to convert, say, $1000 into Hungarian
forints. Besides the “gain” factor we can also add, as before, capacity constraints to
(some) edges, for example we can convert at most $800 directly into forints. Note
that some paths lead better rates than others; for example, the $ → euro → forint
path gives an exchange rate of 6 forints/$ as opposed to the direct path for which
the rate is just 5).

$

euro

forintyen

γ=10/3

γ=5
u=800

u=400
γ=.8

γ=125 γ=1/21

γ=.5

γ=9/5

Figure 11.1: Currency conversion
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11.1.1 Definitions

In this section we will define the generalized circulation problem. We will state the
problem first, then give additional definition to clarify the notation/meaning of our
goal.

Generalized Circulation Problem

• Input:

– A symmetric directed graph G = (V, A), i.e. (i, j) ∈ A⇒ (j, i) ∈ A

– Source s and sink t, s, t ∈ V

– Integer capacities uij ∀(i, j) ∈ A

– Gains γij : γji = 1/γij for all (i, j) ∈ A

– All γ’s are ratios of integers

– All input integers are bounded by B.

• Goal: Find a circulation g that maximizes the excess eg
t , denoted by |g|, and

also called the value of the flow.

The following definitions will help us clarify what we mean by excess of a flow in
the context of the generalized circulation problem.

Definition 11.1 A flow g : A→ ℜ is a generalized pseudo-flow if:

• gij ≤ uij ∀(i, j) ∈ A (capacity constraints)

• gij = −γijgji (anti-symmetry condition)

Definition 11.2 The residual excess of a flow g at a node i is given by

eg
i = −

∑

j:(i,j)∈A)

gij.

If eg
i > 0 we say we have an excess at node i. If eg

i < 0 we say we have a deficit at node
i.

For example if the flow on the upper edge of the figure below is 200 units, then
the flow on the lower reverse edge is -40 by antisymmetry. Note that the definition of
excess, although somewhat unintuitive, is capturing the notion of the total amount
of flow entering a node minus that leaving the node.

200•
γ=1/5

,, •40
γ=5

ll
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Definition 11.3 A flow g is a pseudo-flow such that eg
i ≥ 0 ∀i ∈ V .

Definition 11.4 A circulation is a flow such that eg
i = 0 ∀i ∈ V, i 6= t.

Definition 11.5 Given a pseudo-flow g in a graph G = (V, A, u), we define the residual

graph Gg = (V, Ag, u
g) (where the u’s denote the capacities) as follows:

Ag = {h(i, j) ∈ A : gij < uij}
ug

ij = uij − gij

Definition 11.6 A labeling function µ : V → ℜ≥0 ∪ {∞} such that µt = 1, represents
the change in units of measurement of a node. Namely

µi =
old units

new units

For example if we wanted to perform the currency conversion (from Figure 1) in
cents instead of dollars, we would need µ$ = 1/100. The conversion rates involving
the relabeled node would be affected (5 forints/$ becomes .05 forints/cent), and also
the capacity of the edges incident to the node (800 would become 80000 on the lowest
edge, for instance).

In general we would have to perform the following changes for the gains, capacities,
and excess at each relabeled node:

uµ
ij = uij/µi

γµ
ij = γij × µi/µj

eµ
i = ei/µi

Note that relabelling does not change the value of |g| since µt = 1 by definition.

Definition 11.7 For a path P , we define the gain of the path as follows:

γ(P ) =
∏

(i,j)∈P

γij

Similarly for a cycle C , the gain of the cycle is:

γ(C) =
∏

(i,j)∈C

γij.

We use the following terminology for a cycle C . If γ(C) > 1, then C is a flow-

generating cycle. If γ(C) < 1, then C is a flow-absorbing cycle. If γ(C) = 1, then C
is a unit-gain cycle.
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Definition 11.8 We call µ a canonical labeling if

µi = max
path P from i to t

γ(P )

We can find the maximum γ(P ) by setting cij = − log(γij), and finding the short-
est path in G using lengths cij . This is true because

∑

(i,j)∈P

cij = −
∑

(i,j)∈P

− log(γij) = − log
∏

(i,j)∈P

γij = − log(γ(P )).

So finding the shortest path using lengths cij is equivalent to maximizing the gain
from i to t. However, shortest paths are not well-defined if we have any negative-cost
cycles. Here negative-cost cycles are equivalent to having flow generating cycles, since

∑

(i,j)∈C

cij < 0⇔ log(γ(C)) > 0⇔ γ(C) > 1.

We will use the convention that if we cannot reach t from i then µi =∞ (and also
c/∞ = 0, ∞/c =∞, ∞c/∞ = 1 for any constant c).

Finally we want to define what we would like to detect if we have not yet discovered
the optimal solution (our circulation does not yet produce the maximal excess).

Definition 11.9 A generalized augmenting path (GAP) is a flow generating cycle in the
residual graph Gg with a (possibly trivial) path from a node on cycle to the sink t.

11.1.2 Optimality conditions

We are now ready to state the optimality conditions for the generalized circulation
problem.

Theorem 11.1 The following are equivalent for a generalized circulation g:

1. g is optimal

2. Gg has no generalized augmenting paths (no GAPs).

3. There exist labeling µ such that the relabeled gains satisfy

γµ
ij ≤ 1, ∀(i, j) ∈ Ag

Proof:

67



• (¬2⇒ ¬1) Assume that a GAP exists in Gg . Let C be the flow generating cycle,
and P be the path from a node i on the cycle to the sink t. Now consider a flow
of δ coming into i (ignore for now the source of this flow). If we push this flow
around the cycle C we end up back at i with a flow of δγ(C). Since γ(C) > 1 we
can pay back the original δ flow, and still remain with δ(γ(C)− 1) > 0 amount
of flow at i. Pushing forward this flow from i to t on the path P , we add an
extra δ(γ(C) − 1)γ(P ) flow at t. Set δ such that residual capacities (along C
and P ) are obeyed, and we get a circulation g′ such that |g′| > |g|. Thus g was
not optimal.

• (2 ⇒ 3) Let S be the set of nodes that can reach t in Gg. We have no GAPs
(by assumption) in S, thus there are no negative cost cycles in S for costs
cij = − log γij. Set ci to be the shortest path from i to t with costs cij, and
µi = eci. If (i, j) ∈ Ag then, by definition of the ci’s we have that ci ≤ cj + cij.
This implies that

µi ≤ ecijµj = (1/γij)µi.

Thus γijµi/µj ≤ 1. By setting µi = ∞ for all i ∈ V − S we ensure that our
labeling satisfies the conditions of (3).

• (3⇒ 1) Consider any other circulation g̃.

– If (i, j), (j, i) ∈ Ag, γµ
ij ≤ 1 and also γµ

ji ≤ 1, by (3). However, γµ
ji = 1/γµ

ij

Thus, we conclude that γµ
ji = γµ

ij = 1.

– If (i, j), (j, i) /∈ Ag, then it must be the case that the flow through (i, j)
is completely determined by the capacity constraints. Thus gij = g̃ij and
gji = g̃ji.

– If (i, j) ∈ Ag and (j, i) /∈ Ag we have γµ
ij ≤ 1⇒ γµ

ji ≥ 1. Thus gji = uji ≥
g̃ji Also, since gij = −γjigji and g̃ij = −γjig̃ji (by antisymmetry), it follows
that gji ≥ g̃ji implies that gij ≤ g̃ij .

In all the above three cases we have that for any arc (i, j)

(γµ
ij − 1)(gij − g̃ij) ≥ 0,

with equality, actually, in the first two cases. Summing over all arcs, we obtain
∑

(i,j)∈A

(γµ
ij − 1)(gij − g̃ij) ≥ 0.

We can rewrite this as
∑

(i,j)∈A

γµ
ij(gij − g̃ij)−

∑

(i,j)∈A

(gij − g̃ij) ≥ 0.

By antisymmetry −γµ
ijgij = gji, so we again rewrite the above as

∑

(i,j)∈A

(g̃ji − gji)−
∑

(i,j)∈A

(gij − g̃ij) ≥ 0.
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Since in a circulation ei
g = −∑j:(i,j)∈A gij = 0, for all i 6= t, we can reduce in

the previous expression, for both g and g̃, all arcs that are not leaving t. We
obtain, finally, that

∑

i:(t,i)∈A

g̃ti −
∑

i:(t,i)∈A

gti ≥ 0⇔ −
∑

i:(t,i)∈A

gti ≥ −
∑

i:(t,i)∈A

g̃ti.

The last expression is, by definition, |g| ≥ |g̃|, and it is true for any arbitrary
circulation g̃. Thus we can conclude that g is optimal, so (1) holds.

✷
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Lecture 12

Lecturer: David P. Williamson Scribe: Chuong Do

12.1 Generalized flows (cont.)

12.1.1 Truemper’s algorithm for generalized flow

Last class, we considered a generalized circulation problem in which arcs (i, j) are
associated with gains γij > 0 which serve as multiplicative transformations of flows
along those edges. We defined pseudoflows g : A→ ℜ which met capacity (gij ≤ uij)
and antisymmetry (gji = −γijgij) constraints, and defined the residual excess of a
node i in a pseudoflow g as eg

i = −∑j:(i,j)∈A gij. The generalized circulation problem
then was to find a pseudoflow that maximized the residual excess at some sink node
t, eg

t ≡ |g|, subject to constraints that eg
i = 0, ∀i ∈ V, i 6= t.

To do this, we defined the residual graph Gg = (V, Ag, u
g) consisting of edges

(i, j) ∈ A with gij < uij such that ug
ij = uij − gij . We also developed a notion

analogous to the reduced costs of the min-cost circulation problem. Given a labeling
function µ : V → ℜ≥0∪{∞} subject to the scaling constraint that µt = 1, we defined
the relabelled quantities uµ

ij = uij/µi, γµ
ij = γijµi/µj , and eg,µ

i = eg
i /µi. We called µ a

canonical labeling if µi = maxpaths P in Gg from i to t γ(P ) =
∏

(i,j)∈P γij for all i ∈ V . We
noted that we could compute these canonical labels using the Bellman-Ford shortest
path algorithm with costs cij = − log γij as long as there were no negative cost cycles
in the graph, or equivalently, no flow-generating cycles in Gg (γ(C) > 1). Finally, we
defined a generalized augmenting path (GAP) as consisting of a flow-generating cycle
in Gg with a connecting path to the sink t (possibly trivial) and proved the following
theorem:

Theorem 12.1 The following are equivalent for a circulation g:

1. g is an optimal circulation.

2. Gg has no GAPs.

3. There exists a labeling µ such that γµ
ij = γijµi/µj ≤ 1, ∀(i, j) ∈ Ag.

How can we solve this problem? We’ll look at a primal-dual style algorithm which
decouples GAPs by (1) pushing flows along flow-generating cycles to create excesses
at nodes, and (2) pushing these excesses to the sink. To accomplish the first aim,
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we use a min mean-cost cycle canceling algorithm on costs cij = − log γij as in the
min-cost circulation problem. In this case, however, the costs are no longer integral,
so new (weaker) termination criteria are needed (see Problem Set 3). For now, we
state without proof:

Claim 12.2 We may cancel all flow-generating cycles in time O(m2n3 log(nB)).

Once all flow-generating cycles have been cancelled, we may compute canonical
labels using the Bellman-Ford shortest path algorithm as described earlier. Let ci be
the length of the shortest path from i to the sink t using edge costs cij . Then setting
µi = e−ci gives

cj ≤ ci + cij

− log µj ≤ − log µi − log γij

log γij + log µi − log µj ≤ 0

γµ
ij =

γijµi

µj
≤ 1.

Thus for all (i, j) ∈ Ag we have that γµ
ij ≤ 1. Thus, if we can move the excesses to

the sink node t, then we will have an optimal circulation satisfying the third criterion
by the theorem above. The following algorithm as described .

Truemper’s algorithm (1977)

Cancel flow-generating cycles
While ∃eg

i > 0 that can reach t in Gg

Compute canonical labels µ
Compute max flow f that pushes flow from {i ∈ eg

i > 0} in graph
(V, {(i, j) ∈ Ag : γµ

ij = 1}, ug
ij)

gµ
ij ← gµ

ij + fij

Observe that pushing flow along paths of unit gain cannot create new flow gen-
erating cycles. To see this, observe that if we push flow along arc (i, j) with γµ

ij = 1,
we may create a new arc (j, i) in the residual graph; however, its gain will be
γµ

ji = 1/γµ
ij = 1. Thus all arcs (i, j) in the residual graph will continue to have

relabeled gain of value at most 1, and hence there can be no flow-generating cycle.

There is one remaining issue that we will not address; namely, the algorithm needs
to be able to handle situations where excesses cannot reach the sink. We will assume
that we can “undo” the creation of such excesses.

We thus assume the correctness of the algorithm and seek to prove bounds on its
running time. The following lemma about Truemper’s algorithm helps us accomplish
this:
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Lemma 12.3 The number of iterations of the while loop is no more than the number
of different gains of paths.

Proof: After augmentation, there are no remaining augmenting paths on edges
with γµ

ij = 1. Any augmenting path must only use arcs (i, j) such that γµ
ij < 1.

Therefore, the gains for paths from excess nodes to the sink must decrease and thus
the new canonical labels are necessarily smaller than the old canonical labels. This
proves the lemma. ✷

Given this lemma, we just need to make sure that the number of different possible
gains is polynomially bounded. In general, though, this is not the case.

12.1.2 Gain scaling

However, we can force the desired condition by modifying the gains so that there are
only a polynomial number of different gains of paths by rounding the reduced gains
as follows. Let b = (1 + ǫ)1/n. Then define

γij = b⌊logb γµ
ij⌋

γji = 1/γ ij, ∀(i, j) ∈ Ag.

Note that rounding down is consistent for both γij and γji since both can only be
present in the residual graph if both are equal to 1 (given that we have cancelled all
flow-generating cycles).

How many different gain values of paths are now possible? We can bound the
gain of a path P by

B−n ≤ γ(P ) ≤ Bn,

and given that all gains are powers of b, then only

O(logb B2n) = O(n logb B) = O(n2 log(1+ǫ) B)

paths with different gains are possible. Thus, if we let H denote a network with
gains γ, then we may use the Truemper algorithm to find an optimal flow h in H is
polynomial time. To obtain an approximate solution to the original generalized flow
problem, we may interpret h in G as

gij =

{
hij if hij ≥ 0
−γjihji if hij < 0.

Finally, we may obtain the bounds on the approximation found.

Definition 12.1 A flow g is ǫ-optimal if for an optimal flow g∗, |g| ≥ (1− ǫ)|g∗|.
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Theorem 12.4 For an optimal flow h in H, its interpretation in G is ǫ-optimal.

Proof: Let g∗ be the optimal flow in G. What is its value in H? For each path P
pushing δ units of excess to the sink t gives γ(P )δ units at the sink. In H, the same
path gives

γ(P ) ≥ γ(P )δ

b|P |

≥ γ(P )δ

bn

≥ γ(P )δ

1 + ǫ
≥ γ(P )(1− ǫ)δ

units of flow at the sink. Thus, the total flow pushed to the sink in H by g is

∑

P

γ(P )δP ≥
∑

P

γ(P )δP (1− ǫ)

= (1− ǫ)|g∗|

so the optimal flow h must have value greater than (1−ǫ)|g∗| in the network H. Since
the gains in G are only larger than those in H, the interpretation of h in G will only
have larger value, and thus is at least (1− ǫ)|g∗|. ✷

This gives a polynomial time ǫ-optimal approximation algorithm for the general-
ized flow problem.

12.1.3 Error scaling

In the context of the approximation algorithm discussed in the previous section, we
give the following theorem without proof:

Theorem 12.5 Given a B−4m optimal flow, we can compute an optimal circulation in
O(CC + MF ) time where O(CC) is the time required for cycle cancelling and O(MF )
is the time required for a maximum flow computation.

Setting ǫ = B−4m, we can obtain a B−4m-approximation using the Truemper algo-
rithm with gain scaling. Unfortunately, this method gives an O(n2 log1+ǫ B) running
time which is polynomial in B, since log1+ǫ B for ǫ =−4m is O(B4m log B). This is
expoenential in the size of the input. It is possible, however, to modify the Truemper
gain scaling approach to derive an actual polynomial time algorithm for computing
exact generalized flows. To do this, we introduce the following algorithm.
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Iterated Rounded Truemper (Tardos & Wayne 1998)

g ← 0
For i← 1 to log2 B4m

g ←Cancel cycles in Gg

g ←Rounded Truemper (Gg ,
1
2
)

Rounded Truemper(G, ǫ)

Round down gains to (1 + ǫ)1/n to get graph H
h←Truemper(H)
Return interpretation of h in G

Theorem 12.6 For ǫ = 1
2
, Rounded Truemper runs in O(CC + (n2 log B)MF ) time.

Proof: Trivial. ✷

Theorem 12.7 Iterated Rounded Truemper computes a B−4m-optimal flow in
O((m log B)(CC + (n2 log B)MF )) time.

Proof: The initial flow is 1-optimal. Each iteration finds a 1
2
-optimal flow in Gg , so

the ith iteration is 2−i-optimal. In log2 B4m iterations, the flow is B−4m-optimal. ✷

Thus, Iterated Rounded Truemper solves the generalized flow problem in polynomial
time. The best known combinatorial algorithm for this problem runs in Õ(m3 log B)
time, ignoring logarithmic factors in n (Goldfarb, Jin, and Orlin, 1997). No strongly
polynomial has been discovered for this problem yet.
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Lecture 13

Lecturer: David P. Williamson Scribe: Charles-Henri Gros

13.1 Multicommodity flow

After studying max-flow, min-cost cirulation and generalized flows, we now move on
to an even more complex type of network problem: multicommodity flow.

This idea is once again to maximize flow, but this time we have several pairs of
sources and sinks (each representing a different “commodity”), but the “pipes” (edges
with capacities) are common.

Multicommodity flow

• Input:

– A directed graph G = {V, A}
– A set of k source-sink pairs: {(sa, ta), a = 1, . . . , k} ⊆ V 2

– a capacity function u : A→ N
– (optional) A set of k demands da : 1..k→ N

• Goal: Find a set of functions {fa : A→ ℜ, a = 1, . . . , k} such that:

– ∀a = 1, . . . , k, fa is a valid flow from sa to ta i.e.
∀a ∈ 1, . . . , k, ∀i ∈ V − {sa, ta},∑(i,j)∈A fa

i,j =
∑

(j,i)∈A fa
j,i

– The total flow respects capacities i.e. ∀(i, j) ∈ A,
∑

a=1,... ,k fa
i,j ≤ ui,j

– The total flow is maximized. This flow is equal to
∑

a=1,... ,k |fa| where
|fa| = ∑(sa,j)∈A fa

sa,j −
∑

(j,sa)∈A fa
j,sa

A “fair” version of the problem includes a set of k demands da, a = 1, . . . , k, and
the goal is to maximize λ = mina=1,... ,k

|fa|
da

13.1.1 A linear programming formulation

First we’ll define these quantities:

• XP the total flow along path P .
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• Pa = {paths P from sa to ta}

• P =
⋃

a=1..k Pa

The LP formulation of the max commodity flow problem is the following:

max
∑

P∈P
XP

∀(i, j) ∈ A,
∑

P∈P ,(i,j)∈P

XP ≤ ui,j

∀P ∈ P , XP ≥ 0.

The dual version of this LP is:

min
∑

(i,j)∈A

ui,jli,j

∀P ∈ P ,
∑

(i,j)∈P

li,j ≥ 1

∀(i, j) ∈ A, li,j ≥ 0.

In this program l might be viewed as an arc length function, in which case∑
(i,j)∈P li,j is the length of path P . Checking that all path lengths are at least 1

is equivalent to checking that the minimum length path from sa to ta is at least 1,
and we know how to do that (since l ≥ 0 there are no negative cost cycles).

13.1.2 An approximation algorithm

We give the following algorithm for the maximum multicommodity flow problem.

ε-approximate maximum multicommodity flow (Garg & Konemann 1998)

XP ← 0 ∀P ∈ P
li,j ← δ ∀(i, j) ∈ A
while ∃P ∈ P s.t. l(P ) =

∑
(i,j)∈P li,j < 1

Pick P such that l(P ) < 1
u← min(i,j)∈P ui,j

XP ← XP + u
∀(i, j) ∈ P, li,j ← li,j(1 + ε u

ui,j
)

Pick M such that X
M

is feasible
return X

M

Note that this algorithm is quite different from previous flow algorithms that we
have considered. We are not using the notion of a residual graph. Our solution X
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while running the main loop is not even necessarily feasible; it is quite possible that
the flow on an edge exceeds its capacity. Thus we scale down the flow at the end of
the algorithm to ensure that the solution we return is a feasible flow.

First we show that the algorithm will terminate quickly.

Lemma 13.1 The algorithm terminates after at most m log1+ε
1+ε
δ

iterations.

Proof: Initially, ∀(i, j) ∈ A, li,j = δ.

At no point in the algorithm is li,j ≥ 1 + ε. Indeed, li,j only changes if it is in a
path of length l < 1. Since all edges have positive length, this means that li,j < 1.
Furthermore, li,j is increased by a factor that is not above 1 + ε (since by definition
u ≤ ui,j) so it can’t become greater than 1 + ε.

Also, at each iteration at least one edge has its length augmented by a factor of
1 + ε.

So after m + 1 iterations, at least one edge has augmented by a factor of at least
(1 + ε)2. After k iterations, at least one edge has augmented by a factor of at least

(1 + ε)⌈
k
m
⌉ so has value at least δ(1 + ε)⌈

k
m
⌉. Since this value is necessarily less than

1 + ε, if we set i = ⌈ k
m
⌉, we have :

δ(1 + ε)i < 1 + ε

i < log1+ε

1 + ε

δ

So :

k ≤ mi < m log1+ε

1 + ε

δ
✷

We now show that if we scale the flow by a fixed quantity, the flow becomes
feasible.

Lemma 13.2 If we scale flows fa by M = log1+ε
1+ε
δ

then the total flow becomes
feasible.

Proof: Fix an edge (i, j). At each iteration k, if (i, j) ∈ Pk where Pk is the
selected path, the flow on this edge (i, j) is increased by uk. If we set ak = uk

ui,j
≤ 1,

the length li,j is increased by a factor of 1 + akε. At the end, li,j is increased by a
factor of

∏
k:(i,j)∈Pk

(1+akε). The flow on these edges, on the other hand, is increased

by
∑

k:(i,j)∈Pk
uk = ui,j

∑
k:(i,j)∈Pk

ak, starting from 0. Since initially li,j = δ, and at
the end li,j < 1 + ε, we have

δ
∏

k:(i,j)∈Pk

(1 + akε) < 1 + ε.
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Since ak ≤ 1, 1 + akε ≥ (1 + ε)ak so that

δ(1 + ε)
∑

k:(i,j)∈Pk
ak < 1 + ε

∑

k,(i,j)∈Pk

ak < log1+ε

1 + ε

δ
= M.

Thus since the total amount of flow on edge (i, j) is ui,j

∑
k:(i,j)∈Pk

ak, if we divide the

flows by M , the total amount of flow on edge (i, j) will be no more than ui,j, and the
flow will be feasible. ✷

Theorem 13.3 The algorithm computes a 1− 2ε approximate flow.

Proof: A few definitions:

• For length function l, we’ll set D(l) =
∑

(i,j)∈A ui,jli,j (dual objective function)

and α(l) = minP∈P l(P ).

• we’ll note lk the length function at the end of iteration k.

• we’ll also note D(k) = D(lk) and α(k) = α(lk).

• we’ll set β = minl feasible D(l) = minl≥0,α(l) 6=0
D(l)
α(l)

. This equality comes from the
fact that if you divide a positive length function by its corresponding shortest
path, the new shortest path becomes 1 so the length function becomes feasible.

• we’ll set Xk =
∑

P∈P Xk
P , primal value at the end of iteration k.

• t is the index of the last iteration.

By definition of t, 1 ≤ α(t). We’ll assume for now (we’ll prove it later) that

α(t) ≤ δneεXt

β

We then have:
Xt

β
≥ ln( 1

δn
)

ε

We now want to show that:
Xt

M
≥ (1− 2ε)β

We will set δ = (1+ε)((1+ε)n)−
1
ε . This value is chosen so that

ln( 1
δn

)

M
= (1−ε) ln(1+ε).

Xt

Mβ
≥ ln( 1

δn
)

Mε

≥ (1− ε) ln(1 + ε)

ε

≥ (1− ε)(ε− ε2/2)

ε
≥ (1− 2ε).
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Now we want to show that:

α(t) ≤ δneεXt

β

To do this, we consider how the dual objective function changes from iteration to
iteration. For an arbitrary iteration k,

D(k) =
∑

ui,jl
k
i,j

= D(k − 1) +
∑

(i,j)∈Pk

ui,jl
k−1
i,j (1 + ε

u

ui,j
− 1)

= D(k − 1) + εu
∑

(i,j)∈Pk

lk−1
i,j

= D(k − 1) + ε(Xk −Xk−1)α(k − 1).

Thus we have in the final iteration t that

D(t) = D(0) + ε
t∑

k=1

(Xk −Xk−1)α(k − 1).

We are looking for a bound on β. If we consider length function lt − l0, since β is
minimum we have

β ≤ D(lt − l0)

α(lt − l0)

D is linear so D(lt− l0) = D(t)−D(0). Now, α(lt− l0) is the length of some path P .
α(lt − l0) = lt(P ) − l0(P ) ≥ α(t) − δn since l0 is constant equal to δ on every edge,
and P has less than n edges. Thus we have that

β ≤ D(t)−D(0)

α(t)− δn

≤ ε
∑t

k=1(X
k −Xk−1)α(k − 1)

α(t)− δn
.

Rearranging terms, we have that

β(α(t)− δn) ≤ ε
t∑

k=1

(Xk −Xk−1)α(k − 1),

or that

α(t) ≤ δn +
ε

β
∑t

k=1(X
k −Xk−1)α(k − 1)

.
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Let α′(k) be the maximum possible value of α(k) given the above equation, for 1 ≤
k ≤ t, and α′(0) = δn. Then we have that

α′(0) = δn

α′(1) = δn +
ε

β
(X1 −X0)α′(0) = δn(1 +

ε

β
(X1 −X0))

α′(2) = δn +
ε

β
((X2 −X1)α′(1) + (X1 −X0)α′(0))

= α′(0)(1 +
ε

β
(X1 −X0)) +

ε

β
(X2 −X1)α′(1)

= α′(1)(1 +
ε

β
(X2 −X1)).

In general we obtain that

α′(k) = α′(k − 1)(1 +
ε

β
(Xk −Xk−1))

≤ α′(k − 1)e
ε
β

(Xk−Xk−1).

Then applying the bound repeatedly, we get that

α′(k) ≤ α′(0)e
ε
β
(Xk−X0).

So then
α(t) ≤ α′(t) ≤ α′(0)e

ε
β

(Xt−X0)

Since X0 = 0 and α′(0) = δn,

α(t) ≤ δne
ε
β

Xt

.

✷
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Lecture 14

Lecturer: David P. Williamson Scribe: Damon Mosk-Aoyama

14.1 Market equilibria

In this lecture, we consider a problem from economics: that of finding prices that
will cause a market to clear. We refer to this problem as the Market-Clearing Pricing
Problem.

Market-Clearing Pricing Problem

• Input:

– Set B of buyers

– Set A of unit amounts of divisible goods (|A| = n)

– Integer amount of money mi ∀i ∈ B

– Integer utilities uij ∀i ∈ B, ∀j ∈ A
(utility uij specifies the happiness buyer i derives from one unit of good j)

• Goal: Find prices pj ∀j ∈ A such that the market clears:

– All buyers buy only goods that maximize happiness

– All money is spent

– No goods remain unpurchased

It has been long known that prices exist that clear the market. A result of Arrow
and Debreu from 1954 implies the existence of market-clearing prices, though this
may not be earliest work that establishes the existence of such prices. The previous
proofs that market-clearing prices exist, however, were non-constructive.

The Market-Clearing Pricing Problem was defined in 1891 by Fisher, who invented
a hydraulic machine to solve it (in the case of three goods). Recently, in 2002, a
polynomial-time algorithm was given for the problem, demonstrating that there still
exist nice problems, which are solvable in polynomial time, for which no polynomial-
time algorithm was previously known. We present this algorithm for computing
market-clearing prices, which was developed by Devanur, Papadimitriou, Saberi, and
Vazirani.
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14.1.1 Characterizing market clearance using flow

First, we formalize the notion that all the buyers must buy only goods that maximize
their happiness in order for the market to clear. Given prices pj, the “bang per buck”
that a buyer i derives from a good j is the ratio of the utility uij to the price pj . Figure
14.1(a) depicts sample data and the corresponding bang per buck ratios. Buyers try
to maximize the bang per buck they get for the goods that they buy, and so we define
αi as follows to represent the best bang per buck that a buyer i can obtain.

αi = max
j∈A

uij

pj

A buyer i will only buy goods j such that
uij

pj
= αi. We define a graph that

represents the goods that each buyer may purchase.

Definition 14.1 The equality subgraph G = (A, B, E) is a bipartite graph (with vertex
sets A and B) where (i, j) ∈ E if and only if αi =

uij

pj
.

Given a particular set of prices pj ∀j ∈ A, we can determine whether the prices
clear the market by performing a maximum flow computation. We add a source
vertex s and a sink vertex t to the equality subgraph. For each good j ∈ A, we add
an arc (s, j) with capacity pj. For each buyer i ∈ B, we add an arc (i, t) with capacity
mi. We orient each edge (i, j) corresponding to a buyer i ∈ B and a good j ∈ A in
the equality subgraph as a directed arc (j, i) with capacity ∞. Figure 14.1(b) shows
an example of this graph for a particular collection of buyers and goods.

In this graph, flow from the source to the sink represents the transfer of money
in the market. A unit of flow on an arc (j, i) from a good j to a buyer i represents
a dollar spent by buyer i on good j. The total amount of flow from the source to
the sink is the total amount of money spent by the buyers on goods. Therefore, the
market clears (the buyers spend all their money) if and only if the maximum flow
value is

∑
i∈B mi.

14.1.2 An algorithm

The idea behind this algorithm for the Market-Clearing Pricing Problem is to start
with small prices, and to raise the prices over the course of the execution of the
algorithm. We will keep the prices sufficiently low to ensure that all the goods are
sold, but the buyers have left-over money (a surplus). We will maintain the invariant
that the singleton set {s} is a minimum s-t cut. The goal will be to find prices such
that V −{t} is also a minimum s-t cut, because the capacity of the arcs crossing this
cut is the total amount of money the buyers have. When this cut becomes a minimum
s-t cut, the value of the maximum flow is

∑
i∈B mi, and the market clears. We raise

the prices gradually, decreasing the surplus of the buyers until it reaches zero.
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Figure 14.1: (a) An example of the computation of the bang per buck that a buyer
obtains from different goods. The amounts of money the buyers have are shown on
the left, the prices of the goods are shown on the right, and the label for an edge
(i, j) indicates the utility uij. (b) A graph in which we can compute a maximum flow
to determine whether a set of prices clears a market. The arcs from goods to buyers
have infinite capacity.

Initialization of Prices

We want to assign small initial values to the prices to ensure that {s} is a minimum
s-t cut. To initialize the prices, we set pj = 1

n
∀j ∈ A. Under these prices, {s} is

a minimum s-t cut with value 1. We also need at least one buyer for each good. If
there are no buyers for good j, we compute αi = maxj∈A

uij

pj
for all buyers i. Then,

we reduce the price pj to the value maxi∈B
uij

αi
.

Raising Prices

When we raise the prices to decrease the surplus of the buyers, we would like to
ensure that all edges remain in the equality subgraph. Consider a buyer i for which
the edges (i, j) and (i, k) are both in the equality subgraph. By the definition of the
equality subgraph, we have

uij

pj
= uik

pk
, which implies that pk

pj
= uik

uij
. Multiplying both

pj and pk by the same factor will leave this ratio unchanged. As such, we increase
the prices from pj to p′j by setting p′j = pjx ∀j ∈ A for some factor x.

To determine the factor x that we will use to raise the prices, we consider the
different ways in which the equality subgraph may change when we raise the prices.

• Event type (1): By increasing x, the invariant that {s} is a minimum s-t cut
becomes violated.

In the previous example, multiplying the prices by the factor x = 2 causes
another minimum s-t cut to emerge, as shown in Figure 14.2(a). If we multiply
the prices by a factor x > 2, then we violate the invariant, because {s} is no
longer a minimum s-t cut.
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Figure 14.2: (a) An example of event type (1). If the prices are multiplied by a
factor x > 2, then the cut shown becomes the minimum s-t cut. (b) An example of
event type (2). Multiplying the prices of the active goods in (a) by a factor x = 1.25
causes the dashed edge shown between an active buyer and a frozen good to enter
the equality subgraph.

Note that in the example, the emergence of the new minimum s-t cut when the
prices are raised creates a desirable scenario for the last buyer, because all the
money available to that buyer can be spent on goods. In general, the market
clears in the subgraph involved in the new minimum s-t cut. As a result, we
can “freeze” the subgraph involved in the cut, and consider only the remaining
graph when we raise the prices again. At any point in the algorithm, we refer
to the subgraph in which we are increasing the prices as active, and to the rest
of the graph as frozen.

• Event type (2): A new edge from an active buyer to a frozen good enters the
equality subgraph.

Continuing the example from above, if we take the prices that caused the event
of type (1) to occur and multiply the prices for the active goods by x = 1.25,
then an edge between an active buyer and a frozen good is created in the equality
subgraph, as shown in Figure 14.2(b). To address this type of event, we unfreeze
the good incident on the new edge, and the connected component containing
the good.

Analysis and Description of Algorithm

Definition 14.2 For S ⊆ A, Γ(S) = {i ∈ B | ∃j ∈ S : (i, j) ∈ E}.

For a subset A′ ⊆ A of goods, let p(A′) =
∑

j∈A′ pj . Similarly, for a subset B ′ ⊆ B
of buyers, let m(B ′) =

∑
i∈B′ mi.
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Lemma 14.1 The invariant that {s} is a minimum s-t cut holds if and only if ∀S ⊆ A,
p(S) ≤ m(Γ(S)).

Proof: (⇒) If the invariant holds, then the maximum-flow minimum-cut theorem
implies that the maximum flow value is p(A). The maximum flow can have this value
only if all the arcs incident on s are at capacity, and so, for any S ⊆ A, the maximum
flow ships p(S) units of flow from the source to Γ(S). At most m(Γ(S)) units of
flow can be shipped from Γ(S) to the sink, and thus flow conservation implies that
p(S) ≤ m(Γ(S)).

(⇐) Consider any s-t cut {s}∪A1∪B1 other than {s}, where A1 ⊆ A and B1 ⊆ B.
Let A2 = A − A1 and B2 = B − B1. Since the arcs in the cut are those from s to
vertices in A2 and those from vertices in B1 to t, the value of the cut is p(A2)+m(B1).
We must have Γ(A1) ⊆ B1, because if this were not true, the cut would contain an
arc from a vertex in A1 to a vertex in B2, and all such arcs have infinite capacity.
This implies that m(Γ(A1)) ≤ m(B1). By assumption, p(A1) ≤ m(Γ(A1)), and so we
can combine these inequalities to obtain p(A1) ≤ m(B1). Now, the s-t cut {s} has
value p(A1) + p(A2) ≤ m(B1) + p(A2). This shows that the value of the cut {s} is at
most the value of any other cut, and therefore {s} is a minimum s-t cut. ✷

Suppose that we multiply the prices by a factor x∗ that causes a minimum s-t
cut other than {s} to emerge. For factors x > x∗, multiplying the prices by x will
cause the invariant to become violated. Lemma 14.1 implies that for some S ⊆ A,
x∗ · p(S) = m(Γ(S)). We call a set S ⊆ A that satisfies this equality tight.

We now state the algorithm for the Market-Clearing Pricing Problem.

Market-Clearing Prices (Devanur, Papadimitrou, Saberi, Vazirani 2002)

pj ← 1
n
∀j ∈ A

Compute αi = maxj∈A
uij

pj
∀i ∈ B

For each j ∈ A such that 6 ∃i ∈ B : (i, j) ∈ E, pj ← maxi∈B
uij

αi

(F, F ′)← (∅, ∅) (frozen graph)
(H, H ′)← (A, B) (active graph)
While H 6= ∅

Raise prices pj ← pjx ∀j ∈ H until either:
(1) S ⊆ H becomes tight

Move (S, Γ(S)) from (H, H ′) to (F, F ′)
Remove edges from F ′ to H

(2) For i ∈ H ′, j ∈ F αi =
uij

pj

Add (i, j) to E
Move connected component containing j from (F, F ′) to (H, H ′)

Return pj ∀j ∈ A.

There are several outstanding issues that we must address. First, can we imple-
ment the steps of the algorithm? Second, how long does the algorithm take?
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We begin to answer the first question here. The main challenge in implementing
this algorithm as stated lies in determining the minimum factor x for the prices that
will cause an event of one of the two types to occur. To compute this quantity, we
compute the minimum value of x that will cause an event of type (1) to occur, and
the minimum value of x that will cause an event of type (2) to occur, and we take
the smaller of these two values. We claim that events of type (2) can be detected
easily. In the next lecture, we will continue the analysis of this algorithm for the
Market-Clearing Pricing Problem by proving the following lemma.

Lemma 14.2 A value of x such that an event of type (1) happens can be determined
with n maximum-flow computations.
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Lecture 15

Lecturer: David P. Williamson Scribe: Paat Rusmevichientong

15.1 Market equilibria (cont.)

Recall the market-clearing pricing problem we introduced last time:

Market-Clearing Pricing Problem

• Input:

– Set B of buyers

– Set A of unit amounts of divisible goods (|A| = n)

– Integer amount of money mi, ∀i ∈ B

– Integer utilities uij, ∀i ∈ B, ∀j ∈ A
(uij = happiness for buyer i from one unit of good j)

• Goal: Find prices pj , ∀j ∈ A such that the market clears:

– All buyers buy only goods that maximize happiness

– All money is spent

– No good remains unpurchased

Let αi denote the maximum “bang-per-buck” that the buyer i can receive, i.e.

αi = max
j∈A

uij

pj

.

The buyer i will purchase only goods j such that αi = uij/pj . Given the prices of the
goods, we can define an equality subgraph that represents the goods that each buyer
may purchase.

Definition 15.1 The equality subgraph G = (A, B, E) is a bipartite graph (with vertex
set A and B) where (i, j) ∈ E if and only if αi = uij/pj .

Given a particular set of prices pj , j ∈ A, we can determine whether the prices
clear the market by performing a maximum flow computation. We add a source
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vertex s and a sink vertex t to the equality subgraph. For each good j ∈ A, we add
an arc (s, j) with capacity pj. For each buyer i ∈ B, we add an arc (i, t) with capacity
mi. We orient each edge (i, j) corresponding to a buyer i ∈ B and a good j ∈ A
in the equality subgraph as a directed arc (j, i) with capacity ∞. In the previous
lecture, we showed that the market clears if and only if the maximum flow value is
m(B) ≡∑i∈B mi.

Our algorithm maintains the invariant that {s} is a minimum s-t cut. We showed
that the following.

Lemma 15.1 The invariant that {s} is a minimum s-t cut holds if and only for all
S ⊆ A, p(S) ≤ m(Γ(S)).

The algorithm divides the graph into “frozen” and “active” subgraphs. We then
increase the prices pj in the “active” subgraph by a factor x. When there exists a set
S ⊆ A such x · p(S) = m(Γ(S)), we call such set S tight.

15.1.1 Running time analysis

Here’s the algorithm we introduced last time for the Market-Clearing Pricing Problem.

Market-Clearing Pricing (Devanur, Papadimitrou, Saberi, Vazirani 2002)

Price Initialization
(F, F ′)← (∅, ∅) (“frozen”)
(H, H ′)← (A, B) (“active”)
While H 6= ∅

Raise prices pj ← pj · x, ∀j ∈ H until either:
(1) S ⊆ H becomes tight

Move (S, Γ(S)) from (H, H ′) to (F, F ′)
Remove edges from F ′ to H

(2) For i ∈ H ′, j ∈ F , αi = uij/pj

Add (i, j) to E
Move the connected component of j from (F, F ′) to (H, H ′)

Return pj, ∀j ∈ A

To execute the main loop of the algorithm, we find a value of the value of x such
that (1) happens and such that (2) happens, then take the minimum x of the two.
One can easily find the value of x such that (2) happens; we now show how to find
the value of x such that (1) happens.

Lemma 15.2 At each iteration, we can determine x such that (1) happens using n
max-flow computations.
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Proof: Without loss of generality, we may assume that (A, B) is active. The
same argument applies to arbitrary active subgraph. To determine such x, we need
to determine

x∗ ≡ min
∅6=S⊆A

m(Γ(S))

p(S)
.

Let S∗ denote the set that minimizes the above ratio.

We will start with x ≡ m(B)/p(A) ≥ x∗, and compute max-flow for prices x · pj.
If {s} turns out to be a min s-t cut, then by Lemma 15.1 we know that x = x∗ and
we’re done. Furthermore, we can determine S∗ by taking the maximum minimum
cut (i.e., the largest set S such that S is an s-t min cut). The maximum minimum
cut can easily be determined from the residual graph produced by maximum s-t flow
algorithms.

If x > x∗ and {s} is not a min s-t cut, let {s} ∪ A1 ∪ B1 be the min s-t cut. If
we can show that S∗ ⊆ A1 ⊂ A, then the lemma is proven because we can recurse on
(A1, Γ(A1)).

Claim 1: A1 ⊂ A. If A1 = A, then we must have B1 = B because the edges
between A and B have infinite capacity. But, the cut {s} ∪ A ∪ B has value m(B)
while the cut {s} has value x · p(A), and we have x · p(A) ≤ m(B). This implies that
{s} is a min s-t cut, contradicting our assumption. Therefore, A1 ⊂ A.

Claim 2: S∗ ⊆ A1. Let S1 = S∗ ∩ A1 and S2 = S∗ ∩A2. Note that we must have
Γ(S1) ⊆ B1 since otherwise the cut will have infinite capacity. Note that the value of
the cut {s} ∪A1 ∪ B1 is x · p(A2) + m(B1).

First observe that it cannot be the case that m(Γ(S2)∩B2) < x ·p(S2). Otherwise
consider the cut {s}∪A1∪S2∪B1∪(Γ(S2)∩B2). It has value x(p(A2)−p(S2))+m(B1)+
m(Γ(S2) ∩B2) < x · p(A2) + m(B1), which contradicts the fact that {s} ∪A1 ∪B1 is
a minimum cut.

Note that this observation implies that it cannot be the case that S∗ = S2 since
then x∗ < x implies that m(Γ(S∗) ∩B2) ≤ m(Γ(S∗)) < x · p(S∗).

Thus S1 6= ∅. Furthermore, we have that

m(Γ(S2) ∩B2) ≥ x · p(S2) > x∗ · p(S2).

By the definition of x∗,

m(Γ(S2) ∩B2) + m(Γ(S1)) ≤ m(S∗) = x∗(p(S1) + p(S2)).

Subtracting the first inequality from the second we obtain that

m(Γ(S1)) < x∗ · p(S1),

which contradicts the definition of x∗. Thus it must be the case that S2 = ∅. ✷

Now, to determine the computational complexity of our algorithm, we need the
following lemma.
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Lemma 15.3 For any item j ∈ S where S is a tight set, then pj has denominator less
than or equal to ∆ ≡ nUn, where U ≡ maxi,j uij.

Proof: It is not hard to show that for any k ∈ S, pj = pk · ak

bk
, where ak and bk

are products of the utilities. Now, for a tight set S, we have

m(Γ(S)) = p(S) =
∑

k∈S

pk = pj

∑

k∈S

ak

bk

,

which implies that

pj =
m(Γ(S))∑

k∈S
ak

bk

.

Thus, the denominator of pj is the sum of at most n products of n utilities, which is
bounded above by ∆ = nUn. ✷

Before we proceed to the main result of this section, we note that if the price pj

in iteration i + k is strictly greater than the price pj in iteration i, then the difference
must be at least 1/∆2. This result follows from the fact that for any positive integers
a, b, c, d, if a/b > c/d and b, d ≤ ∆, then (a/b)− (c/d) ≥ 1/∆2.

Theorem 15.4 The algorithm for the Market-Clearing Pricing problem runs in time
O(m(B) · n2 ·∆2 ·MF ), where MF denotes the running time for computing max-flow.

Proof: By the lemma and observation above, each time good j is frozen because
of event (1), its price pj has increased by 1/∆2. Each time event (1) happens, some
good’s price has increased, so we assign it to this freezing. Thus after k executions
of event (1), the total surplus is at most m(B)− (k/∆2). Thus event (1) can occur
at most m(B)∆2 times. There can be at most n iterations of the main loop in which
event (2) occurs instead of event (1), and in each iteration we need to do n max flow
computations to determine the appropriate value of x. The running time follows. ✷

15.1.2 A polynomial time analysis

Though the algorithm above and its analysis are intuitive, unfortunately the analysis
does not give a polynomial time algorithm. A modification of the algorithm gives a
polynomial-time algorithm.

By modifying the algorithm so that for a given ǫ, ∀S ⊆ H,

m(Γ(S)) ≥ p(S) + ǫ,

and for each component S added to the frozen subgraph,

m(Γ(S)) ≤ p(S) + |S|ǫ,

we can show that the algorithm runs in time O(MF ·n2 (n log U + log(m(B)n2))). The
first condition implies that whenever event (1) happens, the total flow has increased
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by ǫ. The second condition implies that when the algorithm terminates, the remaining
surplus is no more than nǫ. Thus we run the algorithm first with ǫ = m(B)/2n; at
termination, the surplus will be no more than m(B)/2. By halving ǫ and repeating,
the surplus will be no more than m(B)/2i after the ith execution of the algorithm.
After O(log(m(B)∆2)) = O(n log U + log(m(B)n2)) executions of the algorithm, the
surplus is less than 1/∆2. We can then run the algorithm once more with ǫ = 0
(that is, we can run the original algorithm) to reduce the surplus to 0. This gives the
running time stated above.

15.1.3 Open questions

It is an interesting open question whether the original algorithm can be shown to run
in polynomial time, or even strongly polynomial time.
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Lecture 16

Lecturer: David P. Williamson Scribe: Damon Mosk-Aoyama

16.1 Interior-point methods for linear program-

ming

So far in this course, we have treated algorithms that solve linear programs as black
boxes. We have assumed that we have an LP solver that will take a linear program
as input, and return an optimal solution to the LP in (weakly) polynomial time. We
now return to studying linear programming, and discuss methods for solving linear
programs in polynomial time.

Recall the standard form of a linear program that we presented in Lecture 1:

Min cT x

subject to:

Ax = b

x ≥ 0.

Let n denote the number of variables in the LP, so that x ∈ ℜn×1. We can express
the dual of this LP as follows, using slack variables s ∈ ℜn×1:

Max bTy

subject to:

ATy + s = c

s ≥ 0.

The following are the algorithms for linear programming used in theory and practice.

• Simplex: Developed in 1947 by Dantzig, the Simplex algorithm is fast in prac-
tice, and is commonly used today. An example of an implementation of the
Simplex algorithm is CPLEX. As we mentioned in Lectures 1 and 2, there is no
known polynomial-time pivot rule for the Simplex algorithm. Many pivot rules
that have been studied have been shown to have exponential behavior in the
worst case.

• Ellipsoid method: The first polynomial-time algorithm for linear program-
ming was the ellipsoid method, which is due to Khachiyan. The presentation of
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the ellipsoid method in 1979 was front-page news, even in mainstream publica-
tions such as The New York Times. Despite being an important algorithm in
theory, the ellipsoid method is miserably slow in practice, and but is sometimes
used for solving control theory problems when the amount of time needed to
solve the program is not an issue.

• Interior-Point methods: The seminal work on interior-point methods was by
Karmarkar in 1984. Since then, there has been a significant amount of follow-
up work on interior-point methods. Interior-point methods are polynomial-time
algorithms, and are fast in practice. For some linear programs, the best imple-
mentations of interior-point methods are faster than the best implementations
of the Simplex algorithm.

In the remainder of this lecture, we study interior-point methods. Recall that the
Simplex algorithm finds an optimal solution to a linear program by moving between
vertices of the feasible region. It advances from one vertex to another by moving
along a line defined by constraints of the LP. When it reaches a vertex, it performs
a pivot, and then proceeds along another line, repeating this process until it reaches
a vertex that is an optimal solution. As such, the Simplex algorithm only moves
along the boundaries of the feasible region. In contrast, interior-point methods move
around between points in the interior of the feasible region. Figure 16.1 illustrates
this difference between the algorithms.

objective function vector
c

interior−point

Simplex

Figure 16.1: The Simplex algorithm moves along the boundaries of the feasible region.
Interior-point methods find an optimal solution by moving around the interior of the
feasible region.

Recall that if x is a primal feasible solution, (y, s) is a dual feasible solution, and
the complementary slackness conditions xTs = 0 are satisfied, then (x, y, s) is optimal
for the primal and dual linear programs. Therefore, a solution to the following system
is an optimal solution to the linear programs.
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ATy + s = c

Ax = b

xisi = 0 ∀i = 1, . . . , n (16.1)

x ≥ 0

s ≥ 0

The first two equations define a system that we can solve using techniques for
solving linear systems. Because of the nonlinear complementary slackness equations
and the nonnegativity constraints on x and s, however, we must use another approach
to solve this system.

16.1.1 Newton steps

Our method for solving this system is based on Newton’s method for finding a root of a
function. In the one-dimensional, unconstrained case, we have a function f(x), and we
begin with an initial point x0. We then repeatedly update the point. In iteration k, the
tangent line to f at the current point xk is described by y = f ′(xk)(x−xk)+f(xk) =
f ′(xk)∆x+f(xk), where ∆x = x−xk. We find a value of ∆x such that y = 0, and set
xk+1 ← xk + ∆x. Figure 16.2 shows an example of an update in Newton’s method.
We repeat this process until the value f(xk) of the function at the current point is
sufficiently close to zero.

y

x
x

xk

k+1

f(x)

tangent line to f at xk

Figure 16.2: An update by Newton’s method in the one-dimensional, unconstrained
case.

Interior-point methods apply this same approach to the system (16.1). We define
a function F (x, y, s) of the primal and dual solutions (x, y, s) to the linear programs.

F (x, y, s) =




ATy + s− c

Ax− b
XSe
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X =




x1 0 . . . 0

0
. . . 0

...
... 0

. . . 0
0 . . . 0 xn


 , S =




s1 0 . . . 0

0
. . . 0

...
... 0

. . . 0
0 . . . 0 sn


 , e =




1
...
1




Our goal is to find solutions (x, y, s) such that F (x, y, s) = 0 and (x, s) ≥ 0. To do
this, we make use of the Jacobian J , which is a matrix of partial derivatives.

J(x, y, s) =




0 AT I
A 0 0
S 0 X





Given these definitons, a Newton direction (∆x, ∆y, ∆s) is a solution to the following
equation.

J(x, y, s)




∆x
∆y
∆s



 + F (x, y, s) = 0

From now on, we will assume that we have feasible solutions (x, y, s) to the pri-
mal and dual linear programs. We will not discuss in detail how to find an initial
feasible solution, though any algorithm based on interior-point methods must find an
initial feasible solution that has the properties required for the implementation and
analysis of the algorithm. Furthermore, we will assume that the solutions (x, y, s)
are strictly feasible: x > 0 and s > 0. We will repeatedly update the solutions, even-
tually obtaining solutions that are closer to satisfying the complementary slackness
conditions.

For feasible solutions (x, y, s) to the linear programs, F (x, y, s) can be expressed
as follows.

F (x, y, s) =




ATy + s− c
Ax− b
XSe


 =




0
0

XSe




This allows us to rewrite the equation defining a Newton direction.

J(x, y, s)




∆x
∆y
∆s



 = −F (x, y, s)




0 AT I
A 0 0
S 0 X








∆x
∆y
∆s



 =




0
0

−XSe
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This is a system of linear equations that can be solved in O(n3) time using Gaussian
elimination to obtain a Newton direction (∆x, ∆y, ∆s).

Given a set (x0, y0, s0) of feasible solutions and a Newton direction (∆x, ∆y, ∆s),
we obtain a new set of solutions (x1, y1, s1) by moving from (x0, y0, s0) in the direction
(∆x, ∆y, ∆s). The solutions (x0, y0, s0) + (∆x, ∆y, ∆s) may not be strictly feasible,
however. To ensure that our new solutions are strictly feasible, we set the new
collection of solutions to be (x1, y1, s1)← (x0, y0, s0)+α(∆x, ∆y, ∆s). We choose the
scaling factor α such that x1 = x0 + α∆x > 0, and s1 = s0 + α∆s > 0.

16.1.2 The central path

A problem may arise if we always use a Newton direction to update our solutions.
We may have to choose α to be a very small quantity in order to ensure that the
next solutions are strictly feasible. If the current solutions are near a boundary of
the feasible region, then we may be forced to use small values of α repeatedly, and
so the solutions in consecutive iterations may be near each other. This will cause
the number of iterations required for finding optimal solutions to be large. Since
the running time of our iterative algorithm is directly proportional to the number of
iterations it executes, we would like to choose the directions for the updates to ensure
that the maximum value of α that produces strictly feasible solutions is sufficiently
large.

We study two ideas for addressing this problem. First, we can bias the update
steps towards the interior of the feasible region. Second, we consider a technique
that will allow us to keep the update steps bounded away from the boundary of the
feasible region.

Biasing Steps Towards Interior of Feasible Region

By modifying a Newton direction so that the update goes towards the interior of the
feasible region, we can use larger values of α in our updates, enabling us to move
further in individual iterations. Consider the following system:

ATy + s = c

Ax = b

xisi = τ ∀i = 1, . . . , n (16.2)

x ≥ 0

s ≥ 0.

For τ = 0, system (16.2) is the same as the system (16.1) above. If we solve
system (16.2) for smaller and smaller values of τ , then, the solutions will approach
the solution to system (16.1).
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Definition 16.1 Denote the solutions to system (16.2) by {(xτ , yτ , sτ) | τ > 0}. These
solutions are called the central path.

It can be shown that the solutions in the central path exist and are unique, assuming
A, b, and c satisfy appropriate properties.

The dual linear program has one constraint for each variable in the primal linear
program. As such, for each primal variable xi, the dual LP has a slack variable si

whose value specifies the slack in the dual constraint corresponding to xi. We can
have xisi = 0 only if xi = 0 or si = 0. If xi = 0, the primal constraint xi ≥ 0 is
tight, whereas if si = 0, then the dual constraint corresponding to xi has no slack
and therefore is tight. In this sense, the quantity xisi measures how close the feasible
primal and dual solutions (x, y, s) are to a pair of boundaries in the primal and dual
feasible regions. If xisi = 0, then at least one constraint in the primal and dual linear
programs is tight. Since the constraints in a linear program define the boundaries of
the feasible region, xisi = 0 implies that the solutions (x, y, s) are on a boundary of
either the primal or dual feasible region.

By requiring that xisi has the same value τ for all i = 1, . . . , n, the system (16.2)
ensures that solutions to it will be effectively at the same distance xisi = τ from each
of n pairs of boundaries in the primal and dual feasible regions. The solutions in the
central path are solutions to system (16.2) with τ > 0, and so they are in the interiors
of the primal and dual feasible regions.

We will use Newton’s method to find a solution to the system (16.2) with parame-
ter value τ . Over the course of updating the solutions (x, y, s) to the linear programs,
we will reduce τ , causing our solutions to converge to optimal solutions to the linear
programs. Suppose that in some iteration, the current solutions are (x, y, s). We con-
sider the choice τ = 1

n

∑n
i=1 xisi = 1

n
xTs; that is, given our current solution, solving

the system for this value of τ makes the xisi equal for all i. Recall that xTs is the
duality gap between the feasible solutions x and (y, s). We define µ ≡ 1

n
xTs.

To balance the movement towards the central path against the movement toward
optimal solutions, we maintain a centering parameter σ ∈ [0, 1]. We will update our
current solutions by moving towards a solution to the system (16.2) with τ = σµ. We
accomplish this by setting the update direction (∆x, ∆y, ∆s) to be a solution to the
following linear system.




0 AT I
A 0 0
S 0 X








∆x
∆y
∆s



 =




0
0

−XSe + σµe





If σ = 1, then our update will move towards the center of the feasible region. On
the other hand, if σ = 0, then our update step is in the direction of optimal solutions
to the linear programs. A step with σ = 1 is referred to as a centering step, and a
step with σ = 0 is referred to as an affine-scaling step. The choice of the centering
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parameter σ provides us with a trade-off between moving towards the central path
and moving toward optimal solutions to the linear programs.

Some interior-point methods examine only the feasible region of the primal linear
program, and as such are known as pure primal interior-point methods. The general
interior-point algorithm that we present here examines the feasible regions of both the
primal and the dual linear programs, and so we refer to it as a primal-dual interior-
point algorithm.

Primal-Dual Interior-Point

(x0, y0, s0)← initial feasible point (x0, s0 > 0)
µ0 ← 1

n
(x0)Ts0

k← 0
While µk > ǫ

Solve




0 AT I
A 0 0
Sk 0 Xk








∆xk

∆yk

∆sk



 =




0
0

−XkSke + σkµke





(xk+1, yk+1, sk+1)← (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk)
where αk is such that xk+1, sk+1 > 0

µk+1 ← 1
n
(xk+1)Tsk+1

k ← k + 1

This general framework omits several details that must be addressed in any im-
plementation of an interior-point algorithm for linear programming. In particular,
we have not specified how the the centering parameter σk is chosen, as different
interior-point algorithms use different methods to select σk. Furthermore, we have
not considered how to set the threshold ǫ, find an initial solution to the LP, or find
the optimal solution to the LP given the solution that the algorithm returns.

Keeping away from the boundary

During the course of iterating through a sequence of solutions to the linear programs,
we can keep the solutions away from the boundary by ensuring that they remain in a
neighborhood of the central path. Because solutions in the central path are essentially
at the same distance from n boundaries of the feasible regions, by maintaining solu-
tions near the central path, we can prevent them from approaching the boundaries of
the feasible regions.

There are several common types of neighborhoods used by interior-point algo-
rithms. For a parameter θ, a neighborhood that uses the L2 norm to measure dis-
tance is defined as N2(θ) = {strictly feasible (x, y, s) | ‖XSe− µe‖ ≤ θµ}. Note that
‖XSe − µe‖ ≤ θµ if and only if

∑n
i=1(xisi − µ)2 ≤ θ2µ2. Figure 16.3(a) shows an

example of a neighborhood N2(θ). We can also define a neighborhood based on the
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one-sided infinity norm as N−∞(γ) = {strictly feasible (x, y, s) | xi, si ≥ γµ ∀i =
1, . . . , n}.

x s2 2

x s1 1

x s2 2

x s1 1

(a)

central path

(b)

central path

N

N

2

2

(
1

4 )

( )
1

2

Figure 16.3: (a) A neighborhood of the central path in the case of n = 2 variables.
(b) The Predictor-Corrector algorithm alternates between predictor steps, in which
it moves as far as possible while remaining in N2(

1
2
), and corrector steps, in which it

takes a full step (α = 1), returning to N2(
1
4
).

16.1.3 Types of interior-point algorithms

There are several major types of interior-point algorithms for linear programming.

• Path-Following: Path-following algorithms use update steps that follow the
central path. The extent to which a path-following algorithm follows the central
path is determined by the centering parameter σ. The method of choosing σ
distinguishes different path-following algorithms.

– Short-Step: In short-step algorithms, σ is set close to 1 so that the
solutions stay near the central path. At most O(

√
n log 1

ǫ
) iterations are

needed to achieve µk ≤ ǫ. This is the best complexity bound known for an
interior-point algorithm.

– Long-Step: In contrast to short-step algorithms, long-step algorithms
pick the centering parameter σ to be farther from 1, and as a result the
solutions are farther from the central path. The number of iterations
required to reduce µk so that it is below the threshold ǫ is O(n log 1

ǫ
), but

long-step algorithms perform better than short-step algorithms in practice.

– Predictor-Corrector: Predictor-corrector algorithms strike a balance
between following the central path and moving toward optimal solutions
by alternating between steps with σ = 1 and steps with σ = 0. These
algorithms execute O(

√
n log 1

ǫ
) update iterations, and thus are as fast
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in theory as the best known interior-point algorithms. A variant on the
predictor-corrector approach is the standard code used in practice.

• Potential-Reduction: Potential-reduction algorithms make use of a poten-
tial function. The potential function approaches +∞ when xisi → 0 for some
i = 1, . . . , n, but µ 6→ 0. This situation occurs when the solutions go near a
boundary of the feasible region, but do not approach optimal solutions. The po-
tential function approaches −∞ if and only if the solutions (x, y, s) approach op-
timal solutions to the linear programs. Potential-reduction algorithms perform
update steps to reduce the potential function, eventually moving toward opti-
mal solutions. Karmarkar’s seminal interior-point algorithm was a potential-
reduction algorithm.

16.1.4 A predictor-corrector algorithm

We now consider a predictor-corrector algorithm that was developed by Mizuno,
Todd, and Ye in 1993. In this algorithm, we use two neighborhoods of the cen-
tral path, N2(

1
2
) and N2(

1
4
). An update step with σ = 0 is referred to as a predictor

step. In predictor steps, we choose the next set of solutions to go as far in the Newton
direction as possible, subject to the constraint that the new solutions are in N2(

1
2
).

The other type of update step is the corrector step, in which σ = 1. In a corrector
step, we always take a full update step in the Newton direction by setting α = 1.
This algorithm has the property that these corrector steps always return the current
solutions to N2(

1
4
). Figure 16.2(b) illustrates the update steps taken by the algorithm.

Predictor-Corrector (Mizuno, Todd, Ye 1993)

(x0, y0, s0) ∈ N2(
1
4
)

k← 0
While µk > ǫ

If k is even
Find (∆xk, ∆yk, ∆sk) for σk = 0
αk ← maxα∈[0,1]{α | (xk, yk, sk) + α(∆xk, ∆yk, ∆sk) ∈ N2(

1
2
)}

(xk+1, yk+1, sk+1)← (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk)
Else

Find (∆xk, ∆yk, ∆sk) for σk = 1
(xk+1, yk+1, sk+1)← (xk, yk, sk) + (∆xk, ∆yk, ∆sk)

k ← k + 1

In the next lecture, we will prove the following lemmas.

Lemma 16.1 For k even and (xk, yk, sk) ∈ N2(
1
4
), µk+1 ≤ (1− 0.4√

n
)µk.
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Lemma 16.2 For k odd, µk+1 = µk and (xk+1, yk+1, sk+1) ∈ N2(
1
4
).

The analysis of the running time of this algorithm is based on the following theo-
rems.

Theorem 16.3 Given (x0, y0, s0) ∈ N2(
1
4
) with µ0 = C , after at most O(

√
n log C

ǫ
)

iterations, µk ≤ ǫ.

Proof: For k ≥ 5
√

n ln C
ǫ
,

µk ≤ C
(
1− 0.4√

n

)5
2

√
n ln C

ǫ ≤ Ce−0.4( 5
2

ln C
ǫ
) = C

( ǫ

C

)
= ǫ

The first inequality follows from Lemmas 16.1 and 16.2, and to obtain the second
inequality we use the fact that (1− x

k
)k ≤ e−x. ✷

Let L denote the number of bits in (A, b, c), the inputs to the algorithm.

Theorem 16.4 A starting point (x0, y0, s0) ∈ N2(
1
4
) can be found such that µ0 ≤

1
n
2O(L).

Theorem 16.5 If (x, y, s) is a set of solutions such that µ ≤ 1
n
2−2L, then any vertex

x∗ of the primal feasible region such that cT x∗ ≤ cT x is an optimal solution to the primal
linear program. Moreover, such a vertex x∗ can be found in O(n3) time.

These theorems imply the following upper bound on the running time of the
Predictor-Corrector algorithm.

Corollary 16.6 An optimal solution to the linear program can be found in O(
√

nL)
iterations. The overall running time of the Predictor-Corrector algorithm is O(n3.5L).
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CS 361B Advanced Algorithms June 9, 2003

Lecture 17

Lecturer: David P. Williamson Scribe: Vivek Farias

17.1 Interior-point methods (cont.)

Let us first review the main results from the previous lecture. Recall that our objective
was to solve the LP:

Min cT x

sub. to: Ax = b

x ≥ 0

with dual

Max bTy

sub. to: ATy + s = c

s ≥ 0.

The main idea was to find a set of primal feasible and dual feasible points, and con-
tinually update these variables using a Newton method until complementary slackness
was achieved. Recall that the Newton step is the solution to the system:




0 AT I
A 0 0
S 0 X








∆x
∆y
∆s



 =




0
0

−XSe + σµe



 (17.1)

where µ = xT s
n

and σ ∈ [0, 1] is a centering parameter. σ = 1 implies that we are
trying to make all the xisi values the same, while σ = 0 means that we are trying to
move to an optimal solution. We defined notion of a central path, and a neighborhood
of the central path, N2(θ) = {(x, y, s) : ||XSe− µe|| ≤ θµ, strictly feasible}.

We also outlined the following interior-point algorithm for solving linear programs.
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Predictor-Corrector (Mizuno, Todd, Ye 1993)

(x0, y0, s0) ∈ N2(
1
4
)

In even iterations find (∆x, ∆y, ∆s) with σ = 0
Update: (xk+1, yk+1, sk+1)← (xk, yk, sk) + α(∆x, ∆y, ∆s)

for α ∈ [0, 1] as large as possible such that (xk+1, yk+1, sk+1) ∈ N2(
1
2
)

In odd iterations find (∆x, ∆y, ∆s) with σ = 1
Update: (xk+1, yk+1, sk+1)← (xk, yk, sk) + (∆x, ∆y, ∆s)
Repeat until µ ≤ ǫ.

17.1.1 The complexity of the predictor-corrector algorithm

In the sequel we will prove the following lemmas, in order to establish a complexity
bound for Predictor-Corrector.

Lemma 17.1 For k even and (xk, yk, sk) ∈ N2(
1
4
) then µk+1 ≤ (1− .4√

n
)µk .

Lemma 17.2 For k odd and (xk, yk, sk) ∈ N2(
1
2
), we have µk+1 = µk and (xk+1, yk+1, sk+1) ∈

N2(
1
4
) .

These lemmas enabled us to prove the following theorem in Lecture 16.

Theorem 17.3 We need at most O(
√

n ln(C
ǫ
)) iterations before µk ≤ ǫ if µ0 ≤ C .

We first introduce some notation and state a result that will help with the proof
of the above lemmas. Define x(α) = x + α∆x. Similarly define y(α) = y + α∆y,
s(α) = s + α∆s, and µ(α) = 1

α
x(α)s(α).

We state the following lemma without proof.

Lemma 17.4 For (x, y, s) ∈ N2(θ), ‖∆X∆Se‖ ≤ θ2+n(1−σ2)

23/2(1−θ)
µ .

The following lemma will be useful in what follows.

Lemma 17.5 ∆xT∆s = 0 and µ(α) = (1− α(1− σ))µ.

Proof: We know from (17.1) that

AT∆y + ∆s = 0

and

A∆x = 0.
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Hence the first conclusion is immediate; ∆x is in the kernel of A, while ∆s is in the
range of A′, so they must be orthogonal. Again from (17.1),

S∆x + X∆s = −XSe + σµe

=⇒ si∆xi + xi∆si = −xisi + σµ ∀i (17.2)

=⇒ sT ∆x + xT∆s = −xTs + nσµ (17.3)

Hence,

µ(α) =
1

n
(x + α∆x)T (s + α∆s)

=
1

n
(xT s + α(∆xTs + sT∆x) + α2∆xT∆s)

= µ +
α

n
(−xTs + nσµ) (17.4)

= (1− α(1− σ))µ,

where (17.4) follows from (17.3). ✷

Let us restate and then prove Lemma 17.2 in light of our new notation.

Lemma 17.6 For α = 1, σ = 1, (x, y, s) ∈ N2(
1
2
), we have (x(1), y(1), s(1)) ∈ N2(

1
4
)

and µ(1) = µ.

Proof: That µ(1) = µ follows from Lemma 17.5 with α = 1. Now we need to
show ‖X(1)S(1)e− µ(1)e‖ ≤ µ(1)/4. By using (17.2) from Lemma 17.5 we have

xi(α)si(α)− µ(α) = (xi + α∆xi)(s + α∆si)− µ

= xisi + α(∆xisi + xi∆si) + α2∆xi∆si − µ

= (1− α)xisi + α2∆xi∆si + (α − 1)µ.

Thus for α = 1 we have ‖X(1)S(1)e − µ(1)e‖ = ‖∆X∆Se‖. By Lemma 17.4, we

know that ‖∆X∆Se‖ ≤ µ
4

= µ(1)
4

from our first conclusion in this proof.

Hence all that remains is to ensure that strict feasibility is maintained. By the
above, we have that

‖X(α)S(α)e− µ(α)e‖ ≤ (1− α)‖XS − µe‖+ α2‖∆X∆Se‖
≤ |1− α|µ/2 + α2µ/4,

where the inequality on the first term follows since (x, y, s) ∈ N2(
1
2
) and the inequality

on the second term follows as above. Thus note that for any α ∈ [0, 1] and for all i,
xi(α)si(α) ≥ −(1− α)µ/2 − α2µ/4 + µ > 0 by simple calculus. Hence x(1), s(1) are
strictly feasible, since x(0), s(0) are strictly feasible and for no α ∈ [0, 1] can x(α) or
s(α) be zero. ✷

We now restate and prove Lemma 17.1.
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Lemma 17.7 For (x, y, s) ∈ N2(
1
4
), σ = 0, we have (x(α), y(α), s(α)) ∈ N2(

1
2
) for all

α ∈ [0, ᾱ], where

ᾱ = min

(
1

2
,

(
µ

δ‖∆X∆Se‖

)1/2
)
≥ 0.4√

n
.

Proof: Since σ = 0, we have that µ(α) = (1 − α)µ from Lemma 17.5, so that
µ(ᾱ) ≤ (1− 0.4√

n
)µ. We would like to quantify ‖∆X∆Se‖. As above, we have that

‖X(α)S(α) − µ(α)e‖ ≤ (1− α)‖XS − µe‖+ α2‖∆X∆Se‖
≤ 1

4
(1− α)µ +

µ

8‖∆X∆Se‖‖∆X∆Se‖

=
1

4
(1− α)µ +

µ

8(1− α)
(1− α)

≤ 1

4
(1− α)µ +

µ

4
(1− α)

=
1

2
(1− α)µ

=
1

2
µ(α),

where the second inequality holds since (x, y, s) ∈ N2(1/4) and α ≤
(

µ
δ‖∆X∆Se‖

)1/2

by hypothesis, and the third inequality holds since 1−α ≥ 1/2. by hypothesis. Thus
(x(α), y(α), s(α)) ∈ N2(1/2). The proof that x(α), s(α) is strictly feasible follows as
in the proof of Lemma 17.2.

By Lemma 17.4,
µ

8‖∆X∆Se‖ >
0.16

n
.

So ᾱ ≥ 0.4√
n
, and thus µ(α) ≤ (1− 0.4√

n
)µ as desired. ✷

17.2 A flavor of the ellipsoid method

We consider LPs of the form:

Min cT x

subject to:Ax ≤ b

What follows is a brief outline of the algorithm:
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Ellipsoid (Khachian 1979)

Determine an ellipsoid ǫ0 containing the feasible region
i← 0
While Volume(ǫi) > ǫ

Check if the center of ǫi, xi is feasible
If not feasible

Get violated constraint a′
ixi > bi

Else ai ← c
Find ellipsoid ǫi+1 containing ǫi ∩ {aT

i x ≤ aT
i xi}

There are three things that we essentially need to show to establish that the Ellipsoid
Method is a polynomial-time algorithm for LP, namely:

• Bound on the size of the initial ellipsoid.

• Bound on the final ellipsoid.

• That every iteration makes progress.

In fact one can show that the initial ellipsoid is not too large, and a sufficiently small
ellipsoid contains exactly one optimal vertex of the LP. One can then round the center
xi of this ellipsoid to the vertex in polynomial time. Furthermore, one can show that
after n iterations of the main loop above, the volume of the ellipsoid has dropped
by a constant factor, so given reasonable starting and ending volumes, the algorithm
runs in polynomial time.

A useful property of the ellipsoid method is that the LP does not need to be
specified in advance. Note that it is sufficient if one can produce a violated constraint
of the LP in polynomial time. Hence it is possible to solve LPs with an exponential
number of constraints in polynomial time if we have a polynomial-time separation

oracle, which, given an x either declares x feasible for the LP or produces a constraint
of the LP which is violated by x.
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