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1 Introduction

How do you aggregate the preferences of multiple agents in a fair manner? This
is a question that has occupied researchers for several centuries. Suppose we
have k voters who each give their preferences on n candidates. How should the
candidates be ranked to best represent the input? Marquis de Condorcet [5]
showed that there may not exist a “winner”: a candidate who beats all other
candidates in a pairwise majority vote. Borda [4] and Condorcet [5] (and
many others after them) proposed different ways of aggregating the preferences
of the voters, and argued over which method is the right one. Only in the
middle of the 20th century, Arrow [2] showed that there is no right method:
there exists no aggregation method that simulataneously satisfies three natural
criteria (non-dictatorship, independence of irrelevant alternatives and Pareto
efficiency).

This negative result notwithstanding, we still want to find aggregate rankings
based on voters’ inputs. In this paper, we consider the case when, rather than
selecting a winner, we would like to find a permutation of the candidates that
represents the voters’ inputs. Each voter’s input is assumed to be a permuta-
tion of the candidates, where a candidate is ranked above another candidate,
if the voter prefers the former to the latter candidate. The goal is to find a
permutation that minimizes the sum of the distances to the voters’ permuta-
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tions, where in principle any distance(-like) function on permutations can be
used, e.g. Kendall distance or Footrule distance.

Young & Levenglick [9] show that the Kendall distance is the unique distance
function such that the permutation(s) that minimize it have three desirable
properties of being neutral, consistent and Condorcet. The latter property
means that, if there exists a permutation such that the order of every pair
of elements is the order preferred by a majority, then this permutation has
minimum distance to the voters’ permutations. This distance was already
proposed by Kemeny [7] for other reasons ([7] defines axioms on the distance
function, and finds that the Kendall distance adheres to the axioms), and the
problem of finding an optimal ranking with respect to this criterion is now
known as Kemeny Rank Aggregation.

In this paper, we suggest a new way of thinking about this problem. Suppose
instead of minimizing the total distance from the voters’ inputs, we want to
find a permutation that makes a majority of the voters “happy”? Of course,
a voter is happy when we follow her opinion exactly, and we cannot do this
simultaneously for a majority of the voters, unless a majority of the voters
is in total agreement. Therefore, our goal is to find a permutation such that
there exists no other permutation that a majority of the voters prefer, in the
sense that their distance to the alternative permutation is smaller. We call
such a permutation a popular ranking.

Unfortunately, we show that such a permutation is unlikely to exist: it only
exists if Condorcet’s paradox does not occur. Even worse than this, we show
that if Condorcet’s paradox does not occur, then it may still be the case that
no popular ranking exists. The only positive news in this context is, perhaps
paradoxically, an NP-hardness result: we show that if Condorcet’s paradox
does not occur, then we can efficiently compute a permutation, which may or
may not be popular, but for which the voters will have to solve an NP-hard
problem to compute a permutation that a majority of them prefer.

Related Work: Our work is inspired by Abraham et al. [1] where the notion
of popular matchings is introduced. Popular ranking is also related to the
problem of designing a voting mechanism in which the voters do not have
an incentive to lie about their preferences. However, rather than considering
deviations of a single voter, a popular solution is robust against deviations of a
majority of the voters. We show that, if the input does not contain Condorcet’s
paradox, then there is a solution that may or may not be popular, but for which
it is computationally hard for a majority of the voters to manipulate the output
to their advantage. This result has a similar flavor as a result by Bartholdi
et al. [3], who demonstrate a voting rule for deciding the “winner” of an
election, for which it is computationally hard for a single voter to manipulate
the output.
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2 Popular Ranking

We are given a set of alternatives [n] (where the notation [n] means {1, 2, . . . , n})
and a set of voters [k], where each voter ` has a complete ordering of the al-
ternatives. We will denote these complete orderings of a voter ` as a list of the
alternatives, where an alternative earlier in the list is preferred to elements
that succeed it, and use the notation π−1` : [n] → [n] (the use of “−1” will
become clear shortly), where π−1` (i) is the alternative at position i in the or-
dering of voter `. Note that we can interpret π−1` as a permutation. Further,
the inverse of π−1` , which we will denote by π`, is well defined and can be
interpretated as the position of the alternatives in the list of voter `. We will
use list(π`) to denote the ordered sequence (π−1` (1), π−1` (2), . . . , π−1(n)).

The Kendall distance between two permutations π, σ, denoted by K(π, σ), is
defined as the number of pairwise disagreements of π and σ, i.e. K(π, σ) =
#{i, j : π(i) < π(j) and σ(i) > σ(j)}+ #{i, j : π(i) > π(j) and σ(i) < σ(j)}.

Definition 1 We say a permutation π is popular, if 6 ∃π′ such that K(π`, π
′) <

K(π`, π) for a strict majority of the voters ` ∈ [k].

We define the majority graph G = (V,A) for an instance as the directed graph
which has a vertex for every i ∈ [n] and an arc (i, j) if a majority of the voters
` ∈ [k] has π`(i) < π`(j). Condorcet observed that such a graph may have a
cycle; this is known as “Concorcet’s paradox”.

Lemma 2 No popular ranking exists if the majority graph has a directed cycle.

Proof (sketch) If we order the elements from left to right according to a
ranking π, then there must be some arc (i, j) in the graph that is a back arc,
i.e. for which π(j) < π(i). Let π′ be the permutation we obtain by swapping i
and j, i.e. π′(i) = π(j), π′(j) = π(i) and π′(t) = π(t) for all t 6= i, j. Then one
can show that a strict majority of the voters prefer π′ to π, namely the voters
` who have π`(i) < π`(j). 2

If the majority graph is acyclic, then a popular ranking could exist. We con-
sider the case when the majority graph is a tournament, i.e. for every i, j
exactly one of the arcs (i, j) and (j, i) is in G. Note that the majority graph
is always a tournament if the number of voters is odd. By Lemma 2, the only
permutation that could be popular is the permutation we obtain by topolog-
ically sorting the majority tournament. However, it is not the case that this
ranking is always a popular ranking, as we show in the Appendix. Even though
the topologically sort of the majority tournament is not necessarily a popular
ranking, it turns out that it is a “good” permutation in the sense that it is
NP-hard to find a ranking that a majority of the voters prefer. The proof of
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the following theorem is given in the Appendix.

Theorem 3 Given an input to the popular rank aggregation problem with an
acyclic majority graph, it is NP-hard to find a ranking ρ that a majority of the
voters S prefers to a topological sort of the majority graph, even if S is given.

3 Directions

We have seen that a popular ranking does not always exist, even if the majority
graph has no cycles. Perhaps popularity is asking for too much and we should
relax our objective. It is an interesting question whether there exists a suitable
relaxation of the notion of popularity, so that one can get positive results. One
way of relaxing the notion is looking for rankings with least-unpopularity-factor
(McCutchen [8] introduced this notion for matchings). The bad news is that
it can be shown that the unpopularity factor of the permutation π we obtain
by topologically sorting the majority tournament may be unbounded. It is
an open question however whether there exists a permutation with bounded
unpopularity (and if so, what this uniform bound is) and whether such a
permutation can be found in polynomial time.
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A Deferred Proofs

Lemma 4 If the majority graph is an acyclic tournament, then the permu-
tation π we obtain by topologically sorting the majority tournament is not
necessarily a popular ranking.

Proof Consider an instance with 2r elements, with r odd. Let π be the
identity. We define a “swap” on π as the operation that swaps the position of
element i and i+ 1, for i odd. We have (r+ 1)m+ 1 voters, which are divided
into r + 1 sets, one of size m + 1 and the others of size m. The voters in the
set of size m+ 1 vote π. All other sets choose 1

2
(r + 1) of the swaps and vote

for the permutation that we obtain from π by executing these swaps. Note
that it is possible to choose the set of swaps for each set, so that each swap
is chosen by 1

2
(r + 1) sets. Hence the number of voters who prefer each swap

is 1
2
(r + 1)m < 1

2
((r + 1)m+ 1) so the majority ranking is indeed π. Let σ be

the permutation we obtain by executing all swaps on π. All voters except for
those in the first set strictly prefer σ to π. Hence π is not a popular ranking. 2

Theorem 3 Given an input to the popular rank aggregation problem for which
the majority graph is acyclic, it is NP-hard to find a ranking ρ that a majority
of the voters S ⊆ [k] prefers to a topological sort of the majority graph, even
if we know S (and there are only 7 rankings).

Proof We modify a reduction from the Feedback Arc Set problem to Kemeny
rank aggregation by Dwork et al. [6] to give an instance to the popular rank
aggregation problem in which the majority tournament is acyclic. We consider
a Feedback Arc Set solution A′ that is defined by an ordering σ of the vertices
(we will make this precise in the next paragraph). There will be 3 voters whose
input ranking is σ, and 4 voters with different input rankings. σ will also be
the topological order of the acyclic majority tournament. We will show that
the ranking σ is not popular (i.e. there exists a ranking ρ that is preferred by
4 voters to σ) if and only if A′ is not an optimal Feedback Arc Set solution.

In the Feedback Arc Set problem, we are given a directed graph G = (V,A)
and are asked to produce a subset of the edges A′ of minimum size, such that
(V,A\A′) is acyclic. Given an input to the Feedback Arc Set problem, and an
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ordering σ of the vertices, let B(σ) be the set of arcs (i, j) in A such that i
is ordered to the right of j. Clearly B(σ) is a Feedback Arc Set solution of
size |B(σ)|, and this is a minimum cardinality solution that corresponds to
the ordering σ. Conversely, every Feedback Arc Set solution gives rise to at
least one ordering, so for the Feedback Arc Set problem we may restrict our
attention to solutions that arise from considering orderings of the vertices σ
(i.e., of the form B(σ)).

Given such an ordering, it is NP-hard to find an ordering that corresponds to
a FAS of size |B(σ)| − 1 or less if it exists. If we could find such an ordering,
we have the following polynomial time algorithm to find a FAS of miniminal
size: start with a random ordering of the nodes, and repeat this supposed
procedure to find a FAS of smaller size (we need to call the procedure at most
O(|A|) times to find a minimum size FAS).

Based on an input to the Feedback Arc Set problem G = (V,A), we begin
by constructing four lists as in Dwork et al. [6]. Let |V | = n, |A| = m. We
have an element for every vertex and every arc in G. We number the vertices
(arbitrarily) 1, . . . , n. We also fix an ordering of the arcs in G.

For a vertex i ∈ V , we let out(i) be the list of arcs in A that have i as tail,
listed in order. We let outr(i) be the list of the same arcs, but listed in the
reverse order. Similarly define in(i) and inr(i).

Dwork et al. [6] now define the following four lists:

τ1(G) = 1, out(1), 2, out(2), . . . , n, out(n)

τ2(G) = n, outr(n), n− 1, outr(n− 1), . . . , 1, outr(1)

τ3(G) = in(1), 1, in(2), 2, . . . , in(n), n

τ4(G) = inr(n), n, inr(n− 1), n− 1, . . . , inr(1), 1

Note that for every pair of elements a, b, except for a pair where a is a vertex
i and b is the arc (i, j) or (j, i), it is the case that exactly one of τ1 and τ2
orders a before b. Similarly, exactly one of τ3 and τ4 orders a before b (call this
Fact 1).

For a vertex i and an arc (i, j), three of the lists order i before (i, j), and
similarly, for a vertex i and an arc (j, i), three of the lists order (j, i) before i.

This implies in particular, that for every pair of elements a and b there exists
at least one list that orders a before b, and at least one that orders b before a
(call this Fact 2).

We associate the following list with an ordering of the nodes σ:

`(σ) = σ(1), out(σ(1)), σ(2), out(σ(2)), . . . , σ(n), out(σ(n)).
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Note that in `(σ) the edges always are directly behind their tail nodes. So

d(`(σ), τ1) + d(`(σ), τ2) =
(
n
2

)
+
(
m
2

)
+ (n− 2)m+m, where d is the Kendall-

tau distance. The first three terms come from Fact 1, and the last term comes
from noting that the pair i,(i, j) is in the same order in τ1, τ2 and `(σ) (hence
contributing 0), and that (i, j), j is in different order in τ1 and τ2 (hence
contributing 1).

The distance of `(σ) to the other two lists is directly related to |B(σ)|, the
number of “back arcs” in the FAS solution σ: for every arc (i, j) ∈ B(σ) we
know that i is ordered to the right of j, and so (i, j) is also to the right of j in
`(σ). It is to the left of j in both τ3 and τ4, though. For every arc (i, j) 6∈ B(σ)
we see that (i, j) is to the left of j in `(σ), exactly as in both τ3 and τ4.

We thus obtain the following equality:

d(τ1, `(σ)) + d(τ2, `(σ)) + d(τ3, `(σ)) + d(τ4, `(σ))

= 2

(
n

2

)
+ 2

(
m

2

)
+ 2(n− 2)m+m+ 2|B(σ)|. (A.1)

Note that any ordering ρ which has the nodes in the same relative order,
will have

∑
i d(τi, ρ) ≥ ∑

i d(τi, `(σ)). This is because `(σ) does not incur any
additional “cost” for arcs not in B(σ), and for an arc in B(σ) it is either before
the tail node or after the head node (or both) in any ranking, thus incurring
a “cost” of at least 2 (call this Fact 3.)

We now define the input to the popular rank aggregation problem. Given an
input to the FAS problem G, and an ordering σ of the vertices of G, we first
create four copies of G, call them G1, G2, G3, G4. We use the notation σ(Gi)
for the ordering of the nodes in Gi that is an image of the ordering σ of the
nodes of G, for i = 1, 2, 3, 4.

We now have four voters who have the following lists:

π1 = τ1(G1), τ2(G2), τ3(G3), τ4(G4)

π2 = τ2(G1), τ3(G2), τ4(G3), τ1(G4)

π3 = τ3(G1), τ4(G2), τ1(G3), τ2(G4)

π4 = τ4(G1), τ1(G2), τ2(G3), τ3(G4)

Finally we have three voters whose lists are given by

L(σ) := [`(σ(G1)), `(σ(G2)), `(σ(G3)), `(σ(G4))].

Note that for every two elements a and b from the same graph, at least one
of π1, π2, π3, π4 lists a before b and at least one lists b before a by Fact 2.
If a and b are from different graphs, then every list has the element from the
graph with the lower index first. So the majority tournament for this rank
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aggregation problem is exactly the list of the three voters, L(σ), and this is
an acyclic tournament.

We will now argue that there exists a ranking that is preferred over L(σ) by
a majority of the voters, precisely when there exists an ordering of the nodes
of G that has a strictly smaller FAS than σ.

Suppose we there exists an ordering of G with a strictly smaller FAS than
σ, say ρ. From Equation (A.1) it follows immediately that d(πi, L(ρ)) <
d(πi, L(σ)) for all i, so L(ρ) is preferred over L(σ) by a majority of the voters.

Coversely, suppose we know that there exists a ranking R that is preferred
over L(σ) by a majority of the voters. These voters must be the voters with
lists π1, π2, π3 and π4, since d(L(σ), R) > 0 = d(L(σ), L(σ)) for R 6= L(σ).
Call ρi the ordering induced by R on the nodes of Gi, for i = 1, 2, 3, 4.

Let T = `(ρ1), `(ρ2), `(ρ3), `(ρ4). We have that
∑

i d(T, πi) ≤
∑

i d(R, πi) <∑
i d(L(σ), πi), by Fact 3.

Let Ti = [ρi(G1)), ρi(G2)), ρi(G3)), ρi(G4))]. Now note that
∑

j

∑
i d(Tj, πi) =

4
∑

i d(T, πi) < 4
∑

i d(L(σ), πi). So the property of averages gives that for
some j we have

∑
i d(Tj, πi) ≤

∑
i d(T, πi) <

∑
i d(L(σ), πi). This means that

ρj is an ordering that has a strictly smaller FAS than σ (by Fact 3). 2
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